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Algebraic Loop Detection and Evaluation Algorithms for Curve and SurfaceInterrogations1 IntroductionCurrent geometric and solid modeling systems use rational parametric and algebraic curves and sur-faces for representing curved models. Many fundamental problems related to curve and surface inter-rogations in these systems require robust techniques for curve evaluation. These include intersectionof surfaces for boundary evaluation, silhouette curve on a surface for visibility computations and ren-dering, and o�set curves for toolpath generation. The resulting curves typically correspond to highdegree algebraic degrees1 with multiple components. These components can be classi�ed into opencomponents and loops. The open components intersect with the boundary of one of the surfaces or theend-point of a curve and a point on such components can be computed using algorithms for evaluatingzero-dimensional algebraic sets. The rest of the curve components that do not intersect the boundaryof the surface or the curve end-points are called loops. For example, the intersection of two B�eziersurfaces in Figure 1 has one component corresponding to a loop. In general it is hard to come up witha tight bound on the number of components and development of general purpose algorithms for robust,e�cient and accurate evaluation of these curves continues to be a major challenge. In this paper, wepresent e�cient and accurate algorithms to evaluate the loops using a combination of algebraic andnumeric methods.The problem of evaluating all the curve components has been extensively studied in the literature.In the last decade, a number of algorithms have been proposed to test for closed loops for intersectioncurve of two surfaces [SKW85, SM88, THS89, Che89, Hoh91, KPP90, KPW90, ZS93, FS90] and o�setcurves and surfaces [FN90, Hof90, MP93]. These techniques are based on symbolic methods, evaluationof Gauss maps, subdivision techniques, di�erential methods and vector �eld approaches. In practice,they can be slow or restrictive. For example, none of these techniques are e�cient for evaluating allthe loops of a silhouette of a bicubic tensor product B�ezier patch from a given viewpoint.Main result: We present a new algebraic loop detection and evaluation algorithm for curve andsurface interrogations. The algorithm uses the analytic equation and lower dimensional formulationof the curve and performs tracing in real and complex space to identify at least one turning pointon each loop component. Unlike some of the previous loop detection algorithms, our method can1There are a few exceptions with respect to o�set curves.1
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Figure 1: Two surfaces intersecting in a loopbe applied even when the curve contain(s) singularities. In practice, it can be applied to evaluateany one-dimensional algebraic set. We use methods from classical elimination theory (in particular,resultants) to project the curve onto a plane (say, onto the domain of the parametric patch). Theequation of this curve is represented as the singular set of a bivariate matrix polynomial. We use curvetracing methods (based on eigenvalue methods and inverse power iterations) to follow the curve fromthe boundary of the domain to a turning point of any loop in complex space. The resulting algorithmhas been implemented and we discuss its performance on evaluating the intersection of two surfaces,boundary computation and evaluating the silhouettes of a B�ezier patch from a given viewpoint. Wecompare its performance with the earlier approaches as well.1.1 Previous WorkThe problem of evaluating all the curve components has been extensively studied in the literatureand a number of techniques based on subdivision methods, marching methods, algebraic and symbolictechniques and lattice evaluations [Hof89, RR92]. In particular, the problem of determining all theloops of an algebraic curve can be solved robustly using symbolic methods. One such method is thecylindrical algebraic decomposition [ACM84], which can determine the topological type of a curve.2



