Surface intersection using affine arithmetic

Luiz Henrique de Figueiredo
Computer Systems Group, Department of Computer Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
lhf@csg.uwaterloo.ca

Abstract

We describe a variant of a domain decomposi-
tion method proposed by Gleicher and Kass for in-
tersecting and trimming parametric surfaces. In-
stead of using interval arithmetic to guide the de-
composition, the variant described here uses affine
arithmetic, a tool recently proposed for range analy-
sis. Affine arithmetic is similar to standard interval
arithmetic, but takes into account correlations be-
tween operands and sub-formulas, generally provid-
ing much tighter bounds for the computed quantities.
As a consequence, the quadtree domain decomposi-
tions are much smaller and the intersection algorithm
runs faster.

Keywords: Surface intersection, Range analysis, In-
terval arithmetic, Affine arithmetic, Parametric sur-

faces, CAGD.

1 Introduction

Parametric surfaces are the most popular primitives
used in computer aided geometric design (CAGD).
They are easy to approximate and render, and there
is a huge literature on special classes of surfaces suit-
able for shape design, such as Bézier and splines sur-
faces, for which special algorithms exist [1]. How-
ever, using parametric surfaces for modeling solids in
CSG systems requires efficient and robust methods
for computing surface intersection, mainly for trim-
ming surfaces into patches that can be sewn together
to bound complex shapes.

Several methods have been proposed for solving
the important problem of computing the intersection
of two parametric surfaces. These methods can be
classified into two major classes: continuation meth-
ods and decomposition methods. In this paper, we de-
scribe a variant of a decomposition method proposed
by Gleicher and Kass [2]. Instead of using inter-
val arithmetic to guide the recursive domain decom-
position, as they did, this variant uses affine arith-
metic. Affine arithmetic is similar to standard inter-
val arithmetic, but takes into account correlations
between operands and sub-formulas, generally pro-
viding much tighter bounds for the computed quan-

tities. In many computer graphics methods based on
interval arithmetic, affine arithmetic can transpar-
ently replace interval arithmetic. Variants based on
affine arithmetic will probably be more efficient, but
each case requires separate investigation [3]. This
paper describes such an investigation for the surface
intersection method by Gleicher and Kass [2].

In Section 2, we review some general methods for
surface intersection. The most reliable of those seems
to be recursive subdivision of parameter space based
on range analysis, i.e., on estimates for the range of
values taken by a function on subsets of its domain.
Interval arithmetic is the natural technique for range
analysis [4]. However, as we point out in Section 3,
the excessive conservatism of interval arithmetic may
greatly reduce the efficiency of the decomposition. In
Section 4, we briefly describe affine arithmetic, a re-
cent technique for range analysis that generally pro-
vides much tighter bounds than interval arithmetic
[5]. In Section 5, we review the surface intersection
algorithm proposed by Gleicher and Kass [2] and give
some evidence that it can be improved by replacing
interval arithmetic with affine arithmetic, specially
when applied to surfaces commonly used in CAGD.

2 Previous work

Continuation methods, also called marching methods,
use a local approach to the surface intersection prob-
lem. Starting from a point known to be on both sur-
faces, these methods build an approximation for the
intersection curve by marching along the curve, suc-
cessively computing a new point based on the previ-
ous point (or points) [6]. Continuation methods must
use numerical approximations not only for marching
along the curve, but also for finding starting points.
Since the intersection curve may have several con-
nected components, a starting point is needed on
each component. Moreover, care must be taken for
handling closed components correctly. In some appli-
cations, such as trimming, intersection curves com-
puted with continuation methods must be mapped
back to the parameter domains to define trimming
curves. This may be a difficult inverse problem.

