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Abstract

Error diffusion algorithms are used widely to
halftone grayscale images. We present three
enhancements to the standard approach: wavefront
traversal of the pixels, error weights based on the
distances to a pixel’s neighbors and contrast consid-
erations in determining error weights dynamically.
The novel algorithm is demonstrated to yield
improved detail over standard and serpentine error
diffusion and to provide greater control over the con-
trast in the halftone image.

Keywords: Error Diffusion, Halftoning, Wavefront,
Contrast.

Introduction

When grayscale images are to be displayed on
black and white devices, a set of pixels must be gen-
erated that optimizes the image quality. To compute
the optimal bilevel image, information about the dis-
play technology, the human visual system and the
intended viewing environment are necessary. Unfor-
tunately, we do not yet know all of the factors that
play roles in human perception and image formation,
nor do we have quantitative metrics that correlate
well with subjective image quality.

In the meantime, a variety of algorithms for
halftoning grayscale images for bilevel presentation
have been developed, and trial and error has led to
substantial image quality improvements over the
past few years. Major classes of halftoning algo-
rithms include ordered dither, dot diffusion, blue-
noise masking, iterative search and error diffusion,
as well as interesting combinations of these. For
summaries and pointers to the original literature on
the various techniques, see [Geist et al.93, Jarvis
et al. 76, Knox 90, Knox 94, Ulichney 88]. Recent
work has included attempts to take the human visual

system into account [Lin 93, Mitsa et al. 93, Mulli-
gan and Ahumada 92, Ostromoukhov et al. 94, Sul-
livan et al. 93] as well as to model the display tech-
nology in use [Lin and Wiseman 93, Pappas et al. 93,
Rosenberg 93]. Here, we focus on improvements to
the error diffusion algorithm, originally introduced
in [Floyd and Steinberg 76] and improved upon by
numerous researchers (see summaries above).

Binarization — the process of turning a gray-
scale pixel into either a black or white one — gener-
ates an error term for any pixels that were not origi-
nally black or white. The goal in error diffusion is to
minimize inaccuracies in local mean luminance, by
distributing the errors to neighboring pixels that
have yet to be binarized.

For each pixel in an image, error diffusion
involves the steps of:

* choosing a threshold value for binarization (the
threshold is often fixed at 0.5, but adaptive
thresholding has been introduced to take into
consideration the most-recent binary outputs
and/or to enhance edges; see, for example, [Bil-
lotet-Hoffman and Bryngdahl 83, Eschbach and
Knox 91, Fawcett and Schrack 86, Knox and
Eschbach 93]);

* diffusing the error to a set of neighboring pix-
els, by use of (predetermined) weights ([Esch-
bach 93, Floyd and Steinberg 76, Fawcett and
Schrack 86]); and

¢ choosing the next pixel to process (see [Witten
and Neal 82, Velho and Gomes 91, Zhang and
Webber 93]).

We report here a novel technique to generate
weights dynamically, with a predetermined compo-
nent based on a neighbor’s distance from the diffus-
ing pixel as well as a dynamically-computed compo-
nent based on the contrast between the two pixels.
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We also introduce a novel traversal of the pixels
designed to propagate errors outward from the center
of an image, pushing all of the undiffused errors to
the perimeter.

Error Diffusion: Radially-Symmetric Weights

In the error diffusion approach to halftoning,
each pixel’s gray value, G(P) (in the range
[0.0-1.0]) is binarized by comparing it with a thresh-
old — typically 0.5 — to determine whether to set the
output pixel at that location to 0 (black) or 1 (white),
B(P) . The error that this step incurs is
E(P)=G(P)-B(P), which is then diffused to its
neighbors. The goal is to preserve the mean lumi-
nance in any localized region, by including any
‘missing’ luminance and removing any ‘added’
luminance.

A pixel’s error, E(P), must be divided amongst
its neighbors that have not yet been binarized.
Determining how to split up this error has, in gen-
eral, been based on trial and error, rather than any
principled approach (see, for example, [Floyd and
Steinberg 76]). We propose that the error should be
diffused in a radially-symmetric fashion, with each
of the active neighbors (i.e., those that have not yet
been binarized) receiving a proportion of the error
that is determined by taking the physical layout of
the output raster into consideration.