Other techniques are based on posing the problem as computing roots of two algebraic equations in twounknowns and solving them using zero-dimensional solvers. These include Gr�obner basis [Buc85], re-sultants and eigenvalue methods [Man94b], homotopy methods [Mor92] or interval arithmetic [Moo79].However, the complexity of the resulting algebraic systems is quadratic in the degree of the curve. Thealgebraic degree of the intersection curve of two bicubic B�ezier patches can be as high as 324 in spaceand the corresponding curve in the domain can be of degree 108. The approaches based on symbolicmethods and algebraic solvers are not practical for such high degree curves.The subdivision based algorithms subdivide the domain up to a user-speci�ed tolerance and eval-uate the curves accordingly [Gei83, LR80, MP93]. In general, the two components of a curve canbe very close and no good methods are known for computing a good tolerance value. As a result,most implementations use a conservative value for the tolerance. The resulting methods can be slowand lead to data proliferation. Some of the other approaches are based on lattice evaluation wherethe surface-surface intersection problem is simpli�ed to a set of curve-surface intersection problems.The curves were obtained by evaluating the surface patch at a number of constant parameter values.The biggest drawback in this approach is the lack of robustness. Small loops could easily be misseddepending on the frequency with which the curves are evaluated.In the last decade, techniques based on curve tracing have been widely used to evaluate highdegree curves [BFJP87, BHHL88, KPP90, MC91]. The main idea is to compute at least one pointon every component of the curve and use the local geometry of the curve to evaluate successivepoints. In these class of methods, identifying a point on every loop is signi�cantly harder than thaton open components. As a result, simultaneously with the development of new ideas for evaluatingsuch curves, number of techniques for loop detection have been proposed [SKW85, SM88, THS89,Che89, Hoh91, KPP90, KPW90]. However, most of these e�orts were targeted towards developingloop detection methods for a special type of curve, the intersection curve of two surfaces. All theloop detection criteria are based on bounds on the Gauss map of the surfaces being intersected. Sinhaet. al. [SKW85] had shown that if two (at least C1) surfaces intersect in a closed loop, there existsa normal vector on one surface that is parallel to a normal vector of the other surface. Sederberget. al. [THS89, SM88] strengthened the above work by proving that if two (at least C1) surfacesintersect in a closed loop, there exists a line which is perpendicular to both surfaces (collinear normalvectors), provided the inner product between any normal on one surface and any other normal on theother surface is never zero. Patriakalakis et. al. [KPP90] precomputed the most signi�cant pointsof the intersection curve between an algebraic surface and a parametric patch to identify the main3



features of the curve. Sederberg et. al. [SM88, ZS93] developed an e�cient way to bound the normalsand tangents of a surface using (bounding cones) and pyramidal surfaces, thereby giving a faster wayto achieve the no loop condition. Hohmeyer [Hoh91] bounded the Gauss maps using pseudo-normalpatches and used an e�cient algorithm for linear programming [Sei90] to test the separability criterion.In these algorithms, if the loop detection criterion is not satis�ed, each surface is divided into a pairof sub-patches and the criterion is recursively tested on each pair combination. This is continued untilall patch pairs fail the test. The number of levels of subdivision depends on how tightly the Gaussmaps [EC94] are bounded. For example, application of Hohmeyer's [Hoh91] loop detection criterionon the surfaces in Fig. 1 takes 8 levels of subdivision. Furthermore, these algorithms may not workwell if the intersection curve is self-intersecting.The algorithms based on Gauss maps are generic. However, they become quite ine�cient whenapplied to other surface interrogations. Consider, for example, the application of algorithms based onGauss maps to detect loops on the silhouette curve of a rational parametric patch of degree m � n.Let's assume that the viewing direction is along the positive z-axis. Hohmeyer uses a pseudo-normalpatch to bound the Gauss map of the patch [Hoh91]. The parametric degree of the pseudo-normalpatch can be as high as 3m � 3n. We can pose the silhouette curve as the intersection curve of theGauss map with the plane z = 0 for orthographic projections. While applying the loop detectioncriterion, we have to compute the Gauss map of the pseudo-normal patch which would be a 9m� 9nrational parametric patch. Manipulating and subdividing such high degree parametric patches canbe ine�cient and inaccurate in practice. As a result, there is a need to develop general-purpose ande�cient loop detection and evaluation algorithms.Organization: The rest of the paper is organized in the following manner. Section 2 describesour formulation of the intersection curve between two parametric surfaces and the silhouette curve ofa parametric surface. Section 3 discusses the loop detection algorithm. The implementation of thealgorithm and its performance on various applications are highlighted in section 4, and we concludein section 5.2 Algebraic Formulation of the curveIn the most general setting, a curve in Rn can be expressed as a solution of (n � 1) polynomialequations in n unknowns. F1(u1; u2; : : : ; un) = 04



