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Abstract

We describe a variant of a domain decomposi�
tion method proposed by Gleicher and Kass for in�
tersecting and trimming parametric surfaces� In�
stead of using interval arithmetic to guide the de�
composition� the variant described here uses a�ne
arithmetic� a tool recently proposed for range analy�
sis� A�ne arithmetic is similar to standard interval
arithmetic� but takes into account correlations be�
tween operands and sub�formulas� generally provid�
ing much tighter bounds for the computed quantities�
As a consequence� the quadtree domain decomposi�
tions are much smaller and the intersection algorithm
runs faster�
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� Introduction

Parametric surfaces are the most popular primitives
used in computer aided geometric design �CAGD��
They are easy to approximate and render� and there
is a huge literature on special classes of surfaces suit�
able for shape design� such as B�ezier and splines sur�
faces� for which special algorithms exist 	
�� How�
ever� using parametric surfaces for modeling solids in
CSG systems requires e�cient and robust methods
for computing surface intersection� mainly for trim�
ming surfaces into patches that can be sewn together
to bound complex shapes�

Several methods have been proposed for solving
the important problem of computing the intersection
of two parametric surfaces� These methods can be
classi�ed into two major classes continuation meth�

ods and decomposition methods� In this paper� we de�
scribe a variant of a decomposition method proposed
by Gleicher and Kass 	��� Instead of using inter�
val arithmetic to guide the recursive domain decom�
position� as they did� this variant uses a�ne arith�

metic� A�ne arithmetic is similar to standard inter�
val arithmetic� but takes into account correlations
between operands and sub�formulas� generally pro�
viding much tighter bounds for the computed quan�

tities� In many computer graphics methods based on
interval arithmetic� a�ne arithmetic can transpar�
ently replace interval arithmetic� Variants based on
a�ne arithmetic will probably be more e�cient� but
each case requires separate investigation 	��� This
paper describes such an investigation for the surface
intersection method by Gleicher and Kass 	���
In Section �� we review some general methods for

surface intersection� The most reliable of those seems
to be recursive subdivision of parameter space based
on range analysis� i�e�� on estimates for the range of
values taken by a function on subsets of its domain�
Interval arithmetic is the natural technique for range
analysis 	��� However� as we point out in Section ��
the excessive conservatism of interval arithmetic may
greatly reduce the e�ciency of the decomposition� In
Section �� we brie�y describe a�ne arithmetic� a re�
cent technique for range analysis that generally pro�
vides much tighter bounds than interval arithmetic
	��� In Section �� we review the surface intersection
algorithmproposed by Gleicher and Kass 	�� and give
some evidence that it can be improved by replacing
interval arithmetic with a�ne arithmetic� specially
when applied to surfaces commonly used in CAGD�

� Previous work

Continuation methods� also calledmarching methods�
use a local approach to the surface intersection prob�
lem� Starting from a point known to be on both sur�
faces� these methods build an approximation for the
intersection curve by marching along the curve� suc�
cessively computing a new point based on the previ�
ous point �or points� 	��� Continuationmethods must
use numerical approximations not only for marching
along the curve� but also for �nding starting points�
Since the intersection curve may have several con�
nected components� a starting point is needed on
each component� Moreover� care must be taken for
handling closed components correctly� In some appli�
cations� such as trimming� intersection curves com�
puted with continuation methods must be mapped
back to the parameter domains to de�ne trimming
curves� This may be a di�cult inverse problem�



Decomposition methods� on the other hand� use a
more global approach to the problem� A simple de�
composition method is to build polygonal approx�
imations for both surfaces and then intersect the
corresponding polyhedral surfaces� Although it is
easy to build polygonal approximations for paramet�
ric surfaces� such approximations need to be very �ne
to provide a good approximation for the intersection�
A naive polygonal approximation is obtained by sim�
ply subdividing the parameter domain uniformly into
many small rectangles� However� intersecting such
�ne polygonal approximation is itself a di�cult task�
Even if we do not care about geometric degeneracies
	�� ��� this is a high complexity task If there are
n rectangles along each main direction in parameter
space� then there are n� faces in each polyhedron�
A naive algorithm that computes the intersection of
the two polyhedra by testing every possible pair of
faces has to consider n� cases� most of which do not
contribute to the intersection� This algorithm is not
practical because it is very expensive to re�ne an
approximation�

