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Abstract 

We present an algorithm for morphing between two 
simple polygons . The two polygons are converted to 
mul tiresolu tion representations. Intermediate repre
sentations are generated from these two, from which 
intermediate polygons are reconstructed. Our algo
rit.hm is simpler than the few existing polygon morph
ing schemes, and its results compare favorably. The 
key to the success of our algorithm is the multireso
lu t ion shape representation, based on curve evolution 
schemes. This representation captures the geometric 
properties of a shape at different levels of detail, a 
crucia l requirem ent for aesthetic shape deformations. 

Key words: Polygon Morphing , Multiresolution, 
Curve Evolution. 

1 Introduction 

Morphing (m etamorphosis) is a term reserved for 
processes which , when given two objects, continu
ously deform one to the other. Morphing of objects 
is popu lar in animations seen in the entertainment 
and broadcasting industry. However , many of the 
spectacular effects that have been achieved, have, by 
large, been done manually, albeit with the support of 
a computer . This is notoriously time consuming, so a 
major research challenge is the design of algorithms 
whi ch morph objects automatically with a minimum 
of manual intervention. The only manual interven
t.ion we would like to require is the input of some cor
respondence points between the objects , which guide 
the mOl'phing process. The generation of the actual 
intermediate objects should be completely automatic. 
Algorithms have been designed for the morphing of 
images [1], polygons [19, 18, 20], polyhedra [2] and 
volume data [10, 9]. This work concentrates on 2D 

polygons. 

More formally, the morphing problem may be for
mulated as follows : Given two objects 0 0 , 0 1 and 
t E [0,1], construct an intermediate object Ot which 
is similar to 0 0 as t -+ ° and similar to 0 1 as t -+ 1. 
In a way, the morphing problem is a multidimensional 
interpolation problem, and, as such, is ill-posed, in 
the sense that there are many possible interpolants 
Ot satisfying these very vague conditions. An ac
cepted way of reducing the number of possible solu
tions to an interpolation problem is by regulari zation, 
namely, constraining the solution to satisfy a variety 
of other "natural" conditions not explicit in the in
put . In the case of 2D polygons , the following are 
some natural conditions that an intermediate mor
phed curve should satisfy: If P and Q are closed and 
simple, then the interpolant R should also be closed 
and simple. The area of R should vary smoothly be
tween that of P and Q. If Q is a translated (rotated) 
version of P, then R should also be an appropriate 
translation (rotation) of P. These properties should 
hold both globally, and locally, in some sense. 

The most naive algorithm for morphing between 
two polygons P and Q, namely, interpolation along 
a line segment between corresponding vertices of P 
and Q ( "vertex interpolation"), fails to satisfy any of 
the conditions mentioned above. The interpolant eas
ily intersects itself, and simple geometric properties , 
such as lengths , angles and areas, do not change in a 
consistent manner, as Fig. l(b) demonstrates. The 
main reason why the linear vertex interpolation yields 
bad results is that each vertex is treated indepen
dently of all other vertices. Sederberg et. al [18] pro
pose a method in which interpolation is performed on 
edge lengths and angles. Since this type of interpola
tion might transform closed polygons into open ones, 
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(b) 

Figure 1: Morphing two polygons: (a) Natural 
morph. (b) Linear vertex interpolation morph . 

an optimization algorithm must be used to guarantee 
closedness. The procedure they use, however , does 
not guarantee simpleness of the interpolant. Further
more, the method tends to distort polygon area, as 
it does not consider the polygon interior. Shapira at. 
a l [20] propose a complex algorithm which takes into 
account the polygon interior as well as its boundary. 
Their approach builds on the so-called star-skeleton 
representat ion of a polygon. Morphing is then per
form ed on the representations, from which interme
diate polygons are reconstructed. The advantage of 
this approach is that it yields intermediate polygons 
which are closed and have natural shapes. Simplic
it.y, however , is not guaranteed. The disadvantage of 
this algorithm is the complexity of the star-skeleton 
representation extraction procedure. 

The reason the algorithm of [20) achieves such 
good results is its use of a natural representation of a 
polygon , accounting for its important geometric fea
tures. It seems that this is the key to successful shape 
morphing algorithms. Such a representation should 
emphas ize the intrinsic object geometry in a way con
sistent with human perception of that geometry. 