F2(u1; u2; : : : ; un) = 0...Fn�1(u1; u2; ; : : : ; un) = 0:Moreover, we are only interested in evaluating all the components of the curve inside the regionD = [U11; U12] � [U21; U22] � : : :� [Un1; Un2] 2 Rn. Formally, the functions Fi, i = 1; 2; : : : ; n � 1,are the components of a vector function F : D ! Rn, D � Rn+1. The solution to the problem areelements of D that map to the zero vector under F . This can be illustrated by taking the example ofparametric surface intersection. Given two B�ezier surfaces, F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t))and G(u; v) = (X(u; v); Y (u; v); Z(u; v);W(u; v)) represented in homogeneous coordinates, their in-tersection curve is de�ned as the set of common points in 3-space and is given by the vector equationF(s; t) = G(u; v). This results in the following set of three equations in four unknowns:F1(s; t; u; v) = X(s; t)W(u; v)�X(u; v)W (s; t) = 0F2(s; t; u; v) = Y (s; t)W(u; v)� Y (u; v)W (s; t) = 0 (1)F3(s; t; u; v) = Z(s; t)W (u; v)� Z(u; v)W (s; t) = 0;and the domain of the intersection curve is (s; t; u; v) 2 [0; 1] � [0; 1] � [0; 1] � [0; 1]. Existingnumerical methods for curve evaluation perform tracing in these dimensions using techniques suchas quasi-Newton's iteration. However, the convergence of these methods may not be good in higherdimensions [FF92].Our approach is based on a classical result in algebraic geometry that states that any algebraicspace curve has a one-to-one correspondence with an algebraic plane curve, after suitable linear trans-formations. The plane curves with one-to-one correspondence with the intersection curve in space areshown in Fig.2. Essentially, our evaluation algorithm is now restricted to the plane curve. Anotheradvantage of this approach is that applications (like solid modelers), that use curve evaluation meth-ods, need to provide simpler supporting algorithms. We represent the plane curve as the singular setof a bivariate matrix polynomial.2.1 Intersection curve between parametric surfacesIn this section, we present our method of formulating the intersection curve. Particularly, we applyit to the intersection of two rational B�ezier surfaces. However, our method can be easily applied to5
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−1Figure 2: Intersection curve and its planar preimagesimplicit algebraic surfaces as well. We represent the plane curve as an unevaluated matrix determinant[MC91].Matrix Formulation: In this paper, we shall assume that the parametric surface is given in theform of a tensor product B�ezier patch. A tensor product patch is of the formF (s; t) = ( mXi=0 nXj=0VijBi;m(s)Bj;n(t));where Vij = (xij ; yij ; zij ; wij) are the control point coordinates and Bi;m(s) = 0@ mi 1A si(1� s)m�i isthe Bernstein polynomial.Given two B�ezier surfaces, F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t)) andG(u; v) = (X(u; v); Y (u; v);Z(u; v);W(u; v)) in homogeneous coordinates, implicitize F(s; t) to the form f(x; y; z; w) = 0 [Sed83,Hof89] and substitute the parameterization of G(u; v) into f to get an algebraic plane curve of theform f(X(u; v); Y (u; v); Z(u; v);W(u; v)) = 0:The implicit representation of the patch is obtained by eliminating s and t from the equationsxW (s; t)�X(s; t) = 06
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Figure 3: A pair of intersecting surfacesyW (s; t)� Y (s; t) = 0zW (s; t)� Z(s; t) = 0using resultants [Sed83]. There are di�erent formulations of resultants for tensor product surfaces andtriangular surfaces. It turns out that the resultant of these three equations can always be expressed asthe determinant of a matrix [Dix08]. Let us denote that matrix as M(x; y; z; w). Furthermore, eachentry of the matrix is of the form aijx+bijy+cijz+dijw. The order ofM(x; y; z; w) is a function of thedegrees of the equations. For tensor product surfaces of the form smtn, the order of the matrix is 2mn.The determinant of the resulting matrix corresponds to the implicit representation of the parametricsurface. We substitute the parameterization of G(u; v) into this matrix and obtain a representationof the form M(u; v), where each entry is a polynomial in u and v. This substitution is very simplebecause every entry of the matrix is just a linear term. The degree of each polynomial corresponds tothe degree of G(u; v).Base Points: The base points of a parameterization are the common solutions of the equations:X(s; t) = 0; Y (s; t) = 0; Z(s; t) = 0; W (s; t) = 0. Typically, a generic parameterization does nothave base points. However, in the presence of base points the resultant of the parametric equationsis identically zero. The implicit representation in such cases is a factor of the determinant of the7