Decomposition methods, on the other hand, use a
more global approach to the problem. A simple de-
composition method is to build polygonal approx-
imations for both surfaces and then intersect the
corresponding polyhedral surfaces. Although it is
easy to build polygonal approximations for paramet-
ric surfaces, such approximations need to be very fine
to provide a good approximation for the intersection.
A naive polygonal approximation is obtained by sim-
ply subdividing the parameter domain uniformly into
many small rectangles. However, intersecting such
fine polygonal approximation is itself a difficult task.
Even if we do not care about geometric degeneracies
[7, 8], this is a high complexity task: If there are
n rectangles along each main direction in parameter
space, then there are n? faces in each polyhedron.
A naive algorithm that computes the intersection of
the two polyhedra by testing every possible pair of
faces has to consider n* cases, most of which do not
contribute to the intersection. This algorithm is not
practical because it is very expensive to refine an
approximation.

Adaptive decomposition methods avoid the cost
of uniform decompositions by subdividing the do-
main until the surface is approximately planar. In
that way, the associated polygonal approximation is
adapted to the local curvature of the surface, being
finer in regions of high curvature and coarser in re-
gions of low curvature, where the surface is almost
flat. Such methods are generally restricted to spe-
cific types of surfaces, whose nature can be exploited
to derive efficient tests for local flatness [9].

The decomposition method proposed by Gleicher
and Kass [2] takes a global approach for subdividing
the domains, using range analysis [4]. Given a rect-
angle in each domain, they compute an estimate for
the range of values taken by the corresponding para-
metric function on each rectangle. This estimate is a
bounding box for a surface patch, i.e., a rectangular
box in 3d space, aligned with the coordinate axes,
and guaranteed to contain the piece of the surface
corresponding to the given rectangle in parameter
space. If two bounding boxes do not intersect, then
the corresponding surfaces patches cannot intersect.
If the bounding boxes do intersect, then the surfaces
patches may intersect. In this case, the rectangles
are subdivided, and the process is repeated until ei-
ther the surfaces patches are proved disjoint or a user
defined tolerance is reached; the patches are then as-
sumed to intersect. Gleicher and Kass use interval
arithmetic for computing ranges. In this paper, we
show that their method can be improved by replac-
ing interval arithmetic with affine arithmetic, a tool

recently introduced for range analysis that generally
produces better bounds than interval arithmetic [5].

Since decomposition methods work directly on pa-
rameter domains, no inverse problem needs to be
solved to find trimming curves. On the other hand,
decomposition methods compute trimming curves in
a piecewise, unstructured way; the pieces must be
somehow glued together into complete curves. In ad-
dition to the domain decomposition method for find-
ing intersections with interval arithmetic, Gleicher
and Kass [2] also propose complementary algorithms
for finding trimming curves and triangulating the do-
mains to define trimmed surfaces. These algorithms
do not depend on range analysis and therefore can be
applied to the decompositions computed by the vari-
ant presented here. For this reason, we concentrate
on showing that their algorithm can be improved by
using affine arithmetic instead of interval arithmetic.

3 Interval arithmetic

The classical technique of interval arithmetic (IA)
provides a natural tool for range analysis [4]. In
TA, each quantity is represented by an interval of
floating-point numbers. Those intervals are added,
subtracted, multiplied, etc., in such a way that each
computed interval is guaranteed to contain the (un-
known) value of the quantity it represents.

Simple formulas are easily derived for performing
the primitive arithmetic operations on intervals. In-
terval extensions for a complicated function can be
computed by composing these primitive formulas in
the same way the primitive operations are composed
to compute the function itself. In other words, any
algorithm for computing a function using primitive
operations can be readily (and automatically) inter-
preted as an algorithm for computing an interval
extension for the same function. This is specially
elegant to implement with programming languages
that support operator overloading, such as C++,
Ada, Pascal-SC and Fortran-90, but can be easily
implemented in any programming language, either
manually or with the aid of a pre-compiler. Since it
is also relatively easy to provide interval extensions
for elementary transcendental functions such as sin,
cos, log, and exp, the class of functions for which in-
terval extensions can be easily (and automatically)
computed is much larger than the class of rational
polynomial functions.

Several methods based on IA have recently been
proposed for solving fundamental problems in com-
puter graphics, such as ray tracing [10] and the ap-
proximation of implicit surfaces [11, 12, 13]. Those
methods have become quite popular, due to their

ability to handle arbitrarily complex non-polynomial
surfaces, and their immunity to round-off errors.