We propose a different representation of poly
gons, with a multiresolution character. The human 
visual system is able to appreciate the fine details 
of an obj ect , but also its overall geometric shape. 
This type of multiresolution perception has found its 
way into computing in the form of multiresolution 
data structures [5), analysis [13), and synthesis [7 ,6]. 
The multiresolution representation we use is based 
on polygon evolution schemes. This representation 
contains information on the polygon at many levels 
of detail. Morphing is then performed in the more 
natural space of the representations, from which the 
intermediate polygons a re reconstructed . 

Figure 2: The multiresolution scale-space of a func
tion, obtained by smoothing with a Gaussian filter 
of increasing width. The number of second derivate 
zero crossings decreases with scale. 

2 Curve Evolution 

In his , by now classic, work on multiresolution rep
resentation of one-dimensional functions (signals) , 
Wit kin [21) describes a scheme in which the fun ction 
is continuously smoothed by filtering with a Gaussian 
kernel of increasing width. This produces a sequence 
of functions whose number of second-derivative zero
crossings does not increase in time (see Fig. 2). 
Advancing along the time axis , also known as the 
scale axis , reduces the resolution of the functi on so 
that only its low-frequency, or very coarse, behav
ior is visible. At the limit of very low resolution -
a straight line is obtained. This (highly redundant) 
decomposition of a signal has been useful in a va
riety of signal processing applications. In a series 
of papers, Mokhatarian et al. extended the meth
ods of Witkin to 2D closed parametric curves by first 
performing ID smoothing techniques independently 
on each of the coordinates [14), and then accounting 
for the curve geometry by normalizing the filter ker
nel coordinate system by the curve arc- length [15]. 
It can be shown that application of these so-called 
curve evo lution techniques cause any smooth closed 
curve to converge smoothly to a point. These meth
ods, however , do not take into account directly the 
intrinsic curve geometry. Others [16, 11] have used 
a curve evolution method which does ach ieve this . 
Rather than explicitly smoothing the curve by a filt er
ing process, the evolution is described by the motion 
of the points on the curve in time . Loosely speaking , 
during evolution , a point on the curve advances in 
the direction of the vector normal at that point , by a 
distance proportional to a function of the curvature 
at that point (see Fig. 3). The precise mathemat ical 
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formulation of the process is : Given a simple closed 
parametric curve Co(s ) E 0 2

, its geometric evolution 
at time t > 0 is 

where kT(S) is the curvature function , and NT(s) the 
normal vector function at time T . Expressing the 
quantities involved as as a function of two variables, 
sand t , the differential form of the evolution rule is 
simil ar to the heat equation [8]: 

8C~! , s) = F(k(t, s))N(t, s) (2) 

In this process, a point on a convex region of the 
curve advances "inwards", and a point on a concave 
region advances "outwards". 

Many functions F have been proposed for use in 
(1) [16,11,17]' each defining an evolution with differ
ent mathematical properties. Some caution must be 
excercised when choosing F. In the degenerate case 
F (x) = const , a point on the curve evolves along 
the direct ion of t he normal a constant distance (in
dependent of the curvature at that point) . This cor
responds to offsetting the curve [12]. Not only does 
this type of evolution rule not preserve the geome
try of the curve , but singularities ("shocks") develop 
along the evolving curve, especially at areas of high 
curvature. 

The function F we chose for our purposes is the 
sca led ident ity fun ction F( x) = ax. The effect of the 
resulting process is to continuously smooth the curve , 
having t he following attractive properties [8, 16]: 

• A non-simple curve becomes simple. 
• A simple curve remains simple. 
• A smooth curve remains smooth. 
• A non-convex curve becomes convex. 
• The number of curvature zero crossings is non

increasing. 
• T he curve converges to a point in the asymptotic 

form of an ci rcle . 

Sta rt ing with any planar curve, at some stage the 
curve becomes simple, t hen convex , then circular , 
t hen shrinks until it reaches a point (see Fig . 4). 
The number of curvature zero-crossings does not in
crease and no singularities develop along the curve. 
The curves obtained at later times during the evolu
tion correspond to coarse low-resolution versions of 
the original , which has been indirectly "smoothed" 
t.o eliminate its finer details. One of the crucial prop
erties of t his curve evolu tion process is t he second 
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Figure 3: C1(s) and C101(S) obtained from geometric 
evolution of the closed simple curve Co(s). 

o 
Figure 4: Geometric evolution of a closed simple 
curve. 

in the list above: a simple curve remains simple, i .e. 
does not intersect itself during evolu tion. This will 
be important for the morphing process . Not all func
tions F used in conjunction with (1) yield evolu t ion 
schemes with this property. 