maximum rank preserving minor of M(x; y; z; w). We use that minor for the representation andsubstitute the parameterization of G(u; v) to obtain the planar projection of the intersection curve.We handle patches with base points specially.2.2 Silhouette curve of a parametric surfaceSilhouette computation forms an important part of visibility and rendering (for radiosity applications)algorithms for curved surfaces. We shall restrict our discussion to surfaces whose silhouette (from agiven viewpoint) is a curve on the surface. The property of the silhouette curve is that it subdividesthe surface into front and back facing regions. In this section, we describe our formulation of thesilhouette curve on a parametric (represented as a tensor product B�ezier [Far93]) patch.We assume for the sake of simplicity that the viewpoint is located at (0; 0;�1). It is easy to seethat even if this is not the case, one can always achieve it by applying an appropriate perspectivetransformation to the parametric surface F(u; v). We also require that all the surfaces are at least C1everywhere. We formulate the silhouette curve as an algebraic plane curve in the domain of F(u; v).2.3 Formulation of the Silhouette CurveLet F(u; v) denote the parametric (di�erentiable) surface and let �1(u; v); �2(u; v) and �3(u; v) denotethe mappings from the parametric space to (x; y; z) space.F(u; v) = hX(u; v); Y (u; v); Z(u; v);W (u; v)i�1(u; v) = X(u; v)W (u; v ; �2(u; v) = Y (u; v)W (u; v ; �3(u; v) = Z(u; v)W (u; vIn the rest of this section, we shall drop the (u; v) su�xes from all the functions for more concise nota-tion. The z�component of the normal at an arbitrary point on the surface is given by the determinantNz = ������ �1u �1v�2u �2v ������ (2)where �iu and �iv denote the partial derivatives of the appropriate function �i with respect to u andv. �1u = (WXu �WuX)W 2 �1v = (WXv �WvX)W 2�2u = (WYu �WuY )W 2 �2v = (WYv �WvY )W 28
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Figure 4: Loop as part of a silhouette curveOn the silhouette curve, Nz = 0. Since W (u; v) 6= 0, we can express the plane curve representing thesilhouette as the determinantNz = ������ (WXu �WuX) (WXv �WvX)(WYu �WuY ) (WYv �WvY ) ������ = 0 (3)Expanding the determinant and rearranging the terms, we can express it as the singular set of thematrix M(u; v) 9



M(u; v) = 0BBB@ X(u; v) Y (u; v) W (u; v)Xu(u; v) Yu(u; v) Zu(u; v)Xv(u; v) Yv(u; v) Zv(u; v) 1CCCA = 0 (4)The singular set of M(u; v) are the values of u and v which make it singular.3 Loop DetectionWe apply our loop detection algorithm to �nd all the loops of an algebraic plane curve. We use amatrix determinant representation to deal with high degree curves, but any general form (like poweror Bernstein basis) is su�cient for our algorithm. In this section, we shall describe our loop detectionalgorithm.The curve we are interested in is an algebraic plane curve in the complex projective plane de�nedby u and v. We are, however, interested only in �nding the part that lies in the portion of the realplane de�ned by (u; v) 2 [0; 1] � [0; 1]. If we relax this restriction so that one of the variables, sayv, can take complex values, this curve is de�ned as a continuous set consisting of real and complexcomponents. Before we give our algorithm, some basic notational de�nitions have to be introduced.De�nition 1 Turning points are points on the curve where the tangent vector, as projected in the(u; v) space, is parallel to the u or v parameter axes. In other words, one of the partial derivatives(with respect to u or v) of the intersection curve is 0.We classify u-turning points into left u-turning points and right u-turning points. A point (u1; v1)is a left u-turning point if the curve goes into the complex domain in the left neighborhood of u1(u = u1 � �, where � is a small positive value). A point (u1; v1) is a right u-turning point if the curvegoes into the complex domain in the right neighborhood of u1 (u = u1 + �).De�nition 2 Isoparametric curves are curves lying on a parametric patch (surface) where one ofthe parameters of the patch (u or v) remains constant.The main idea behind our loop detection algorithm is based on the following lemma.Lemma 1 If the curve in the real domain [0; 1] � [0; 1] consists of a closed component, then twoarbitrary complex conjugate paths meet at one of the real points (corresponding to a turning point) onthe loop. 10
