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Abstract
This paper presents a framework for generating smooth-
looking transformations between pairs of surfaces that
may differ in topology. The user controls the transforma-
tion by specifying a sparsecontrol meshon each surface
and by associating each face in one control mesh with a
corresponding face in the other. The algorithm builds a
transformation from this information in two steps. The
first step constructs a series of shapes and meshes (ac-
cording the theory of topological surgery) that describes
how topological changes should occur at critical points
during the transformation. This makes possible the sec-
ond step, which establishes smooth transformations by
combining intermediate shapes in this series. Control
meshes allow the user precise but intuitive control of the
morph, while the 3D surfaces that result can be used for
rendering or keyframing.

Résuḿe
Cet article presente une m´ethode pour engendrer des
transformations continues entre deux surfaces dont la
topologie peut etre diff´erente. L’utilisateur controle la
transformation en sp´ecifiant unegrille de controlesur
chacune des surfaces, et en associant a chaque face de
l’une des deux grilles une face correspondante de l’autre.
Notre algorithme construit une transformation `a partir de
cette information en deux ´etapes. La premi`ereétape con-
struit une suite de formes et de grilles (suivant la th´eorie
de la chirurgie topologique) qui decrivent la fac¸on dont
les changements de topologie doivent se produire en cer-
tains moments critiques. Ceci rend possible la deuxi`eme
étape, qui construit une transformation continue en com-
binant lesétapes interm´ediaires. Les grilles de controle
donnentà l’utilisateur un controle precis mais intuitif de
la métamorphose, et les surfaces qui en r´esultent peuvent
être utilisées pour la visualisation ou l’animation.
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1 Introduction
Your local topologist will tell you that you cannot de-
form an orange into a donut. But what if you want to do
this anyway? There is hope, but you’ll need more than a
simple deformation: you must also evolve the topology,
adding a hole where there was none. The theory of topo-
logical surgery describes several ways this hole might be

added, but the appropriate surgery for a particular trans-
formation is largely an artistic decision.

The task of transforming an orange into a donut epit-
omizes the general problem of metamorphosis between
two objects, commonly called “morphing”. Morphing
starts from acorrespondencebetween the two objects,
that specifies where features on one object end up on the
other object as a result of the transformation. When the
transformation involves topological change, the corre-
spondence must also indicate how the change takes place.
The morphing engine effects a transition that realizes the
desired correspondence, using a method ofinterpolation.

In recent years, image morphing techniques have
gained considerable popularity, especially in the enter-
tainment industry. This success depends in part on al-
gorithms that allow an animator to specify visually en-
gaging correspondences for image morphs in an intuitive
way. Unfortunately, any intermediate forms produced by
image morphing methods existonly in image form. Sur-
face models are often required in animation for keyfram-
ing, or to allow shadows or lighting effects to be com-
puted.

Meanwhile, for the metamorphosis of 3D surface mod-
els, most research has focused either on morphing be-
tween a restricted, topologically similar class of shapes,
or on automatically constructing the correspondence be-
tween the two shapes for a morph. Often, the user has
little or no say in how the morph takes place.

This paper focuses on the specification of correspon-
dence in the presence of topologically different shapes,
and the interpolation issues that arise in the presence of
topological evolution. In particular, we investigate the
use of a sparsecontrol meshto define the transformation.
Correspondences between faces of the control mesh in-
duce correspondences between points on the objects; dis-
crepancies between the structure of corresponding faces
describe the topological evolution that must occur dur-
ing the transformation. The main contribution of this
paper is that the framework described here allows the
smooth transformation between topologically different
models while providing the animator with control over
the morph.

The organization of the paper is as follows. After an
initial introduction of basic concepts and previous work
in section 2, the topological and geometric issues in-



volved in evolution are discussed in section 3. A treat-
ment of several implementation questions follows in sec-
tion 4. After a brief summary in section 5, we con-
clude after illustrating sample transformations involving
the evolution of topology in section 6.

2 Background and Related Work
When concerned with topology of surfaces represented
by a mesh, there is some terminology that needs to be de-
fined. Thesurface topologyof the shape is specified by
the connectivity of the surface. For example, a sphere and
torus have different surface topologies. Themesh topol-
ogy is specified by the graph connectivity of the mesh.
The geometryof a shape is a specification of the loca-
tions of the nodes in space. Clearly, if two shapes have
different surface topologies, then their mesh topologies
must differ. Also, a simple deformation of a shape (a
geometric change), does not change either the mesh or
surface topology. We will later see how a combination of
geometric deformation and topological surgery yields the
desired transformation.