Fig. 1 demonstrates this concept for determin-
ing the amount of error — or weight — for each of a
pixel P’s neighbors. Here we assume that the output
device’s raster grid is rectilinear and its pixels are
square and abutting, and we consider diffusing a
pixel’s error only to its 8 immediately-adjacent
neighbors. The circle shown represents the area of
diffusion that maximizes coverage of the neighbors’
pixels without extending beyond their extents. The
gray areas delineate the portions of the neighboring
pixels that are covered by the circle, and the percent-
ages superimposed on the gray areas indicate the rel-
ative proportions of error that each neighbor should
receive, assuming all 8 neighbors have yet to be
binarized. When only a subset of the neighbors are
to be considered, these proportions must be normal-
ized, in order to diffuse 100% of the error. The
appropriate (normalized) weights are also shown for
the case when only the 3 neighbors to the bottom-
right of the pixel are active.

Wavefront Error Diffusion

A fundamental issue for any error diffusion
algorithm is the order in which pixels are traversed.
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Figure 1: Radially-Symmetric Weights.

The initial error diffusion proposal suggested
traversing the image row by row from top to bottom,
and from left to right within each row [Floyd and
Steinberg 76]. However, this technique exhibits a
systematic directional dependency that results in a
textured pattern. Improvements to this approach
have included serpentine traversal — where alternat-
ing rows are traversed either from left to right or
from right to left [Witten and Neal 82] — and space-
filling curves [Witten and Neal 82, Velho and
Gomes 91, Zhang and Webber 93].

We propose to apply the underlying concept of
radially-symmetric error diffusion weights to the
traversal of the pixels themselves. That is, instead of
traversing the pixels along rows from one corner of
the image to the other, we will traverse the image
beginning at a seed starting pixel (e.g., the center of
the image) and progressing outward in (square)
rings. We call this approach wavefront error diffu-
sion, because the processing proceeds in a fashion
reminiscent of a wavefront in water emanating from
an initial point of disturbance.

Fig. 2 introduces the technique of wavefront
error diffusion. Consider the central, starting pixel,
labeled ‘0’ (all pixels are labeled with the order in
which they are traversed). Since it is the first pixel
to be processed, all of its 8 neighbors are active, as
represented by the 8 arrows emanating from it. We
proceed to process the rest of the pixels in square
‘rings’ (demarked by the dashed lines) emanating
outward from the starting pixel. Within each ring,
processing begins in the middle of the ring’s top row
and proceeds outward in both directions (potentially
in parallel), stopping just before the corner pixels.
The bottom row is then processed in a similar
fashion (this can also be done in parallel with the top
row), followed by the left and right columns (in par-
allel). Finally, the four corner pixels are processed.
For the purposes of the discussion below, we call this
traversal row-first, since the rows of a ring are pro-
cessed before the columns.
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Figure 2: Wavefront Error Diffusion Traversal Order.

For example, consider ring 5 (the starting pixel
is ring 0). The middle pixel of its top row, labeled
81, is processed first, and it has 5 active neighbors.
The pixels to its left, 82-85, are processed next, fol-
lowed by the pixels to its right, 86-89. The bottom
row (90-98), left column (99-107), and right column
(108-116) are then processed, finishing with the four
corner pixels (117-120).

Note that, in this scenario, the starting pixel is
the only pixel that has 8 active neighbors. Beginning
with ring 3, all pixels have 4 active neighbors,
except the middle pixels (in each row and column),

the corner pixels, and the corner pixels’ horizontally-
adjacent pixels, all of which have 5 active neighbors.
In ring 5, this row-first-influenced asymmetry can be
seen in pixels 85, 89, 94 and 98, which each have 5
neighbors, whereas pixels 103, 107, 112 and 116
each have only 4 neighbors. We will deal with this
issue below.