Adaptive decomposition methods avoid the cost
of uniform decompositions by subdividing the do�
main until the surface is approximately planar� In
that way� the associated polygonal approximation is
adapted to the local curvature of the surface� being
�ner in regions of high curvature and coarser in re�
gions of low curvature� where the surface is almost
�at� Such methods are generally restricted to spe�
ci�c types of surfaces� whose nature can be exploited
to derive e�cient tests for local �atness 	���

The decomposition method proposed by Gleicher
and Kass 	�� takes a global approach for subdividing
the domains� using range analysis 	��� Given a rect�
angle in each domain� they compute an estimate for
the range of values taken by the corresponding para�
metric function on each rectangle� This estimate is a
bounding box for a surface patch� i�e�� a rectangular
box in �d space� aligned with the coordinate axes�
and guaranteed to contain the piece of the surface
corresponding to the given rectangle in parameter
space� If two bounding boxes do not intersect� then
the corresponding surfaces patches cannot intersect�
If the bounding boxes do intersect� then the surfaces
patches may intersect� In this case� the rectangles
are subdivided� and the process is repeated until ei�
ther the surfaces patches are proved disjoint or a user
de�ned tolerance is reached� the patches are then as�
sumed to intersect� Gleicher and Kass use interval
arithmetic for computing ranges� In this paper� we
show that their method can be improved by replac�
ing interval arithmetic with a�ne arithmetic� a tool

recently introduced for range analysis that generally
produces better bounds than interval arithmetic 	���
Since decomposition methods work directly on pa�

rameter domains� no inverse problem needs to be
solved to �nd trimming curves� On the other hand�
decomposition methods compute trimming curves in
a piecewise� unstructured way� the pieces must be
somehow glued together into complete curves� In ad�
dition to the domain decomposition method for �nd�
ing intersections with interval arithmetic� Gleicher
and Kass 	�� also propose complementary algorithms
for �nding trimming curves and triangulating the do�
mains to de�ne trimmed surfaces� These algorithms
do not depend on range analysis and therefore can be
applied to the decompositions computed by the vari�
ant presented here� For this reason� we concentrate
on showing that their algorithm can be improved by
using a�ne arithmetic instead of interval arithmetic�

� Interval arithmetic

The classical technique of interval arithmetic �IA�
provides a natural tool for range analysis 	��� In
IA� each quantity is represented by an interval of
�oating�point numbers� Those intervals are added�
subtracted� multiplied� etc�� in such a way that each
computed interval is guaranteed to contain the �un�
known� value of the quantity it represents�
Simple formulas are easily derived for performing

the primitive arithmetic operations on intervals� In�
terval extensions for a complicated function can be
computed by composing these primitive formulas in
the same way the primitive operations are composed
to compute the function itself� In other words� any
algorithm for computing a function using primitive
operations can be readily �and automatically� inter�
preted as an algorithm for computing an interval
extension for the same function� This is specially
elegant to implement with programming languages
that support operator overloading� such as C���
Ada� Pascal�SC and Fortran���� but can be easily
implemented in any programming language� either
manually or with the aid of a pre�compiler� Since it
is also relatively easy to provide interval extensions
for elementary transcendental functions such as sin�
cos� log� and exp� the class of functions for which in�
terval extensions can be easily �and automatically�
computed is much larger than the class of rational
polynomial functions�
Several methods based on IA have recently been

proposed for solving fundamental problems in com�
puter graphics� such as ray tracing 	
�� and the ap�
proximation of implicit surfaces 	