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Figure 5: Characterization of loops based on complex tracingProof: The proof is based on Bezout's theorem which states that if f and g are two algebraic curvesof degree m and n respectively, then f and g intersect in exactly mn points in the complex domaincounted properly, or they have a common component. We use Bezout's theorem and the fact that thecurve forms a continuous set in the complex domain to prove the result.Let us consider an algebraic curve that forms a loop in the real domain, like the one shown in�g.1. All isoparametric curves on a surface have the same degree, namely the degree of the otherparameter de�ning the surface. Therefore, the number of intersections of the algebraic curve withany isoparametric curve equals equals the Bezout bound in complex space. Fig.5 (left) illustratesthe argument. The line L1 intersects the curve at two di�erent real points. As we move the linecontinuously from L1 to L2, the two intersection points come closer, and at line L2, both of themcoincide to form a double root maintaining the intersection count constant. This double root alsocorresponds to a u-turning point. As L2 approaches L3, all the real intersections vanish. Since thealgebraic curve is continuous in complex domain, the double root must now take complex values andoccur in conjugate pairs (real algebraic curve).Now if the sweep is started from L3 towards L2, the complex conjugate components come closertogether, and at line L2, their imaginary part vanishes to yield a double root. This argument shows11



that the complex conjugate pairs meet the real plane at some turning point of every component.Observing that every loop component must have at least two turning points completes the proof. 2The domain of the intersection curve in the complex space is shown in �g.5 (right). The thirdaxis corresponds to the imaginary components of v. It represents a continuous component of theintersection curve. The green curve is the intersection curve in the complex space and the blue curveis the part of the curve that lies in the real plane.We need only one start point on each loop to trace it completely. So we restrict ourselves tou-turning points. Henceforth, we shall use turning points to denote u-turning points. Our domain haschanged from the real plane to a three dimensional space formed by u, vr and vi, where vr and vi arethe real and imaginary values of v. To compute the turning points on the curve, we combine boundarycomputations with complex tracing.Boundary intersections: Boundary intersections refer to the portions of the curve that lie alongthe boundary of the surface (in our case, when u = 0, u = 1, v = 0 or v = 1). This correspondsto substituting one of these values into the equation M(u; v) = 0. Let us assume without loss ofgenerality that we substitute u = 0. This results in a matrix polynomial M(v) of the formM(v) = vdMd + vd�1Md�1 + : : :+ vM1 +M0 = 0: (5)where Mi's are numeric matrices (of order 2mn for the intersection curve and 3 for the silhouettecurve). The solution of this matrix equation can be reduced to the eigenvalues of an associatedcompanion matrix. C = 26666664 0 In 0 : : : 0... ... ... ... ...0 0 0 : : : In�M0 �M1 �M2 : : : �Md�1 37777775 (6)where Mi =M�1d Mi. In case Md is singular or ill-conditioned, the intersection problem is reduced toa generalized eigenvalue problem [Man94a]. Algorithms to compute all the eigenvalues are based onQR orthogonal transformations [GL89]. They compute all the real and complex eigenvalues.Tracing: Given the starting complex on the boundary of the surface, we use tracing in the complexdomain to reach the turning points on every loop. The general tracing step proceeds as follows. Givena point on the curve, an approximate value of the next point is obtained by taking a small step sizein a direction determined by the local geometry of the curve (tangent or curvature information). This12



