
247

Polygon Morphing Using a M ultiresolution Representation

Eli Goldstein and Craig Gotsman

Department of Computer Science
Technion - Israel Institute of Technology

Haifa 32000, Israel

e-mail: {goldy.gotsman}@cs.technion.ac.il
Tel: +972-4-294336

Abstract

We present an algorithm for morphing between two
simple polygons . The two polygons are converted to
mul tiresolu tion representations. Intermediate repre
sentations are generated from these two, from which
intermediate polygons are reconstructed. Our algo
rit.hm is simpler than the few existing polygon morph
ing schemes, and its results compare favorably. The
key to the success of our algorithm is the multireso
lu t ion shape representation, based on curve evolution
schemes. This representation captures the geometric
properties of a shape at different levels of detail, a
crucia l requirem ent for aesthetic shape deformations.

Key words: Polygon Morphing , Multiresolution,
Curve Evolution.

1 Introduction

Morphing (m etamorphosis) is a term reserved for
processes which , when given two objects, continu
ously deform one to the other. Morphing of objects
is popu lar in animations seen in the entertainment
and broadcasting industry. However , many of the
spectacular effects that have been achieved, have, by
large, been done manually, albeit with the support of
a computer . This is notoriously time consuming, so a
major research challenge is the design of algorithms
whi ch morph objects automatically with a minimum
of manual intervention. The only manual interven
t.ion we would like to require is the input of some cor
respondence points between the objects , which guide
the mOl'phing process. The generation of the actual
intermediate objects should be completely automatic.
Algorithms have been designed for the morphing of
images [1], polygons [19, 18, 20], polyhedra [2] and
volume data [10, 9]. This work concentrates on 2D

polygons.

More formally, the morphing problem may be for
mulated as follows : Given two objects 0 0 , 0 1 and
t E [0,1], construct an intermediate object Ot which
is similar to 0 0 as t -+ ° and similar to 0 1 as t -+ 1.
In a way, the morphing problem is a multidimensional
interpolation problem, and, as such, is ill-posed, in
the sense that there are many possible interpolants
Ot satisfying these very vague conditions. An ac
cepted way of reducing the number of possible solu
tions to an interpolation problem is by regulari zation,
namely, constraining the solution to satisfy a variety
of other "natural" conditions not explicit in the in
put . In the case of 2D polygons , the following are
some natural conditions that an intermediate mor
phed curve should satisfy: If P and Q are closed and
simple, then the interpolant R should also be closed
and simple. The area of R should vary smoothly be
tween that of P and Q. If Q is a translated (rotated)
version of P, then R should also be an appropriate
translation (rotation) of P. These properties should
hold both globally, and locally, in some sense.

The most naive algorithm for morphing between
two polygons P and Q, namely, interpolation along
a line segment between corresponding vertices of P
and Q ("vertex interpolation"), fails to satisfy any of
the conditions mentioned above. The interpolant eas
ily intersects itself, and simple geometric properties ,
such as lengths , angles and areas, do not change in a
consistent manner, as Fig. l(b) demonstrates. The
main reason why the linear vertex interpolation yields
bad results is that each vertex is treated indepen
dently of all other vertices. Sederberg et. al [18] pro
pose a method in which interpolation is performed on
edge lengths and angles. Since this type of interpola
tion might transform closed polygons into open ones,

.~ ,.~V" Graphics Interface '95

248

(a)

(b)

Figure 1: Morphing two polygons: (a) Natural
morph. (b) Linear vertex interpolation morph .

an optimization algorithm must be used to guarantee
closedness. The procedure they use, however , does
not guarantee simpleness of the interpolant. Further
more, the method tends to distort polygon area, as
it does not consider the polygon interior. Shapira at.
a l [20] propose a complex algorithm which takes into
account the polygon interior as well as its boundary.
Their approach builds on the so-called star-skeleton
representat ion of a polygon. Morphing is then per
form ed on the representations, from which interme
diate polygons are reconstructed. The advantage of
this approach is that it yields intermediate polygons
which are closed and have natural shapes. Simplic
it.y, however , is not guaranteed. The disadvantage of
this algorithm is the complexity of the star-skeleton
representation extraction procedure.

The reason the algorithm of [20) achieves such
good results is its use of a natural representation of a
polygon , accounting for its important geometric fea
tures. It seems that this is the key to successful shape
morphing algorithms. Such a representation should
emphas ize the intrinsic object geometry in a way con
sistent with human perception of that geometry.