� 
�� 
��� Those
methods have become quite popular� due to their



ability to handle arbitrarily complex non�polynomial
surfaces� and their immunity to round�o� errors�
Previously� methods based on Lipschitz condi�

tions �global bounds on derivatives� appeared to be
promising for computer graphics applications 	�� 
���
However� computing Lipschitz bounds is a non�
trivial mathematical problem that did not seem to
have an automatic solution� Methods using range
analysis seem to be more popular now in computer
graphics� specially because range analysis can be
automated �typically with IA� 	��� In particular�
Lipschitz bounds can be computed using automatic
di�erentiation and interval arithmetic 	
��� Global
optimization� which includes computing Lipschitz
bounds as a special case� has recently been shown
to be feasible with range analysis 	
�� 
��� However�
global optimization with range analysis has barely
been explored in computer graphics 	
���

The main weakness of IA is that it tends to be
too conservative the computed interval for a quan�
tity may be much wider than the exact range of that
quantity� often to the point of uselessness� This over�
conservatism is mainly due to the assumption that
the �unknown� values of the arguments to primitive
operations may vary independently over the given in�
terval� If there are any mathematical constraints be�
tween these arguments� then not all combinations of
values in the corresponding intervals will be valid�
As a consequence� the result interval computed by
IA may be much wider than the exact range of the
result quantity� This is sometimes called the depen�

dency problem in IA�
As an example of how dependencies are overlooked

in IA� consider evaluating x�
��x�� where x is known
to lie in the interval �x � 	� �� ��� Applying the IA
formulas blindly� we get

�x � 	� �� ��


�� �x � 	
� �� 
��� 	� �� �� � 	� �� ��

�x�
�� �x� � 	� �� �� � 	� �� �� � 	
� �� ����

which is �� times wider than the exact range of the
expression x�
� � x� over 	� �� ��� namely 	�� �� ����
The large discrepancy between the two intervals is
due to the inverse relation between the quantities x
and 
� � x� which is not known to the IA multipli�
cation algorithm� Inverse relations such as this are
common in curve and surface parametrizations used
in CAGD� as the examples in Section � show�
The over�conservatism of IA is particularly bad in

long computation chains� where the intervals com�
puted by one stage of the chain are the inputs to the
following stage� In such cases� one often observes an

�error explosion� as the evaluation advances down
the chain� the relative accuracy of the computed in�
tervals decreases exponentially� and they soon be�
come too wide to be useful� by many orders of mag�
nitude� Unfortunately� long computations chains are
not uncommon in computer graphics applications�

� A�ne arithmetic

A�ne arithmetic �AA� is a model for numerical com�
putation recently proposed to address the �error ex�
plosion� problem in IA 	��� Like IA� a�ne arith�
metic keeps track automatically of the round�o� and
truncation errors a�ecting each computed quantity�
Unlike IA� however� AA keeps track of correlations
between those quantities� This extra information al�
lows AA to provide much tighter range estimates
than IA� especially in long computation chains�

The key feature of AA is an extended encoding of
quantities from which one can determine� in addition
to their ranges� also certain relationships to other
quantities � such as the ones existing between x

and 
��x in the example in Section �� Speci�cally� a
partially unknown quantity x is represented in AA by
an a�ne form  x� which is a �rst�degree polynomial

 x � x� � x��� � x��� � � � �� xn�n�

Here� the xi are known real coe�cients �stored as
�oating�point numbers�� and the �i are symbolic vari�
ables� called noise symbols� whose values are un�
known but assumed to lie in the interval 	�
 �� �
��
Noise symbols stand for independent sources of er�
ror or uncertainty that contribute to the total uncer�
tainty of the quantity x� the coe�cient xi gives the
magnitude of that contribution for the source �i�
The main bene�t of encoding quantities with a�ne

forms instead of intervals is that the same noise sym�
bol �i may contribute to the uncertainty of two or
more quantities �inputs� outputs� or intermediate re�
sults� arising in the evaluation of an expression� The
sharing of a noise symbol �i by two a�ne forms  x�  y
indicates a partial dependency between the underly�
ing quantities x� y� The magnitude and sign of the
dependency is determined by the corresponding coef�
�cients xi� yi� Taking such correlations into account
allows better range estimates to be computed �see
the example at the end of this section��

Other approaches to the dependency problem in
IA include centered forms 	�� and Hansen!s general�
ized interval arithmetic 	
��� in which quantities are
represented by a�ne combinations of a �xed number
of intervals� In AA� new noise symbols are dynami�
cally created during a long computation�



As one may expect� a�ne arithmetic is more com�
plex and expensive than ordinary interval arithmetic�
However� its higher accuracy is worth the extra cost
in many computer graphics applications� including
adaptive enumeration of implicit objects 	�� and com�
puting the intersection of parametric surfaces� as we
show in Section ��

The use of AA for range analysis is simple First
convert all input intervals to a�ne forms� Then op�
erate on these a�ne forms with AA to compute the
desired function� Finally� convert the result back into
an interval�

The conversion steps are simple� Given an interval
�x � 	a �� b� representing some quantity x� an equiv�
alent a�ne form for the same quantity is given by
 x � x� � xk�k� where

x� �
b� a

�
and xk �

b� a

�
�

Since input intervals are assumed to be unrelated�
because they usually represent independent vari�
ables� a new noise symbol �k must be used for each
input interval�

Conversely� the value of a quantity represented by
an a�ne form  x � x��x����� � ��xn�n is guaranteed
to be in the interval

	 x� � 	x� � � �� x� � ��� where � � k xk �
nX
i��

jxij �

Note that 	 x� is the smallest interval that contains
all possible values of  x� assuming that each �i ranges
independently over the interval 	�
 �� �
��

Computing with a�ne arithmetic

To evaluate a formula in AA� we must replace each of
its elementary operations z � f�x� y� on real num�

bers by an equivalent operation  z �  f � x�  y� on a�ne

forms� where  f is a procedure that computes an a�ne
form for z � f�x� y� that is consistent with  x�  y�
When f is an a�ne function of x� y� the value  z

can be expressed exactly as an a�ne combination of
the noise symbols �i� More precisely� if

 x � x� � x��� � � � �� xn�n

 y � y� � y��� � � � �� yn�n�

and � � R� then

 x�  y � �x� � y�� � �x� � y���� � � � �� �xn � yn��n

� x � ��x�� � ��x���� � � � �� ��xn��n

 x� � � �x� � �� � x��� � � � �� xn�n�

Note that� according to those formulas� the di�erence
 x�  x between an a�ne form and itself is identically
zero� In this case� the fact that the two operands
share the same noise symbols with the same coe��
cients reveals that they are actually the same quan�
tity� and not just two quantities that happen to
have the same range of possible values� Thanks to
this feature� in AA we also have � x �  y� �  x �  y�
�� x� �  x � � x� and so on� Such properties are not

valid in IA� and are one source of error explosion�
When f is not an a�ne operation� the value  z

cannot be expressed exactly as an a�ne combina�
tion of the �i� In that case� we pick the best a�ne
approximation to f �best in the Chebyshev sense of
minimizing the maximum error�� and then append
an extra term zk�k to represent the error introduced
by this approximation

 z � z� � z��� � � � �� zn�n � zk�k�

Here� �k must be a brand new noise symbol �i�e�� dis�
tinct from all other noise symbols in the same com�
putation� and zk must be an upper bound for the ap�
proximation error� Note that� unlike Hansen!s gen�
eralized interval arithmetic 	
��� new noise symbols
are created during a long AA computation� They
account for extra sources of uncertainty introduced
during the computation� such as approximation er�
rors and round�o� errors�
Using this approach� formulas can be derived for

all elementary operations and functions� both alge�
braic and transcendental� For example� the multipli�
cation of two a�ne forms  x�  y is given by

z� � x�y�

zi � x�yi � y�xi �i � 
��n�

zk � k xk k yk�

Like Lipschitz bounds� Chebyshev approximations
must be computed by hand� Unlike Lipschitz
bounds� however� Chebyshev approximations need
to be found only for primitive functions because AA
formulas for primitive functions can be automatically
combined into formulas for arbitrarily complex func�
tions� as described in Section � for IA�
To see how AA handles the dependency problem�

consider again evaluating z � x�
�� x�� for x in the
interval 	� �� ��� but now using AA instead of IA

 x � � � 
��


��  x � �� 
��

 z �  x�
��  x� � �� � ��� � 
��

	 z� � 	��� 
 �� �� � 
� � 	�� �� ����



Observe that the in�uence of the noise symbol �� in
the factors happened to cancel out �to �rst order� in
the product� Note also that the range of  z is much
closer to 	�� �� ���� the exact range of z� and much
better than the IA estimate� 	
� �� ����

� Examples

In this section� we show two examples of how the
Gleicher�Kass algorithm for surface intersection 	��
can be improved by using AA instead of IA� specially
for surfaces that are common in CAGD�

Recall that their algorithm is a domain decom�
position algorithm that uses range analysis to decide
whether two surfaces patches intersect� If the bound�
ing box estimates provided by range analysis for the
patches do not intersect� then the patches cannot
intersect� If the bounding boxes do intersect� then
the surfaces patches may intersect� and the corre�
sponding rectangles in the domains are subdivided
into four equal pieces and further tested� In this
way� a quadtree decomposition is built for each do�
main� For e�ciency� Gleicher and Kass keep track
of all pairs of patches that might intersect each leaf
node in one quadtree contains a list of leaf nodes in
the other quadtree that it overlaps� This list is re�
�ned and distributed to its children when a node is
subdivided� The main step in the algorithm is the
subdivision of a leaf node 	��

subdivide�n��
if n�s overlap list is not empty

subdivide n into four children
for each i in n�s overlap list

remove n from i�s overlap list
for each child c of n

if c overlaps i

add i to c�s list
add c to i�s list

Gleicher and Kass 	�� remark that this subdivision
step can be applied in several di�erent orders� They
actually combine depth��rst search with breadth�
�rst search to control the size and accuracy of the
sampling of the intersection curve� Our simple im�
plementation uses only breadth��rst search� by en�
queueing new nodes as they are created and then
subdividing a node from the queue at a time� For
e�ciency� a bounding box for a node is computed
exactly once� when the node is created� This hap�
pens in each subdivision� when four nodes are cre�
ated� and also at startup� when one node for each
entire domain is created� Note that the use of range
analysis is restricted to the computation of bounding
boxes� and this depends exclusively on one surface

at a time� The examples below show how this algo�
rithm performs when bounding boxes are computed
with IA and with AA�

��� Lofted parabolas

Consider a cubic patch obtained by lofting a parabola
to another parabola� More precisely� take three
points a�� a�� a� in R�� and consider the quadratic
B�ezier curve de�ned by these points

��u� � a��
� u�� � �a�u�
� u� � a�u
��

for u � 	�� 
�� Take three other points b�� b�� b� in
R�� and the B�ezier parabola de�ned by them

��u� � b��
� u�� � �b�u�
� u� � b�u
��

for u � 	�� 
�� Now� sweep � to � linearly to obtain
a surface

f�u� v� � �
� v���u� � v��u��

for u� v � 	�� 
�� Lofting is a common operation
in CAGD� Figure 
 shows two intersecting lofted
parabolas �skew parabolic cylinders in this case��
Because the parametrization f contains several oc�

currences of u and 
 � u� and of v and 
 � v� the
terms are strongly correlated� and we expect AA
to provide tighter bounds for f than IA� This ex�
pectation is met Figure � shows the domain de�
compositions built with IA and AA for computing
the intersection of the two lofted parabolas shown
in Figure 
� Both cases use six levels of recursive
subdivision� In the decomposition based on IA� ��
�
bounding boxes were computed and ���� patches re�
mained as possibly intersecting� The decomposition
based on AA was approximately � times more e��
cient 
��� bounding boxes were computed and ���
patches remained� Note how AA exploits correla�
tions to give much tighter approximations for the
intersection� quickly discarding large parts of both
domains� With no graphics output� the AA version
ran approximately � times faster than the IA version�
�Timings performed on a personal IBM RS����"���
workstation with typical load��

��� Bicubic patches

Consider now bicubic patches� the most common sur�
face patches in CAGD� A bicubic patch is a tensor
product B�ezier surface� de�ned by a mesh of sixteen
control points aij � R� �i� j � �����

f�u� v� �
�X

i��

�X
j��

aijB
�

i �u�B
�

j �v��



Figure 
 Two intersecting lofted parabolas�

Figure � Domain decompositions computed with
IA �top� and AA �bottom� for intersecting the two
skew parabolic cylinders shown in Figure 
� Six lev�
els of recursive subdivision were performed� The
patch on the left has control points a� � ��� �� ���
a� � �
� �� 
�� a� � ��� �� ��� b� � ��� �� ��� b� �
�
� �� 
�� b� � ��� �� ��� The patch on the right has
control points a� � ��� �� ������ a� � ��� 
��������
a� � ��� �� ������ b� � ��� �� ������ b� � ��� 
��������
b� � ��� �� ������

Figure � Two intersecting bicubic patches�

where u� v � 	�� 
� and Bn
i is the i�th Bernstein poly�

nomial of degree n

Bn
i �t� �

�
n

i

�
ti�
� t�n�i�

�The lofted parabolas in Section ��
 are also tensor
product B�ezier surfaces��

Figure � shows two intersecting bicubic patches�
Figure � shows the domain decompositions built
with IA and AA for computing the intersection of
these two bicubic patches� Because tensor prod�
uct parametrizations contain many occurrences of
strongly correlated terms� we expect AA to provide
tighter bounds than IA� Again� this expectation is
met� In the decomposition based on IA� ���� bound�
ing boxes were computed and ���� patches remained
as possibly intersecting� The decomposition based on
AA was much more e�cient 
��� bounding boxes
were computed and ��� patches remained� Thus�
AA computed approximately ��� times fewer bound�
ing boxes than IA and generated an approximation
��� times more accurate� With no graphics output�
the AA version ran approximately ��� times faster
than the IA version�

An extra subdivision step with AA is su�cient to
show that the intersection curve is not a loop �Fig�
ure ��� After this extra step� a total of ���� bounding
boxes were computed and 
��� patches remained�



Figure � Domain decompositions computed with IA �top� and AA �bottom� for intersecting the two bicubic
patches shown in Figure �� Six levels of recursive subdivision were performed� The patch on the left has
control points �
��� �� ����� ��� �� ��� ��� �� ��� �
��� �� ����� �
��� 
� ����� ��� 
� ��� ��� 
� ��� �
��� 
� ����� �
��� �� �����
��� �� ��� ��� �� ��� �
��� �� ����� �
��� �� ����� ��� �� ��� ��� �� ��� �
��� �� ����� The patch on the right has control
points ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� �
� �� 
�� ��� �� 
�� ��� �� 
�� ��� �� 
�� �
� �� ��� ��� �� ��� ��� �� ��� ��� �� ���
��� �� ��� ��� �� ��� ��� �� ��� ��� �� ���



Figure � Extra subdivision step with AA shows that
intersection curve is not a loop�

	 Conclusion

The surface intersection algorithm proposed by Gle�
icher and Kass 	�� is robust� simple to implement�
and its use of interval arithmetic is localized� mak�
ing it easy to use a�ne arithmetic instead� Although
AA is indeed more accurate than IA� it is more com�
plex to implement and more expensive to run� How�
ever� as shown by the examples� its higher accuracy is
worth the extra cost for computing the intersection
of parametric surfaces� specially the surfaces com�
monly used in CAGD� because of the many correla�
tions present in their parametrizations� The higher
accuracy of AA translates into more e�cient domain
decompositions� even though primitive operations in
AA are more expensive than in IA� Because the de�
compositions are smaller� there are fewer pairs of
patches to test for intersection� and the whole al�
gorithm runs faster�

We plan to continue to investigate computer
graphics problems that have solutions based on range
analysis which would bene�t from replacing IA with
AA� We expect variants based on AA to be more ef�
�cient� but each case requires separate investigation�
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