3 Mul t iresolution Representations 

3.1 The Continuous Case 

As described in Section 2, during a geometric curve 
evolution process , every point on t he curve advances 
continuously in the plane on a path beginning at the 
point on the original curve, and terminating at a com
mon point. The geometry of this path , and the paths 
of other curve points, describes the shape of t he curve 
at different scales , first at a very fine scale, and later 
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Figure 5: Geometric evolution paths of some points 
on the curve of Fig. 4. 

at a very coarse one. Note that paths may extrude 
from the curve, especially in concave regions , as Fig . 
5 demonstra tes. A possible multiresolution represen
tation of a curve is the set of paths of the curve points 
genera ted by the geometric evolu tion process. This 
representa tion has a high degree of redundancy (as 
the ac tual curve is just the set of path endpoints) , 
but it is precisely this redundan cy which makes it so 
useful for morphing purposes. 

3.2 The Discrete Case 

In a computerized morphing system , a curve will 
usua lly be given in discrete form , i.e . as a poly
gon P = (PQ, PI, ... , Pn), where Pi = (Xi , Yi). In or
der to produ ce a multi resolution representation for 
polygons , t he continuous curve evolution schemes de
sc ribed in Section 2 must be adapted to a discrete 
se tu p, where only polygon verti ces undergo evolu
t ion. This is called polygon evolution. A number of 
different polygon evolution schemes have been stud
ied [3 , 4]. We choose to use a discrete version of (2) 
wi t. h F (x ) = ax . This is because the continuous ver
sion preserves simplicity, so hopefully the discrete one 
will too. To use (2) in a discrete form , the notions of 
"normal" and "curvature" must be redefined , while 
keeping their meaning similar to that of the contin
uous case. Towards this end , a variety of defini t ions 
are possible [4]. We use the following discrete "deriva
t.ives" (all indices modulu n): 

Xi +l - Xi -l 
Xi = 

j;f ol' _ Xi +l - Xi 
i -

Si +l - Si 

. f or . bac k 
Xi - Xi 

x,: = 

Yi = Yi+ l - Yi -I 

'bac k Xi - Xi- l 
Xi = ----

Si - Si -I 

·f or 'bac k 
Yi - Yi 

Yi = 

where Si = I;~~~ IlpHI - Pj 11· The curvature ki at P i 

is then 
k . _ xiiii - xi'iJi 
• - (X i2 + Yi 2)3/2 

The normal direction ni is the direction of the angle 
bisector at vertex Pi if Pi is on a convex region , and 
the opposite direction if P i is on a concave region . 

Polygon evolution is performed in discrete steps 
(iterations) , generating paths which are vector se
quences. The "size" of one evolution step is controlled 
by the positive real parameter a in F(x) = ax . Alter
natively, a is the speed of the process . When imple
menting the polygon evolution , care should be taken 
not to use too small or too large an a . Theoreti cally , 
if the step size is not too large , polygon evolution also 
converges to a point via a (discrete) circular shape. 
In practice, we terminate the evolution when a con
vex polygon is obtained , and then add vectors from 
these vertices to the polygon centroid. The number 
of iterations required to achieve convexity is called 
the depth of the evolution , or just the depth of the 
polygon. It obviously depends on the evolution step 
sIze. 

The polygon repres entation is t he set of vec tor 
paths generated for each vertex during the polygon 
evolution process. Each vector in the representa tion 
is accompanied by an indication of its in/out direc
tion rela tive to the polygon. Most evolution path 
vectors point towards the polygon interior , but some 
of the high-resolution path vectors may point towards 
the exterior (in concave regions). The vectors close 
to the polygon centroid describe low-resolution ge
ometric properties of the polygon , and the vectors 
close to the polygon verti ces describe high-resolu t ion 
properti es. Note that the number of vertices of t he 
polygons generated during evolution is fixed , in con
trast to wavelet-style multiresolution decompositions 
of signals [7], where the number of samples decreases 
at lower detail levels . This redundancy makes the 
reconstruction process easier. 

As we expected , the polygons evolving from a 
simple polygon , using our method , a lmost never in
tersected themselves, as opposed to other polygo n 
evolution schemes we experimented wi t h. 