We propose a different representation of poly
gons, with a multiresolution character. The human
visual system is able to appreciate the fine details
of an obj ect , but also its overall geometric shape.
This type of multiresolution perception has found its
way into computing in the form of multiresolution
data structures [5), analysis [13), and synthesis [7 ,6].
The multiresolution representation we use is based
on polygon evolution schemes. This representation
contains information on the polygon at many levels
of detail. Morphing is then performed in the more
natural space of the representations, from which the
intermediate polygons a re reconstructed .

Figure 2: The multiresolution scale-space of a func
tion, obtained by smoothing with a Gaussian filter
of increasing width. The number of second derivate
zero crossings decreases with scale.

2 Curve Evolution

In his , by now classic, work on multiresolution rep
resentation of one-dimensional functions (signals) ,
Wit kin [21) describes a scheme in which the fun ction
is continuously smoothed by filtering with a Gaussian
kernel of increasing width. This produces a sequence
of functions whose number of second-derivative zero
crossings does not increase in time (see Fig. 2).
Advancing along the time axis , also known as the
scale axis , reduces the resolution of the functi on so
that only its low-frequency, or very coarse, behav
ior is visible. At the limit of very low resolution -
a straight line is obtained. This (highly redundant)
decomposition of a signal has been useful in a va
riety of signal processing applications. In a series
of papers, Mokhatarian et al. extended the meth
ods of Witkin to 2D closed parametric curves by first
performing ID smoothing techniques independently
on each of the coordinates [14), and then accounting
for the curve geometry by normalizing the filter ker
nel coordinate system by the curve arc- length [15].
It can be shown that application of these so-called
curve evo lution techniques cause any smooth closed
curve to converge smoothly to a point. These meth
ods, however , do not take into account directly the
intrinsic curve geometry. Others [16, 11] have used
a curve evolution method which does ach ieve this .
Rather than explicitly smoothing the curve by a filt er
ing process, the evolution is described by the motion
of the points on the curve in time . Loosely speaking ,
during evolution , a point on the curve advances in
the direction of the vector normal at that point , by a
distance proportional to a function of the curvature
at that point (see Fig. 3). The precise mathemat ical

Graphics Interface '95

formulation of the process is : Given a simple closed
parametric curve Co(s) E 0 2

, its geometric evolution
at time t > 0 is

where kT(S) is the curvature function , and NT(s) the
normal vector function at time T . Expressing the
quantities involved as as a function of two variables,
sand t , the differential form of the evolution rule is
simil ar to the heat equation [8]:

8C~! , s) = F(k(t, s))N(t, s) (2)

In this process, a point on a convex region of the
curve advances "inwards", and a point on a concave
region advances "outwards".

Many functions F have been proposed for use in
(1) [16,11,17]' each defining an evolution with differ
ent mathematical properties. Some caution must be
excercised when choosing F. In the degenerate case
F (x) = const , a point on the curve evolves along
the direct ion of t he normal a constant distance (in
dependent of the curvature at that point) . This cor
responds to offsetting the curve [12]. Not only does
this type of evolution rule not preserve the geome
try of the curve , but singularities ("shocks") develop
along the evolving curve, especially at areas of high
curvature.

The function F we chose for our purposes is the
sca led ident ity fun ction F(x) = ax. The effect of the
resulting process is to continuously smooth the curve ,
having t he following attractive properties [8, 16]:

• A non-simple curve becomes simple.
• A simple curve remains simple.
• A smooth curve remains smooth.
• A non-convex curve becomes convex.
• The number of curvature zero crossings is non

increasing.
• T he curve converges to a point in the asymptotic

form of an ci rcle .

Sta rt ing with any planar curve, at some stage the
curve becomes simple, t hen convex , then circular ,
t hen shrinks until it reaches a point (see Fig . 4).
The number of curvature zero-crossings does not in
crease and no singularities develop along the curve.
The curves obtained at later times during the evolu
tion correspond to coarse low-resolution versions of
the original , which has been indirectly "smoothed"
t.o eliminate its finer details. One of the crucial prop
erties of t his curve evolu tion process is t he second

249

Figure 3: C1(s) and C101(S) obtained from geometric
evolution of the closed simple curve Co(s).

o
Figure 4: Geometric evolution of a closed simple
curve.

in the list above: a simple curve remains simple, i .e.
does not intersect itself during evolu tion. This will
be important for the morphing process . Not all func
tions F used in conjunction with (1) yield evolu t ion
schemes with this property.