Previously, methods based on Lipschitz condi-
tions (global bounds on derivatives) appeared to be
promising for computer graphics applications [9, 14].
However, computing Lipschitz bounds is a non-
trivial mathematical problem that did not seem to
have an automatic solution. Methods using range
analysis seem to be more popular now in computer
graphics, specially because range analysis can be
automated (typically with TA) [4]. In particular,
Lipschitz bounds can be computed using automatic
differentiation and interval arithmetic [15]. Global
optimization, which includes computing Lipschitz
bounds as a special case, has recently been shown
to be feasible with range analysis [16, 17]. However,
global optimization with range analysis has barely
been explored in computer graphics [12].

The main weakness of TA is that it tends to be
too conservative: the computed interval for a quan-
tity may be much wider than the exact range of that
quantity, often to the point of uselessness. This over-
conservatism is mainly due to the assumption that
the (unknown) values of the arguments to primitive
operations may vary independently over the given in-
terval. If there are any mathematical constraints be-
tween these arguments, then not all combinations of
values in the corresponding intervals will be valid.
As a consequence, the result interval computed by
TA may be much wider than the exact range of the
result quantity. This is sometimes called the depen-
dency problem in TA.

As an example of how dependencies are overlooked
inIA, consider evaluating 2(10—=z), where z is known
to lie in the interval z = [4 .. 6]. Applying the IA
formulas blindly, we get:

Z = [4..6]
10—2 = [10..10]—[4..6]=[4..6]
Z2(10—2) = [4..6]-[4..6]=[16..36],

which is 20 times wider than the exact range of the
expression z(10 — z) over [4 .. 6], namely [24 .. 25].
The large discrepancy between the two intervals is
due to the inverse relation between the quantities x
and 10 — z, which is not known to the IA multipli-
cation algorithm. Inverse relations such as this are
common in curve and surface parametrizations used
in CAGD, as the examples in Section 5 show.

The over-conservatism of TA is particularly bad in
long computation chains, where the intervals com-
puted by one stage of the chain are the inputs to the
following stage. In such cases, one often observes an

“error explosion”: as the evaluation advances down
the chain, the relative accuracy of the computed in-
tervals decreases exponentially, and they soon be-
come too wide to be useful, by many orders of mag-
nitude. Unfortunately, long computations chains are
not uncommon in computer graphics applications.

4 Affine arithmetic

Affine arithmetic (AA) is a model for numerical com-
putation recently proposed to address the “error ex-
plosion” problem in IA [5]. Like IA, affine arith-
metic keeps track automatically of the round-off and
truncation errors affecting each computed quantity.
Unlike TA, however, AA keeps track of correlations
between those quantities. This extra information al-
lows AA to provide much tighter range estimates
than TA, especially in long computation chains.

The key feature of AA is an extended encoding of
quantities from which one can determine, in addition
to their ranges, also certain relationships to other
quantities — such as the ones existing between =z
and 10—z in the example in Section 3. Specifically, a
partially unknown quantity z is represented in AA by
an affine form &, which is a first-degree polynomial:

£ =12g+ 2161+ T282 + -+ Tpén.

Here, the z; are known real coefficients (stored as
floating-point numbers), and the &; are symbolic vari-
ables, called noise symbols, whose values are un-
known but assumed to lie in the interval [—1 .. +1].
Noise symbols stand for independent sources of er-
ror or uncertainty that contribute to the total uncer-
tainty of the quantity z; the coefficient z; gives the
magnitude of that contribution for the source ¢;.

The main benefit of encoding quantities with affine
forms instead of intervals is that the same noise sym-
bol &; may contribute to the uncertainty of two or
more quantities (inputs, outputs, or intermediate re-
sults) arising in the evaluation of an expression. The
sharing of a noise symbol ¢; by two affine forms z, ¢
indicates a partial dependency between the underly-
ing quantities z, y. The magnitude and sign of the
dependency is determined by the corresponding coet-
ficients z;, y;. Taking such correlations into account
allows better range estimates to be computed (see
the example at the end of this section).