4 User-Defined Correspondence 

In order that any morphing algorithm between poly
gons P and Q prod uce reasonable resul ts, it must 
be guid ed by some minimal user inpu t. An accept.ed 
way of doing this is to provide a small number of 
correspondence pairs indicating verti ces of P whi ch 
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transform to vertices of Q . This is a list of index 
pairs {(Ii, Ji ) : i = 1, .. , k}, such that PI, corresponds 
to PJ, for i = 1, .. , k. These correspondence pairs 
a re usually feature points with special meaning for 
the user , and a morph not preserving this correspon
dence is not of interest. The number of user-supplied 
correspondence pairs is usually much less than the 
number of vertices of P or Q. We call this a partial 
correspondence. A correspondence involving all ver
tices of P and Q is called a full correspondence. Note 
that even if a full correspondence is supplied by the 
user, there are still many possible ways to interpolate 
the two polygons, and the morphing problem is far 
from solved. 

5 The Morphing Algorithm 

Given polygons P, Q, a partial correspondence be
tween them, and t E [0 , 1]' our morphing algorithm 
proceeds in five stages: 

1. Complete the partial correspondence between P 
and Q to a full correspondence. 

2. Generate multiresolution representations Ra and 
RI for P and Q respectively. 

3. Correlate the representation depths of Ra and 

RI· 

4. "Interpolate" Ra and RI to obtain an interme
diate representation Rt . 

5. Reconstruct an intermediate polygon from Rt. 

Of cou rse, in order to create a complete morph se
quence for a set of discrete times tl , .. , tm E [0,1]' it 
suffi ces to perform Steps 1-3 once in a preprocessing 
st.age, a nd Steps 4-5 for each of the different ti. In the 
following sec tions we elaborate on the various stages 
of th e a lgorithm. 

:). 1 Correspondence Completion 

To prepare the two polygons for morphing, we first 
complete the user-specified partial correspondence to 
a full correspondence by a closest vertex method. In 
t. his method a vertex of P corresponds to the closest 
vert.ex (by arc length) of Q within the partial corre
spondence segment, and vice versa. A vertex of P 
(Q) which corresponds to more than one vertex of 
Q (P) is duplicated. Given P and Q with m and n 
verti ces respectively and partial correspondence con
t.a illing k ::; min(m , n) vertex pairs, the full corre
sr ond ence will contain max(m, n) pairs (see Fig . 6). 
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Figure 6: Completing a partial correspondence to a 
full correspondence: given segments between corre
spondence points in polygons P and Q with 4 and 
3 vertices respectively, the partial correspondence is 
completed with 2 more pairs by duplicating a vertex 
ofQ. 

5.2 Depth Correlation 

Since the representation depths of polygons P and Q 
will probably be different, it is neccesary to correlate 
them before attempting morphing. If d l and d2 are 
the representation depths of P and Q, respectively, 
the correlated depth will be d l + d2 - gcd( d l , d2 ). This 
is obtained by merging together the paths by propor
tional depth . For example, if the depth of P is 50 , 
and the depth of Q is 100 , each vector in every path 
in the representation of P is broken into 2 smaller 
(collinear) vectors . P will then also have depth 100. 

5.3 Interpolating Representations 

After correspondence complet ion of P and Q, poly
gon evolution, and depth correlation, we have mu 1-
tiresolution representations Ra and RI with an iden
tical depth and number of paths. To obtain an in
termediate representation R t from Ra and RI, we 
must specify how an individual path of Ra, and the 
corresponding path of RI , are interpolated for any 
t E [0 , 1]. This is done independently for all paths 
in the representations , and the intermediate polygon 
is then reconstructed from Rt. It is important to 
emphasize that, although the polygon evolution pro
cess generat es the multiresolu tion representation, the 
temporal morph sequence between the two input poly
gons will in no way resemble the temporal evolution 
of any of these input polygons . These are two sepa
rate and very different time axes. 

Between two paths , Po and PI , we interpolate 
starting from the path vectors corresponding to the 
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low resolution version of the polygon, and work our 
way out towards the path vectors corresponding to 
the high resolution details. The former capture global 
transformations that must be performed in order to 
align the shapes, and the latter capture the local 
transformations (beyond the global ones) needed to 
align the fine details of the two polygons. The first 
global rotation is determined using the full correspon
dence. This is calculated as the average angle be
tween the low resolution vectors in the corresponding 
path pairs . These low resolution vectors are used 
first because they contain global information on the 
polygon. The additional "local" transformations re
quired beyond this global one are determined from 
the higher resolution path vector pairs, working from 
low resolution to high resolution. 