3 Mul t iresolution Representations

3.1 The Continuous Case

As described in Section 2, during a geometric curve
evolution process , every point on t he curve advances
continuously in the plane on a path beginning at the
point on the original curve, and terminating at a com
mon point. The geometry of this path , and the paths
of other curve points, describes the shape of t he curve
at different scales , first at a very fine scale, and later

Graphics Interface '95

250

Figure 5: Geometric evolution paths of some points
on the curve of Fig. 4.

at a very coarse one. Note that paths may extrude
from the curve, especially in concave regions , as Fig .
5 demonstra tes. A possible multiresolution represen
tation of a curve is the set of paths of the curve points
genera ted by the geometric evolu tion process. This
representa tion has a high degree of redundancy (as
the ac tual curve is just the set of path endpoints) ,
but it is precisely this redundan cy which makes it so
useful for morphing purposes.

3.2 The Discrete Case

In a computerized morphing system , a curve will
usua lly be given in discrete form , i.e . as a poly
gon P = (PQ, PI, ... , Pn), where Pi = (Xi , Yi). In or
der to produ ce a multi resolution representation for
polygons , t he continuous curve evolution schemes de
sc ribed in Section 2 must be adapted to a discrete
se tu p, where only polygon verti ces undergo evolu
t ion. This is called polygon evolution. A number of
different polygon evolution schemes have been stud
ied [3 , 4]. We choose to use a discrete version of (2)
wi t. h F (x) = ax . This is because the continuous ver
sion preserves simplicity, so hopefully the discrete one
will too. To use (2) in a discrete form , the notions of
"normal" and "curvature" must be redefined , while
keeping their meaning similar to that of the contin
uous case. Towards this end , a variety of defini t ions
are possible [4]. We use the following discrete "deriva
t.ives" (all indices modulu n):

Xi +l - Xi -l
Xi =

j;f ol' _ Xi +l - Xi
i -

Si +l - Si

. f or . bac k
Xi - Xi

x,: =

Yi = Yi+ l - Yi -I

'bac k Xi - Xi- l
Xi = ----

Si - Si -I

·f or 'bac k
Yi - Yi

Yi =

where Si = I;~~~ IlpHI - Pj 11· The curvature ki at P i

is then
k . _ xiiii - xi'iJi
• - (X i2 + Yi 2)3/2

The normal direction ni is the direction of the angle
bisector at vertex Pi if Pi is on a convex region , and
the opposite direction if P i is on a concave region .

Polygon evolution is performed in discrete steps
(iterations) , generating paths which are vector se
quences. The "size" of one evolution step is controlled
by the positive real parameter a in F(x) = ax . Alter
natively, a is the speed of the process . When imple
menting the polygon evolution , care should be taken
not to use too small or too large an a . Theoreti cally ,
if the step size is not too large , polygon evolution also
converges to a point via a (discrete) circular shape.
In practice, we terminate the evolution when a con
vex polygon is obtained , and then add vectors from
these vertices to the polygon centroid. The number
of iterations required to achieve convexity is called
the depth of the evolution , or just the depth of the
polygon. It obviously depends on the evolution step
sIze.

The polygon repres entation is t he set of vec tor
paths generated for each vertex during the polygon
evolution process. Each vector in the representa tion
is accompanied by an indication of its in/out direc
tion rela tive to the polygon. Most evolution path
vectors point towards the polygon interior , but some
of the high-resolution path vectors may point towards
the exterior (in concave regions). The vectors close
to the polygon centroid describe low-resolution ge
ometric properties of the polygon , and the vectors
close to the polygon verti ces describe high-resolu t ion
properti es. Note that the number of vertices of t he
polygons generated during evolution is fixed , in con
trast to wavelet-style multiresolution decompositions
of signals [7], where the number of samples decreases
at lower detail levels . This redundancy makes the
reconstruction process easier.

As we expected , the polygons evolving from a
simple polygon , using our method , a lmost never in
tersected themselves, as opposed to other polygo n
evolution schemes we experimented wi t h.