Fig. 3 is a grayscale image which we will use
for comparisons. Fig.4 is the result obtained from
the row-first implementation of wavefront error dif-
fusion, using the radially-symmetric weights intro-
duced earlier. We immediately notice objectional
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Figure 3: Original Grayscale Image.

Figure 4: Row-First Wavefront Error Diffusion.

vertical, horizontal and diagonal lines emanating
from the center of the image. We will first deal with
the vertical and horizontal lines and then address the
diagonal ones.

Vertical and Horizontal Lines

To understand the source of the vertical and
horizontal lines, consider the error that is accumu-
lated in (i.e., diffused into) a pixel from other pixels
in the same ring. With reference again to ring 5 in
Fig. 2, note that the middle pixels — 81, 90, 99 and
108 — all diffuse error to 2 neighbors within the same
ring and do not accumulate any error at all from
neighbors within the same ring. Except for the pix-
els at (or near) the corners, all other pixels in the ring
both diffuse error to 1 neighbor within the ring and
accumulate error from 1 neighbor within the ring.

81

-— —

Figure 5: Random Starting Positions Within Rings.

Consequently, the central column and row of pixels
distribute error outward but do not receive any error.
This results in a coherent, differential error diffusion
pattern which is readily visible.

We could process rings starting from the cor-
ners and working inward, but this would introduce
an opposite, but similar, bias, with the central col-
umn and row now accumulating relatively more
error from within the ring than the other pixels in the
ring. A further possibility would be to alternate
between diffusions outward and inward and this,
indeed, appears to eliminate the vertical and hori-
zontal lines. However, as we shall see below, diffus-
ing error inward exacerbates the diagonal lines, so
we shall avoid it. The solution, then, is to always
diffuse error outward, but, rather than always begin-
ning the diffusion at the middle of a ring’s rows and
columns, randomly selecting a starting pixel for each
ring (Fig.5), thereby eliminating the coherence of
differential within-ring diffusion.

Diagonal Lines

To understand the source of the diagonal lines,
consider the error that is accumulated in a pixel from
pixels in the previous ring. With reference again to
ring 5 in Fig.2, note that most pixels accumulate
error from 3 pixels in ring 4, but that the pixels adja-
cent to the corner pixels (85, 89, 94, 98, 103, 107,
112 and 116) accumulate error from only 2 pixels in
ring 4, while the corner pixels (117-120) accumulate
error from only 1 pixel in ring 4. Once again, this
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Figure 6: Shortfall in Error Accumulation Near Corners.

results in a coherent, differential error diffusion pat-
tern which is readily visible, this time along the
diagonals. Note that, if we diffuse the errors begin-
ning at the corners and working our way inward, this
differential accumulation would be further exacer-
bated, as no error would be accumulated in corner
pixels from other pixels within the same ring.
Hence, we always progress outward, as mentioned
above.

The solution to the diagonal-lines problem can
best be understood with reference to Fig. 6, which
shows pixels in the top-left corner of a few rings.
Consider the pixel, P, the top-left corner pixel from
the ‘previous’ ring. It diffuses its error to 5 neigh-
bors, all of which are in the next ring. Three of these
neighbors are corner neighbors and 2 are side neigh-
bors. The normalized, radially-symmetric weights,
then, are 9/59 for the corner neighbors and 16/59 for
the side neighbors, as shown by the arrows’ labels.

Now consider the pixel in the top-right corner
of the diagram, labeled P,. This pixel accumulates
error from 4 neighbors, as represented by the 4
incoming arrows (keep in mind that the labels on
each arrow represent radially-symmetric weights,
normalized for the source pixels’ diffusion computa-
tions). For most pixels, these incoming weights sum
to 1.0 (except in small rings). However, as we get
closer to the top-left corner, the incoming weights
sum to less than 1.0, as shown for each of the pixels
P through P¢. Hence, there is a coherent pattern of

diminished error accumulation toward each of the
corners, which is readily visible as diagonal lines.