The local transformations that we use are scal
ing and rotation. The basic issue at hand is how 
t.o interpolate two corresponding path vectors . Con
sider t.wo vectors Vo E Po and Vl E P l such that 
ang(vo , Vl) = B. Two possible interpolant.s Vt for 
t E [0 , 1] would either be the Vt satisfying Ilvt II = 
t llvl ll + (1 - t)llvoll and ang(vo , Vt) = tB , or that sat
isfying Il vtll = -tll vlll+(1-t)llvoll and ang(vo,vt ) = 
t( () - 7T ) . Heuristically, we choose between these two 
options depending on the in/out directions of Vo and 
PI relative to their polygons. The first option is used 
if and only if Vo and Vl have the same relative direc
t ioll. Vector pair interpola tion is performed for later 
pat.h vector pairs after accumulating the effects of all 
interpola ting transformations on earlier path vector 
pairs (see Fig. 7) . Note that if only the linear inter
polant Vt = t Vl + (1- t) vo was used on all path vector 
pairs , our interpolation method would be equivalent 
t.o linear vertex interpolation , as the accumulative ef
fect of many such local interpolations would still be 
a linear interpolation . 

5.4 Polygon Reconstruction 

Reconstructing intermediate polygons from interme
diate representations is very easy. Simply integra te 
(sum) the pa th vectors for each vertex from the cen
troid . Each path yields a vertex on the intermedia te 
polygon. 

() Complexi ty 

T he space requirements of the algori thm are domi
nat.ed by t he need to store the representa tions of t he 
I.wo inpu t polygons. This space is proportional to the 
Ilumb er of vectors in those representations - O( nd) , 
wh ere n is the number of polygon verti ces , and d is 

Q. 
J 

p 

Figure 7: Path interpolation: R is the vertex on the 
intermediate polygon corresonding to the vertices Pi 
and Qj on each of the input polygons. 

the polygon depth . The representations of interme
diate polygons are not stored explicitly, rather calcu
lated on the fly. 

The run time of the algorithm per intermediate 
polygon generated is also O( nd) , as every represen
tation vector undergoes interpolation. The polygon 
depth d depends on the evolution step size and on the 
polygon complexity, but is insensitive to small pertur
bations in the input , as these are smoothed out and 
eliminated very quickly during evolution . 

7 Experimental Results 

It is virtually impossible to quantify the quality of 
the results of a morphing algorithm, as the true test 
is visual. 

We have implemented our algorithm in an in
teractive morphing system with a X/ Motif graphical 
user interface, run it on numerous test cases , and vi
sually compared the results with those of Sederberg 
et. al [18] and Shapira et. al [20]. Fig . 8 shows some 
of these comparisons . The algorithm of Sederberg et. 
al (a) produces self intersections and shape and area 
distortions. The Shapira et. al algorithm (b) elim
inates them. Our algorithm (c) yields similar inter
mediate polygons , sometimes preserving some of the 
more subtle features present in the sh apes. In all our 
tests, we almost never encountered self-intersections 
in the morph sequences. This is probably due to the 
fact that our polygon evolution scheme a lmost a lways 
preserves polygon simpli city. We cannot , however, 
prove that one is a direct consequence of t he other, 
as these are two different processes . 

Fig . 9 shows just our results on a variety of poly
gons. In our opinion , the morph sequences produced 
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are quite natura l, even for input polygons with signif
icant ly different shapes (see Fig . 9(d) in particular) . 

8 Conclusions 

Th e use of natural geomet ri c shape representations 
is a key elem ent in any morphing scheme. In our 
opinion, it is hopeless to even t ry without this . 

We have proposed a representation which ac
counts fo r sh ape geometry at various scales, based 
o n a na tural smoothing scheme. Using this repre
sentat ion in reverse, we 'are able to morph polygons , 
accounting first for global shape , and then for local 
defo rm a tions. Our resu lts are at least as good as 
t. he on ly other existing a lgorithm using a simi lar ap
proach of interpolation between representations , ex
cept o ur a lgorithm is simpler. 

T h morphing results depend on the exact poly
gon evolution scheme used to generate the poly
gon representations. We have experimented with a 
few schem es , and , while the results are simi lar , the 
schem e described here seem ed to be the most success
ful. Th e similarity of the results is probably due to 
th e fact that all the polygon evolu tion schemes per
fo rm t.h e same basic mu lt i reso lu tion analysis. Some, 
however, preserve the polygon geom etry better than 
o t hers. Extensions to 3D object morphing are being 
invest igated. 
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