4 User-Defined Correspondence

In order that any morphing algorithm between poly
gons P and Q prod uce reasonable resul ts, it must
be guid ed by some minimal user inpu t. An accept.ed
way of doing this is to provide a small number of
correspondence pairs indicating verti ces of P whi ch

Graphics Interface '95

transform to vertices of Q . This is a list of index
pairs {(Ii, Ji) : i = 1, .. , k}, such that PI, corresponds
to PJ, for i = 1, .. , k. These correspondence pairs
a re usually feature points with special meaning for
the user , and a morph not preserving this correspon
dence is not of interest. The number of user-supplied
correspondence pairs is usually much less than the
number of vertices of P or Q. We call this a partial
correspondence. A correspondence involving all ver
tices of P and Q is called a full correspondence. Note
that even if a full correspondence is supplied by the
user, there are still many possible ways to interpolate
the two polygons, and the morphing problem is far
from solved.

5 The Morphing Algorithm

Given polygons P, Q, a partial correspondence be
tween them, and t E [0 , 1]' our morphing algorithm
proceeds in five stages:

1. Complete the partial correspondence between P
and Q to a full correspondence.

2. Generate multiresolution representations Ra and
RI for P and Q respectively.

3. Correlate the representation depths of Ra and

RI·

4. "Interpolate" Ra and RI to obtain an interme
diate representation Rt .

5. Reconstruct an intermediate polygon from Rt.

Of cou rse, in order to create a complete morph se
quence for a set of discrete times tl , .. , tm E [0,1]' it
suffi ces to perform Steps 1-3 once in a preprocessing
st.age, a nd Steps 4-5 for each of the different ti. In the
following sec tions we elaborate on the various stages
of th e a lgorithm.

:). 1 Correspondence Completion

To prepare the two polygons for morphing, we first
complete the user-specified partial correspondence to
a full correspondence by a closest vertex method. In
t. his method a vertex of P corresponds to the closest
vert.ex (by arc length) of Q within the partial corre
spondence segment, and vice versa. A vertex of P
(Q) which corresponds to more than one vertex of
Q (P) is duplicated. Given P and Q with m and n
verti ces respectively and partial correspondence con
t.a illing k ::; min(m , n) vertex pairs, the full corre
sr ond ence will contain max(m, n) pairs (see Fig . 6).

251

• I

"

"
Q,

• Vertices in partial mrresponcience

o Vert.ices not in partial correspondence

Figure 6: Completing a partial correspondence to a
full correspondence: given segments between corre
spondence points in polygons P and Q with 4 and
3 vertices respectively, the partial correspondence is
completed with 2 more pairs by duplicating a vertex
ofQ.

5.2 Depth Correlation

Since the representation depths of polygons P and Q
will probably be different, it is neccesary to correlate
them before attempting morphing. If d l and d2 are
the representation depths of P and Q, respectively,
the correlated depth will be d l + d2 - gcd(d l , d2). This
is obtained by merging together the paths by propor
tional depth . For example, if the depth of P is 50 ,
and the depth of Q is 100 , each vector in every path
in the representation of P is broken into 2 smaller
(collinear) vectors . P will then also have depth 100.

5.3 Interpolating Representations

After correspondence complet ion of P and Q, poly
gon evolution, and depth correlation, we have mu 1-
tiresolution representations Ra and RI with an iden
tical depth and number of paths. To obtain an in
termediate representation R t from Ra and RI, we
must specify how an individual path of Ra, and the
corresponding path of RI , are interpolated for any
t E [0 , 1]. This is done independently for all paths
in the representations , and the intermediate polygon
is then reconstructed from Rt. It is important to
emphasize that, although the polygon evolution pro
cess generat es the multiresolu tion representation, the
temporal morph sequence between the two input poly
gons will in no way resemble the temporal evolution
of any of these input polygons . These are two sepa
rate and very different time axes.

Between two paths , Po and PI , we interpolate
starting from the path vectors corresponding to the

Graphics Interface '95

252

low resolution version of the polygon, and work our
way out towards the path vectors corresponding to
the high resolution details. The former capture global
transformations that must be performed in order to
align the shapes, and the latter capture the local
transformations (beyond the global ones) needed to
align the fine details of the two polygons. The first
global rotation is determined using the full correspon
dence. This is calculated as the average angle be
tween the low resolution vectors in the corresponding
path pairs . These low resolution vectors are used
first because they contain global information on the
polygon. The additional "local" transformations re
quired beyond this global one are determined from
the higher resolution path vector pairs, working from
low resolution to high resolution.