Other approaches to the dependency problem in
IA include centered forms [4] and Hansen’s general-
ized interval arithmetic [18], in which quantities are
represented by affine combinations of a fized number
of intervals. In AA, new noise symbols are dynami-
cally created during a long computation.

As one may expect, affine arithmetic is more com-
plex and expensive than ordinary interval arithmetic.
However, its higher accuracy is worth the extra cost
in many computer graphics applications, including
adaptive enumeration of implicit objects [3] and com-
puting the intersection of parametric surfaces, as we
show in Section 5.

The use of AA for range analysis is simple: First
convert all input intervals to affine forms. Then op-
erate on these affine forms with AA to compute the
desired function. Finally, convert the result back into
an interval.

The conversion steps are simple. Given an interval
z = [a .. b] representing some quantity z, an equiv-
alent affine form for the same quantity is given by
Z = xo + xer, where

_b+ta

o —

bh—
and =z = a‘

2 2

Since input intervals are assumed to be unrelated,
because they usually represent independent vari-
ables, a new noise symbol €; must be used for each
input interval.

Conversely, the value of a quantity represented by
an affine form & = zo+z161+- - ~+xp€y 18 guaranteed
to be in the interval

[0 — & .. 2o +&], where £ = ||2] := Z |z;] -

i=1

2] =

Note that [#] is the smallest interval that contains
all possible values of £, assuming that each ; ranges
independently over the interval [—1 .. +1].

Computing with affine arithmetic
To evaluate a formula in AA, we must replace each of
its elementary operations z « f(z,y) on real num-
bers by an equivalent operation £ < f(:i,) on affine
forms, where fis a procedure that computes an affine
form for z = f(z,y) that is consistent with &, §.
When f is an affine function of z, y, the value 2
can be expressed exactly as an affine combination of
the noise symbols ¢;. More precisely, if

Tz =

4 =

To+ T1€1+ -+ Tpén

Yo + Y161 + -+ -+ Ynn,

and a € R, then

txy = (zoxwyo)+ (raxyi)er+ -+ (Tn £ yn)en
af = (azo)+ (az1)er + -+ (azy)en
tta = (zoxa)tzier+ -+ Enen.

Note that, according to those formulas, the difference
Z — & between an affine form and itself is identically
zero. In this case, the fact that the two operands
share the same noise symbols with the same coeffi-
cients reveals that they are actually the same quan-
tity, and not just two quantities that happen to
have the same range of possible values. Thanks to
this feature, in AA we also have (£ 4+ ¢§) — & = ¢,
(3%) — & = 2, and so on. Such properties are not
valid in TA, and are one source of error explosion.

When f is not an affine operation, the value 2
cannot be expressed exactly as an affine combina-
tion of the ;. In that case, we pick the best affine
approximation to f (best in the Chebyshev sense of
minimizing the maximum error), and then append
an extra term zpey to represent the error introduced
by this approximation:

Z=1z0+ z161 + -+ + Zp€n + ZxEy.

Here, ¢;, must be a brand new noise symbol (i.e., dis-
tinct from all other noise symbols in the same com-
putation) and z; must be an upper bound for the ap-
proximation error. Note that, unlike Hansen’s gen-
eralized interval arithmetic [18], new noise symbols
are created during a long AA computation. They
account for extra sources of uncertainty introduced
during the computation, such as approximation er-
rors and round-off errors.

Using this approach, formulas can be derived for
all elementary operations and functions, both alge-
braic and transcendental. For example, the multipli-
cation of two affine forms Z, § is given by

Z0 ToYo
Zi = To¥i + Yox (¢ =1l.n)
ze = |[2[19]]-

Like Lipschitz bounds, Chebyshev approximations
must be computed by hand. Unlike Lipschitz
bounds, however, Chebyshev approximations need
to be found only for primitive functions because AA
formulas for primitive functions can be automatically
combined into formulas for arbitrarily complex func-
tions, as described in Section 3 for IA.