approximate value is then re�ned using iterative techniques. We use inverse power iterations to tracethe curve. Inverse power iterations are used to compute selected eigenvectors and eigenvalues of amatrix.Let us assume that we are currently at a point (u1; v1) on the curve (M(u1; v1) = 0). Based onthe local geometry of the curve, let the estimate to the next point be (u2; v2). Using v2 as a guesswe want to �nd the closest point (u2; v) such that M(u2; v) = 0. We proceed by computing thecompanion matrix C fromM(u2; v) (see eq. (6) ). This reduces the problem to �nding the eigenvalueof C closest to v2 (or smallest eigenvalue of C � v2I). The smallest eigenvalue of C� v2I correspondsto the largest eigenvalue of (C � v2I)�1. Instead of computing the inverse explicitly (which can benumerically unstable), we use inverse power iterations. Given an initial unit vector q0, we generate asequence of vectors qk asSolve (C� v2I)zk = qk�1; qk = zk= k zk k1; sk = qTkCqk;To solve the matrix system e�ciently, we use LU decomposition of the matrix (C � v2I) usingGaussian elimination. We also make use of the structure of the matrix to reduce the complexity ofLU decomposition. Given s, let B = C� v2I. B is of the form:B = 0BBBBBB@ �1In In 0 : : : 0. . . : : :0 0 : : : �1In InP1 P2 P3 : : : Pm 1CCCCCCAwhere �1 is a function of s, and Pi's are n� n matrices which are functions of Mi's and v2. The LUdecomposition of B has the form:B = 0BBBBBB@ �1In 0 : : : 00 �1In : : : 0. . . : : :R1 R2 : : : Lm 1CCCCCCA0BBBBBB@ In 1�1 In : : : 00 In : : : 0. . . : : :0 0 : : : Um 1CCCCCCAwhere Lm and Um correspond to the LU decomposition of Rm. Ri's can be easily computed from thePi's. The structure of the matrices are used in performing the triangular decomposition e�ciently.LU decomposition can be inaccurate when the matrix B is ill-conditioned. In such cases, we performan LQ factorization (lower triangular and orthonormal matrix decomposition) to improve the stability.13



The basic technique of obtaining all the turning points is to evaluate the starting complex pointson one of the boundaries and follow all these paths until they either leave the domain or meet the realplane using tracing. Unfortunately, these are not the only complex paths that could lead to a turningpoint. There could be complex paths starting from right turning points of some other component ofthe intersection curve. This can be illustrated by considering the intersection between a bicubic patchand a plane (see �g.3). The curve M(0; v) = 0 is a cubic curve with two real solutions. This impliesthat there cannot be any complex solution to this equation. Therefore, the left turning point on theloop is connected in complex space to the right turning point of another component. So we use thefollowing strategy to complete a sweep of the complex paths from u = 0 to u = 1.Since complex solutions occur in conjugate pairs for real algebraic equations, we restrict ourselvesto complex paths whose imaginary parts are strictly positive. When a complex path touches the realplane the imaginary part (of v) must reach some small constant value � before reducing to zero. Theseare precisely the common points of the curve with the plane vi = �. In other words, we are tryingto �nd all the real solutions to the equation detM(u; vr + i�) = 0 (i = p�1). Expanding out theexpression and collecting the real and imaginary terms we can writedet(Mr(u; vr) + iMi(u; vr)) = 0 (7)It is easy to show that the solutions (u; vr) satisfying equation (7) also satisfy the solution of detP(u; vr) =0, where P(u; vr) = 24 Mr(u; vr) �Mi(u; vr)Mi(u; vr) Mr(u; vr) 35 (8)As before, the solutions to (8) can be posed as the singular set of matrix P(u; vr). The singular setof P(u; vr) is a discrete point set. The order of the matrix P(u; vr) is twice that ofM(u; v). Therefore,there are twice as many paths to trace in general. For an intersection curve, if the patches are ofdegree m � n and p � q, then at most 2mnmin(p; q) paths have to be traced, and for the silhouettecurve of a patch of degree m� n, at most 3(m + n) paths have to be traced.Initially we form the companion matrix of P(u; vr), Cp, similar to the one in Eq.(6). We computeall the eigenvalues of Cp at u = 0 (we expect all of them to be complex). We use them as startingpoints and trace all the paths in increasing u direction until it either crosses the u = 1 plane or becomereal. All the real values of vr are points lying very close to the turning points of the intersection curve.The corresponding point on the real plane is (ur; vr). This is used as an initial guess to converge tothe turning point using inverse power iterations. 14
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Figure 6: Two tori intersecting in a small loop4 Implementation, Performance and ApplicationsThe loop detection algorithm has been implemented and its performance was measured on a number ofmodels. The algorithm uses existing EISPACK [GBDM77] and LAPACK [ABB+92] routines for someof the matrix computations. At each stage of the algorithm, we can compute bounds on the accuracy ofthe results obtained based on the accuracy, condition numbers and convergence of numerical methodsused like eigenvalue computation, power iterations and Gaussian elimination. We report the results ofour implementation on an SGI Onyx workstation with 128MB of main memory and a specFP ratingof 97.1.Tracing in the complex