To correct for these shortfalls, when diffusing
the error from P, we scale the weights for each of
its neighbors, so as to bring each of their accumu-
lated errors to 1.0. For example, P3’s accumulated
error is only 0.74, so an extra 0.26 must come from
the error diffused to it from P; i.e., the diffusion
weight from P, to P; is increased from 9/59 to
9/59+(1.0-0.74) =0.41. The adjusted weights for
the other pixels to which P diffuses error are: P:
0.18, P,: 0.35, P4: 0.53 and P5: 0.23. However, Py,
which also accumulates less than 1.0 error, cannot be
compensated for in this manner, as P, does not dif-
fuse any error to Pg. Fortunately, this shortfall
(0.03) is quite small and is likely to be inconspicu-
ous.

Note that there is an asymmetry between the
shortfalls in the rows and columns, as a function of
pixel distance from the corner. This is a result of the
rows being processed before the columns. To mini-
mize this effect, for each ring, we randomly choose
whether to process the rows before the columns or
vice versa.

Fig. 7 shows the result of wavefront error dif-
fusion with radially-symmetric weights and error
compensation at the corners of each ring. A compar-
ison with serpentine error diffusion [Witten and
Neal 82] — but here using radially-symmetric
weights — is shown in Fig.8. Note the vertical
streaking in the serpentine error diffusion image and
the more-faithful rendition of the radial detail around
the rosette-patterned window in the wavefront error
diffusion image. However, strong worm-like sub-
structure is visible in Fig. 7, particularly in the verti-
cal and horizontal directions in bright areas.

Contrast Considerations in Error Diffusion

A variety of error diffusion weights have been
proposed in the literature, primarily obtained
through trial and error. One common feature is that
the weights are all predetermined; i.e., they do not
change throughout the entire image being processed.
Consequently, when diffusing a pixel’s error to a set
of neighbors, there is no possibility of taking into
consideration the destination pixels’ values.

We propose that the error diffusion weights be
computed dynamically, taking into consideration
how visible the errors might be. Because the human
visual system is sensitive to luminance differences,
not absolute luminances [Blackwell 46], we use
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Figure 7: Radially-Symmetric Weights and Compensation at

Corners.

Figure 8: Serpentine Error Diffusion.

weights that are proportional to the contrasts
between the pixel and its neighbors. That is, we dif-
fuse proportionately more error to neighbors that are
supposed to have high contrast with the pixel and
less error to neighbors that are supposed to have low
contrast. Although the same total error will be dif-
fused to the set of neighbors, by apportioning the
error based on contrast, the likelihood of diffused
errors being objectionably visible — as high-fre-
quency spatial modulation rather than luminance
modulation — should be minimized.

For example, consider the case of a pixel with
a (normalized) grayscale value of 0.3 and three
neighbors with grayscale values of 0.4, 0.4 and 0.8.
Binarizing the pixel to O results in an error of 0.3 to
be diffused to the neighbors. If each of them
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receives an equal amount of the error, all three
neighbors will (at least temporarily) rise to the binar-
ization threshold of 0.5 and it is possible that all
three will be binarized to 1. However, if proportion-
ately more error is diffused to the neighbor with high
contrast (i.e., 0.8), the two neighbors with relatively
low contrast will (at least temporarily) remain below
the binarization threshold, increasing the likelihood
that they will eventually be binarized to 0.

We define the contrast between a pixel P and
its j’th active neighbor, P;, as the absolute difference
between their original grayscale values O(P) and
O(P)) (ie., before error diffusion / accumulation):
C(P)=[OP)-0(P)[]. (Other possible values
that could be used for computing contrast include the
accumulated grayscale values before binarization
and the binary values. However, it seems to us that,
in considering contrast to determine diffusion
weights, we should use the intended contrast, i.e., the
original grayscale values.) The mean contrast of a
set of n active neighbors of P, then, is:

Chean(P) = [lC(Pj)/n. The diffusion weight for
=

neighbor P; is:

E(P) |:| i C(Pj)_cmean(P) |:|
n Cmean(P) |:|

If each of the neighbors has the same, non-
zero contrast with O(P), then each receives an iden-
tical portion of the error. If C,,,, is 0 —i.e., a pixel
and all its active neighbors have the same original
grayscale value — we must take appropriate measures
to assign the diffusion weights based solely on the
radially-symmetric weights. When the contrast of
the neighbors varies, those with higher contrast
receive more of the error than those with lower con-
trast. As these weights are independent of the radi-
ally-symmetric weighting discussed above, the two
weights for each neighbor must be multiplied before
normalizing over all of the neighbors. Fig.9 shows
the result of using both types of weights when deter-
mining how to diffuse a pixel’s error. Note that,
although areas of uniform luminance — such as the
sky in the upper right — have less noticeable sub-
structure, the definition of edges — e.g., the left side
of the tower — has been blurred.

Several error diffusion algorithms use a
preprocessing step to enhance — and, thereby, pre-
serve — edges [Jarvis et al.76, Knuth 87]. Recent
work has demonstrated the effectiveness of simple
edge detection heuristics [Buchanan and Verevka 95,
Velho and Gomes 95]).

w(P;) =
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Figure 9: Weights Computed Based on Contrast.

Figure 10: Added Minimum Contrast: 0.01 / 256.

Avoiding Contrast Reversals

Our approach is to directly incorporate con-
trast manipulation by adding a minimum contrast
C,.in to both the numerator and denominator of the
contrast computation:

DO(P)_O(PJ)D + Cmin
1+ Cmin

cP;) =

This has the added benefit of obviating the need to
test for a zero mean contrast. For example, Fig. 10
uses an added minimum contrast of 0.01/256 while
Fig. 11 uses an added minimum contrast of 100/256.
Note how straight lines — for example, the left, verti-
cal edge of the clock tower, the arm of the clock and
the ledge beneath the 6 windows — have greater clar-
ity with increasing C,,;,. On the other hand, the cir-

kA 2

Figure 12: Avoiding Contrast Reversals.

cular detail around the rosette-patterned window
becomes muted with increasing C,,,;, .

Consider the case in which a pixel’s original
grayscale value O(P) is less than the original gray-
scale value of one of its neighbors O(P;). If the
accumulated pixel value, G(P), is greater than the
threshold, then B(P) will be 1 and the error will be
negative (i.e., some light has to be removed from the
neighbors). However, if the (negative) error diffused
to a neighbor reduces G(P;) below the threshold, this
results in a contrast reversal between these two pix-
els, the worst of all possibilities on a local scale.
Consequently, we may want to exclude all such
neighbors from consideration when determining the
diffusion weights, as shown in Fig. 12. Note that,
although the image has considerably greater con-
trast, its white-noise component is too pronounced.
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Conclusions

Error diffusion has the potential to produce
higher-quality images than many other digital half-
toning approaches, such as ordered dither and
clustered-dot diffusion. Despite the numerous
improvements that have been made since error diffu-
sion was introduced 20 years ago, a variety of pos-
sible advances have yet to be explored. We intro-
duced three such possibilities here:

e wavefront traversal of the pixels;

¢ radially-symmetric error weights based on the
distances to a pixel’s neighbors; and

e contrast-based error weights that distribute
more error to neighbors that are supposed to
have relatively more contrast with the pixel,
along with contrast manipulation that provides
edge enhancement.

We have only begun to explore the power of
these enhancements, as well as the interactions
between them. The novel approach of taking the
destination pixels into consideration to determine
diffusion weights dynamically provides heretofore
unrealized flexibility that we expect will yield sub-
stantial novel twists on the basic error diffusion
approach.

Future research in halftoning algorithms is
likely to explore better models of output devices and
improve quantitative metrics for image quality.
Aspects of the techniques presented here that are
worthy of immediate investigation include enhance-
ments to the contrast function, minimization of the
computational overhead incurred by computing dif-
fusion weights dynamically, and evaluation of the
effects of these techniques on synthetic images. The
most challenging task will be to carry out visual
experiments to quantify the relative image-quality
improvements that the new techniques presented
here make possible.
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