To see how AA handles the dependency problem,
consider again evaluating z = (10 — z), for in the
interval [4 .. 6], but now using AA instead of TA:

r = 5+ 1eyg
100—2 = 5—leg
zZ= :3(10 — :f?) = 254 0e1 — leg

[25—1..25+1] = [24 .. 26].

Observe that the influence of the noise symbol ¢; in
the factors happened to cancel out (to first order) in
the product. Note also that the range of Z is much
closer to [24 .. 25], the exact range of z, and much
better than the IA estimate, [16 .. 36].

5 Examples

In this section, we show two examples of how the
Gleicher-Kass algorithm for surface intersection [2]
can be improved by using AA instead of TA, specially
for surfaces that are common in CAGD.

Recall that their algorithm is a domain decom-
position algorithm that uses range analysis to decide
whether two surfaces patches intersect. If the bound-
ing box estimates provided by range analysis for the
patches do not intersect, then the patches cannot
intersect. If the bounding boxes do intersect, then
the surfaces patches may intersect, and the corre-
sponding rectangles in the domains are subdivided
into four equal pieces and further tested. In this
way, a quadtree decomposition is built for each do-
main. For efficiency, Gleicher and Kass keep track
of all pairs of patches that might intersect: each leaf
node in one quadtree contains a list of leaf nodes in
the other quadtree that it overlaps. This list is re-
fined and distributed to its children when a node is
subdivided. The main step in the algorithm is the
subdivision of a leaf node [2]:

subdivide(n):
if n’s overlap list is not empty
subdivide n into four children
for each ¢ in n's overlap list
remove n from i’s overlap list
for each child ¢ of n
if ¢ overlaps
add 7 to ¢’s list
add c to i’s list

Gleicher and Kass [2] remark that this subdivision
step can be applied in several different orders. They
actually combine depth-first search with breadth-
first search to control the size and accuracy of the
sampling of the intersection curve. Qur simple im-
plementation uses only breadth-first search, by en-
queueing new nodes as they are created and then
subdividing a node from the queue at a time. For
efficiency, a bounding box for a node is computed
exactly once, when the node is created. This hap-
pens in each subdivision, when four nodes are cre-
ated, and also at startup, when one node for each
entire domain is created. Note that the use of range
analysis is restricted to the computation of bounding
boxes, and this depends exclusively on one surface

at a time. The examples below show how this algo-
rithm performs when bounding boxes are computed

with TA and with AA.

5.1 Lofted parabolas

Consider a cubic patch obtained by lofting a parabola
to another parabola. More precisely, take three
points ag, a1, ¢z in R3, and consider the quadratic
Bézier curve defined by these points:

a(u) = ag(l — u)2 + 2aqu(l —u) + asu?,

for w € [0,1]. Take three other points by, by, bs in
R2, and the Bézier parabola defined by them:

B(u) = bo(1 — u)2 +2bgu(l — u) + byu?,

for u € [0, 1]. Now, sweep « to [linearly to obtain
a surface:

flu,0) = (1 = v)a(u) + vf(u),

for u,v € [0,1]. Lofting is a common operation
in CAGD. Figure 1 shows two intersecting lofted
parabolas (skew parabolic cylinders in this case).

Because the parametrization f contains several oc-
currences of v and 1 — u, and of » and 1 — v, the
terms are strongly correlated, and we expect AA
to provide tighter bounds for f than IA. This ex-
pectation is met: Figure 2 shows the domain de-
compositions built with IA and AA for computing
the intersection of the two lofted parabolas shown
in Figure 1. Both cases use six levels of recursive
subdivision. In the decomposition based on IA, 5314
bounding boxes were computed and 3360 patches re-
mained as possibly intersecting. The decomposition
based on AA was approximately 3 times more effi-
cient: 1930 bounding boxes were computed and 968
patches remained. Note how AA exploits correla-
tions to give much tighter approximations for the
intersection, quickly discarding large parts of both
domains. With no graphics output, the AA version
ran approximately 3 times faster than the IA version.
(Timings performed on a personal IBM RS6000/320
workstation with typical load.)