The local transformations that we use are scal
ing and rotation. The basic issue at hand is how
t.o interpolate two corresponding path vectors . Con
sider t.wo vectors Vo E Po and Vl E P l such that
ang(vo , Vl) = B. Two possible interpolant.s Vt for
t E [0 , 1] would either be the Vt satisfying Ilvt II =
t llvl ll + (1 - t)llvoll and ang(vo , Vt) = tB , or that sat
isfying Il vtll = -tll vlll+(1-t)llvoll and ang(vo,vt) =
t(() - 7T) . Heuristically, we choose between these two
options depending on the in/out directions of Vo and
PI relative to their polygons. The first option is used
if and only if Vo and Vl have the same relative direc
t ioll. Vector pair interpola tion is performed for later
pat.h vector pairs after accumulating the effects of all
interpola ting transformations on earlier path vector
pairs (see Fig. 7) . Note that if only the linear inter
polant Vt = t Vl + (1- t) vo was used on all path vector
pairs , our interpolation method would be equivalent
t.o linear vertex interpolation , as the accumulative ef
fect of many such local interpolations would still be
a linear interpolation .

5.4 Polygon Reconstruction

Reconstructing intermediate polygons from interme
diate representations is very easy. Simply integra te
(sum) the pa th vectors for each vertex from the cen
troid . Each path yields a vertex on the intermedia te
polygon.

() Complexi ty

T he space requirements of the algori thm are domi
nat.ed by t he need to store the representa tions of t he
I.wo inpu t polygons. This space is proportional to the
Ilumb er of vectors in those representations - O(nd) ,
wh ere n is the number of polygon verti ces , and d is

Q.
J

p

Figure 7: Path interpolation: R is the vertex on the
intermediate polygon corresonding to the vertices Pi
and Qj on each of the input polygons.

the polygon depth . The representations of interme
diate polygons are not stored explicitly, rather calcu
lated on the fly.

The run time of the algorithm per intermediate
polygon generated is also O(nd) , as every represen
tation vector undergoes interpolation. The polygon
depth d depends on the evolution step size and on the
polygon complexity, but is insensitive to small pertur
bations in the input , as these are smoothed out and
eliminated very quickly during evolution .

7 Experimental Results

It is virtually impossible to quantify the quality of
the results of a morphing algorithm, as the true test
is visual.

We have implemented our algorithm in an in
teractive morphing system with a X/ Motif graphical
user interface, run it on numerous test cases , and vi
sually compared the results with those of Sederberg
et. al [18] and Shapira et. al [20]. Fig . 8 shows some
of these comparisons . The algorithm of Sederberg et.
al (a) produces self intersections and shape and area
distortions. The Shapira et. al algorithm (b) elim
inates them. Our algorithm (c) yields similar inter
mediate polygons , sometimes preserving some of the
more subtle features present in the sh apes. In all our
tests, we almost never encountered self-intersections
in the morph sequences. This is probably due to the
fact that our polygon evolution scheme a lmost a lways
preserves polygon simpli city. We cannot , however,
prove that one is a direct consequence of t he other,
as these are two different processes .

Fig . 9 shows just our results on a variety of poly
gons. In our opinion , the morph sequences produced

Graphics Interface '95

are quite natura l, even for input polygons with signif
icant ly different shapes (see Fig . 9(d) in particular) .

8 Conclusions

Th e use of natural geomet ri c shape representations
is a key elem ent in any morphing scheme. In our
opinion, it is hopeless to even t ry without this .

We have proposed a representation which ac
counts fo r sh ape geometry at various scales, based
o n a na tural smoothing scheme. Using this repre
sentat ion in reverse, we 'are able to morph polygons ,
accounting first for global shape , and then for local
defo rm a tions. Our resu lts are at least as good as
t. he on ly other existing a lgorithm using a simi lar ap
proach of interpolation between representations , ex
cept o ur a lgorithm is simpler.

T h morphing results depend on the exact poly
gon evolution scheme used to generate the poly
gon representations. We have experimented with a
few schem es , and , while the results are simi lar , the
schem e described here seem ed to be the most success
ful. Th e similarity of the results is probably due to
th e fact that all the polygon evolu tion schemes per
fo rm t.h e same basic mu lt i reso lu tion analysis. Some,
however, preserve the polygon geom etry better than
o t hers. Extensions to 3D object morphing are being
invest igated.

Ackn owledgem ents

Thanks to the T echnion polygon evolution gang: Al
fred Bruckstein , Ronny Kimmel, Guillermo Sapiro
a nd Doron Shaked , for discussions and online help.
Th e input po lygons of Figs . 1 and 8 were kindly pro
vided by Michal Shapira and Ar i Rappoport.