space is a guided form of search for all the turning points of the loops. Ina purely algebraic form, all the turning points of a curve f(u; v) = 0 can be posed as the commonsolutions of f(u; v) = fu(u; v) = 0. Using the Bezout bound, the number of possible turning points isquadratic in the degree of the curve. However, the maximum number of complex paths that need to betraced in our loop detection algorithm is linearly related to the degree of the curve. The performanceof the tracing algorithm is directly dependent on how e�ciency of linear systems (Ax = b) solvers.While methods like LU and LQ decomposition take O(n3) operations, our use of the special structureof the matrix has almost quadratic complexity. Our implementation of the algorithm consists of15



two major modules - the boundary computation part and the complex tracing part. The boundarycomputation module computes starting points on all the complex paths using eigensolvers. For ourimplementation, we used an � (see section 3) value of 0.01. The complex tracing step is done usinginverse power iterations. The total time taken to trace one such path across the domain is about 20-50milliseconds.4.1 Application to surface intersection and boundary computationOur loop detection algorithm is part of a complete surface intersection algorithm. This, in turn, hasbeen applied to a number of intersecting surfaces and has worked well consistently. Our algorithmevaluated the intersection curve of the surfaces in Fig. 1 in about 4 seconds. A total of 54 complexpaths were traced which consumed about 70% of the time.For e�ciency considerations, it may not be necessary to trace all the complex paths. Typically,very few complex paths meet the real plane inside the domain of the patch. It is very di�cult togive exact algorithms to prune out paths that cannot touch the real plane because of the high degreenature of the curve. However, through repeated application of our algorithm we found that paths thatstart very high in the complex axis rarely hit the real plane. This strategy could be used to speed upthe tracing step depending on the robustness requirements of the application.In order to compare our algebraic method with the Gauss map based approaches to loop detection,we implemented Hohmeyer's algorithm (in the context of surface intersection) using pseudo-normalpatches [Hoh91]. His algorithm performed slightly slower than our algorithm on the example inFig. 1. Eight levels of subdivision were performed, and most of the time was consumed in the repeatedcomputation of the Gauss map and application of linear programming. We observed that his algorithmworks very well when the patches are relatively at and do not intersect in loops. However, thesemethods perform a number of subdivisions (to achieve the no loop criterion) when the patches havehigh curvature and intersect in small loops or singularities.Hybrid approach: We suggest the following hybrid approach when dealing with intersectioncurves. Initially, we test for the possible absence of loops using the Gauss map approach. In theevent that Gauss maps are not separated, we apply our algorithm to identify turning points on loops.This method has been applied to compute intersections of high degree surfaces. On an average, ouralgorithm takes less than one second to compute one patch-pair intersection. For the intersectingsurfaces in Fig. 1 and Fig. 6, our method performs better than Hohmeyer's algorithm. His method,however, performed better when applied to the surfaces in Fig. 3.16
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Figure 7: Loop detection used in B-rep computationThe surface intersection algorithm is part of a solid modeling system which computes the B-rep(boundary representation) of CSG solids. Fig. 7 shows two of the solids generated by the system. Thesolid on the left is composed of 69 B�ezier patches using a 10 level CSG tree. Our system computedthe entire B-rep in 66 secs. The B-rep of the solid on the right (consisting of 116 B�ezier patches usinga 5 level CSG tree) was computed in 41 secs. We have also applied the loop detection algorithm tocompute the silhouettes of surfaces. Fig. 4 shows a patch that has a loop as part of its silhouette.4.2 Silhouette ComputationFor other curves like silhouettes, the Gauss map approach is not very practical. In order to apply theirloop detection criteria on a bicubic patch (like that in Fig. 4(b)), one would have to perform repeatedsubdivisions on rational patches of degree 27 � 27. This makes the algorithm very slow becauseeach subdivision step takes cubic time (in terms of the degree). We were able to determine all the17
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