5.2 Bicubic patches

Consider now bicubic patches, the most common sur-
face patches in CAGD. A bicubic patch is a tensor
product Bézier surface, defined by a mesh of sixteen
control points a;; € R? (i, = 0..3):

flu,v) = Z Za,’jB?(u)B;’(v),

i=0 j=0

(17717
...'."'....;.:..

Figure 1: Two intersecting lofted parabolas.

TR, b T

BT T

ssasute| HiH o REEd

i g i gi
T T e e
il izl | il
] R i id
B] H
e 4, i

B BT T FFH

Pt e B

PR [T

Figure 2: Domain decompositions computed with
IA (top) and AA (bottom) for intersecting the two
skew parabolic cylinders shown in Figure 1. Six lev-
els of recursive subdivision were performed. The
patch on the left has control points ag = (0,0,0),
a; = (1,0, 1), as = (2,0,0), bo = (0,2,0), bl =
(1,2,1), b3 = (2,2,0). The patch on the right has
control points a9 = (0,0,0.55), a; = (0,1,—0.45),
az = (0,2,0.55), bp = (2,0,0.55), by = (2,1,—0.45),
by = (2,2,0.55).

Figure 3: Two intersecting bicubic patches.

where u, v € [0,1] and B? is the i-th Bernstein poly-
nomial of degree n:

B (t) = <T.L>ti(1 e

2

(The lofted parabolas in Section 5.1 are also tensor
product Bézier surfaces.)

Figure 3 shows two intersecting bicubic patches.
Figure 4 shows the domain decompositions built
with IA and AA for computing the intersection of
these two bicubic patches. Because tensor prod-
uct parametrizations contain many occurrences of
strongly correlated terms, we expect AA to provide
tighter bounds than IA. Again, this expectation is
met. In the decomposition based on IA, 8038 bound-
ing boxes were computed and 5508 patches remained
as possibly intersecting. The decomposition based on
AA was much more eflicient: 1786 bounding boxes
were computed and 728 patches remained. Thus,
AA computed approximately 4.5 times fewer bound-
ing boxes than IA and generated an approximation
7.6 times more accurate. With no graphics output,
the AA version ran approximately 3.7 times faster
than the IA version.

An extra subdivision step with AA is sufficient to
show that the intersection curve is not a loop (Fig-
ure 5). After this extra step, a total of 3066 bounding
boxes were computed and 1280 patches remained.

Figure 4: Domain decompositions computed with IA (top) and AA (bottom) for intersecting the two bicubic
patches shown in Figure 3. Six levels of recursive subdivision were performed. The patch on the left has
control points (1.4, 0,0.5), (0,0,3), (3,0,3), (1.6,0,0.5), (1.4, 1,0.5), (0,1,3), (3,1, 3), (1.6, 1, 0.5), (1.4, 2, 0.5),
(0,2,3), (3,2,3), (1.6,2,0.5), (1.4, 3,0.5), (0,3,3), (3,3,3), (1.6,3,0.5). The patch on the right has control
points (0,0, 0), (0,3,0), (3,3,0), (3,0,0), (L,0,1), (0,2,1), (3,2, 1), (2,0, 1), (1,0,2), (0,2,2), (3,2,2), (2,0,2),
(0,0,3), (0,3,3), (3,3,3), (3,0,3).

Figure 5: Extra subdivision step with AA shows that
intersection curve is not a loop.

6 Conclusion

The surface intersection algorithm proposed by Gle-
icher and Kass [2] is robust, simple to implement,
and its use of interval arithmetic is localized, mak-
ing it easy to use affine arithmetic instead. Although
AA is indeed more accurate than IA, it is more com-
plex to implement and more expensive to run. How-
ever, as shown by the examples, its higher accuracy is
worth the extra cost for computing the intersection
of parametric surfaces, specially the surfaces com-
monly used in CAGD, because of the many correla-
tions present in their parametrizations. The higher
accuracy of AA translates into more efficient domain
decompositions, even though primitive operations in
AA are more expensive than in TA. Because the de-
compositions are smaller, there are fewer pairs of
patches to test for intersection, and the whole al-
gorithm runs faster.