I{EFERENCES

[1] T . Beier and S. Neely. Feature- based image
metamorphosis . Computer Graphics, 26:35- 42 ,
1992.

[2] E. W. Bethel and S .P. Uselton. Shape dis-
t.o rti o n in computer-assisted keyframe anima
tion. In Proceedings of Computer Animation '89.
Springer , 1989 .

[:3] A. 1. Bruckstein , G. Sapiro , a nd D. Shaked .
Evo lu t io n of plana r polygons. Int ernational
Journal of Patt ern Recognition and Artificial In
telligence, To appear , 1995.

-- ,
." ' . ~

253

(a)

(c)

(a)

(b)

(c)

Figure 8: Comparative results o f m orphing algo
rithms. The user-supplied correspondence pairs a re
similar for a ll a lgorithms and are m arked on the
morph sequences produced by our a lgorithm. (a)
Sederberg et. al (b) Shapira et. a l (c) Ours.

4
··,-·--

, ." "

;, Graphics Interface '95

254

(b)

(d)

Figure 9: Results of our morphing algorithm . The
user-supplied correspondence pairs are marked.

[4] A.M. Bruckstein and D. Shaked. On proj ec
tive invariant smoothing and evolutions of pla
nar curves and polygons . In Aspects of Visua l
Form Processing: Proceedings of th e workshop
on Visua l Form, Capri , pages 109- 118 , May,
1994.

[5] P.J. Burt and E.H. Adelson. The Laplacian pyra
mid as a compact image code. IEEE Transac
tions on Communications , 31:532- 540, 1983.

[6] G . Elber and C. Gotsman . Multiresolu tion
control for non-un iform B-spline curve editing.
Preprint , 1994 .

[7] A. Finkelstein and D.H. Salesin . Multiresolu t ion
curves . Co mput er Graphics, 28:261- 268 , 1994.

[11] B.B. Kimia , A. Tannenbaum , and S.W. Zucker.
Shapes, shocks and deformat ions I. Int ernational
Journal of Co mput er Vision , To appear , 1994.

[12] R. Kimmel and A.M. Bruckstein . Shape off-
sets via level sets. Computer Aided Design ,
23(3) :154- 162 , 1993 .

[13] S.G. Mallat . A theory for multiresolution sig
nal decomposition : The wavelet representation.
IEEE Transa ctions on Patt ern Analysis and Ma
chine Int elligence, 11(7) :674- 693, 1989.

[14] F. Mokhatarian and A. Mackworth . Scale-based
description of planar curves and two-dimensional
shapes. IEEE Transactions on Patt ern Analysis
and Machin e Int elligen ce , 8:34- 43 , 1986 .

[15] F. Mokhatarian and A. Mackworth. A theory
of multiscale , curvature-based shape represen
tation for planar curves . IEEE Transactions
on Pattern A nalysis and Ma chine Int elligence,
14:789-805 , 1992 .

[16] S.J. Osher and J .A. Sethian. Fronts propogation
with curvature dependent speed: Algorithms
based on Hamilton-J acobi formulations. J our
nal of Computational Physics, 79: 12- 49 , 1988.

[17] G. Sapiro and A. Tannenbaum. Affine invariant
scale-space. Int ernational Journal of Computer
Vision, 11(1) :25- 44, 1993 .

[18] T .W. Sederberg, P. Gao , G. Wang, and H. Mu .
2D shape blending: An intrinsic solution to
the vertex path problem . Computer Graphics,
27:15- 18, 1993 .

[19] T.W. Sederberg and E. Greenwood. A physi cally
based approach to 2D shape blending . Computer
Graphics , 26:25- 34, 1992 .

[20] M. Shapira and A. Rappoport. Shape blend
ing using the star-skeleton representation. IEEE
Computer Graphics and Applications, March
1995.

[8] M. Gage and R.S. Hamilton. T he heat equa- [21] A.P. Witkin . Scale-space filtering . In Proceed-
tion shrinking convex plane curves. Journal of ings of Intl. Joint Conf. on AI, pages 1019- 1021 ,
Di.tferential Geometry , 23:69- 96, 1986 . 1983 .

[9] T. He, S. Wang , and A. Kaufman. Wavelet-
based volume morp hing. In Proceedings of Visu -
alization '94. IEEE Computer Society, 1994.

[J 0] J Hughes . Scheduled Fourier volume morphing.
Comput er Graphics, 26:43- 46 , 1992 .

~
"' ~'''. '-

. .
,~ Graphics Interface '95