We plan to continue to investigate computer
graphics problems that have solutions based on range
analysis which would benefit from replacing IA with
AA. We expect variants based on AA to be more ef-
ficient, but each case requires separate investigation.

J. Stolfi provided advice on AA

Figures 1 and 3 were generated

Acknowledgements.
and some code.

with Geomview (software written at the Geometry
and available at
The author

holds a post-doctoral fellowship from the Brazilian Coun-

Center, University of Minnesota,

http://www.geom.umn. edu/software/).

cil for Scientific and Technological Development (CNPq).

References
[1] R. E. Barnhill. Surfaces in computer-aided geomet-

ric design: A survey with new results. Computer
Aided Geometric Design, 2(1-3):1-17, 1985,

[2] M. Gleicher and M. Kass. An interval refinement
technique for surface intersection. In Proceedings of
Graphics Interface '92, pages 242-249, May 1992.

[3] L. H. de Figueiredo and J. Stolfi. Adaptive enumer-
ation of implicit surfaces with affine arithmetic. In
Proceedings of Implicit Surfaces ’95, pages 161-170,
April 1995. Extended version to appear in Computer
Graphics Forum.

[4] H. Ratschek and J. Rokne. Computer Methods for
the Range of Functions. Ellis Horwood Ltd., 1984.

[5] J. L. D. Comba and J. Stolfi. Affine arith-
metic and its applications to computer graph-
ics. In Proceedings of VI SIBGRAPI (Brazil-
tan Symposium on Computer Graphics and Im-
age Processing), pages 9-18, 1990. Available at
http://dcc.unicamp.br/“stolfi/.

[6] R.E.Barnhill, G. Farin, M. Jordan, and B. R. Piper.
Surface/surface intersection. Computer Aided Geo-
metric Design, 4(1-2):3-16, July 1987.

[7] C.M. Hoffmann. Geometric and Solid Modeling: An

Introduction. Morgan Kaufmann, 1989.

[8] A.J. Stewart. Local robustness and its applications
to polyhedral intersection. International Journal on
Computational Geometry and Applications, 4(1):87-
118, 1994.

[9] D. Filip, R. Magedson, and R. Markot. Surface algo-
rithms using bounds on derivatives. Computer Aided
Geometric Design, 3(4):295-311, 1986.

[10] D. P. Mitchell. Robust ray intersection with interval
arithmetic. In Proceedings of Graphics Interface '90,
pages 68-74, May 1990.

[11] K. G. Suffern and E. D. Fackerell.
ods in computer graphics. Computers & Graphics,
15:331-340, 1991.

[12] J. M. Snyder. Interval analysis for computer graph-
ics. Computer Graphics (SIGGRAPH '92 Proceed-
ings), 26(2):121-130, July 1992.

[13] T. Duff. Interval arithmetic and recursive subdivi-
sion for implicit functions and constructive solid ge-
ometry. Computer Graphics (SIGGRAPH 92 Pro-
ceedings), 26(2):131-138, July 1992.

[14] D. Kalra and A. H. Barr. Guaranteed ray inter-
sections with implicit surfaces. Computer Graphics
(SIGGRAPH ’89 Proceedings), 23(3):297-306, July
1989.

[15] L. B. Rall. Automatic Differentiation: Techniques
and Applications, volume 120 of Lecture Notes in
Computer Science. Springer Verlag, 1981.

[16] H. Ratschek and J. Rokne. New Computer Methods
for Global Optimization. Ellis Horwood Ltd., 1988.

[17] E. Hansen. Global optimization using interval anal-
ysis. Number 165 in Monographs and textbooks in
pure and applied mathematics. M. Dekker, 1988.

[18] E. Hansen. A generalized interval arithmetic. In
K. Nickel, editor, Interval mathematics, number 29
in Lecture Notes in Computer Science, pages 7—18.
Springer Verlag, 1975.

Interval meth-