The morphing of images, 2D curves and 3D surfaces
is an active area of current research. Beier and Neely
[1] describe an image morphing technique which allows
the user to specify corresponding features between two
images using directed line segments. For those regions
of the image not covered by line segments, a weighted
average of features is used. This sparse specification of
features seems to allow the user the most intuitive form
of control for morphing. Morphing techniques for 2D
curves have also been developed. Addressing the prob-
lem of correspondence, Sederberg and Greenwood [15]
blend between two 2D polygonal shapes using a corre-
spondence extracted by analogy with the bending and
stretching of wire. A multiresolution approach to 2D
curve morphing was presented by Goldstein and Gots-
man [5].

Addressing 3D models, Kent et al [8] consider the mor-
phing of polyhedral objects topologically equivalent to a
sphere. This work primarily concerns the automatic gen-
eration of correspondences between shapes, but also in-
cludes an algorithm to merge the meshes of two polyhe-
dral shapes. Parent [14] improves this method, using a re-
cursive algorithm to find a correspondence between any
two topologically equivalent shapes. Lazarus and Ver-
roust [10] generate a correspondence, while giving the
user rough, high-level control by specifying two axes—
one in each object. Kaul and Rossignac [7] produce inter-
polations between shapes by combining scaled versions
of the shapes. Hughes [6] performs morphing on vol-
umetrically sampled implicit surfaces, and improves the
smoothness of the transformation by scheduling frequen-
cies using Fourier analysis. Wyvill [17] describes other

methods for warping implicit surfaces. Lerios et al [11]
show how the Beier and Neely image morphing technique
can be extended to volume representations. Methods for
altering the topology of the surface mesh during trans-
formation have also been presented. By introducing du-
plicate or degenerate surface mesh elements, Bethel and
Uselton [2] can produce a transition between two surface
meshes that differ topologically. Delingette et al [3] use a
“simplex mesh”, and perform basic mesh operations that
can alter the shape topology. The interpolation was per-
formed using a physics-based deformation approach, us-
ing a method derived from a data fitting process.

What makes our work different from previous work is
that we emphasize both user control and smooth transi-
tions between topologically different objects. This em-
phasis enables results that can equal the dramatic charac-
ter seen in image morphing.

Beier and Neely [1] allow the user to specify corre-
sponding features in an image, which enables complete
control by the user. Morphing between shapes using
blobs (metaballs) only allows a very rough correspon-
dence to be established between blobs. The user con-
trol in [10] provides only rough control over the morph.
None of the previously mentioned 3D shape transforma-
tion work seriously address the user control issue (al-
though it certainly could be incorporated into some of the
work).

3 Surface Morphing and Topological Evolution
A smooth transformation between topologically different
objects requires bothmorphingfor the geometric inter-
polation, andevolutionof the topology. These two pro-
cesses are closely linked, and only an appropriate com-
bination of them will yield a smooth transformation. We
define a smooth transformation as having the following
properties:

1. Over the course of the transformation, no discontin-
uous jumps in shape are present

2. No undesirable topological changes occur (such as
the splitting open of a surface)

3. Intermediate stages should not be overly distorted

In virtually all previous morphing work, the first of
these is the paramount goal. The second of these was a
concern in [6] and [8]. Hughes noted that coarse volumet-
ric sampling can result in topological features appearing
suddenly (such as an instantly appearing hole). Kent et
al addressed both the second and third points by noting
that they cannot be satisfied without usingbothgeomet-
ric and topological information during the transformation
process. Only [3], [7], [8], [10] and [14] use both geomet-
ric and topological information in the morphing process.

To perform the morphing, we are given two surfaces
S1 andS2, which we will refer to as the source shapes.



For this paper, we will assume that the source shapes are
triangulated polygon surfaces, although many of the ar-
guments supplied here will apply to any surface repre-
sentation. We will also assume that the source shapes
are orientable surfaces (non-orientable surfaces include
Möbius strips and Klein bottles). In the following sec-
tions, without loss of generality, we may refer only to the
transformation or correspondence fromS1 to S2.

3.1 Topological Transformation
The transformation between two topologically different
shapes will involve an evolution of topology. This can in-
clude adding or removing a hole, or puncturing a closed
surface so that it develops a boundary. The process of al-
tering the topology of a shape involvessurgery—cutting
and gluing of the surface; additionaldeformationmay be
required to maintain reasonable geometry.

Figure 1 illustrates the role of surgery in topological
evolution; it shows the shapes where surgery is performed
in one transformation from a sphere to a torus. Fig-
ure 1(a) shows a sphere with two marked points (perhaps
the poles). If we cut through the sphere at these points,
and stretch these puncture points into circles, the result is
the open tube shown in Figure 1(b). By gluing the two
circles together, we can form the torus in (c).

(a) (b) (c)

Figure 1: A transformation from a sphere to a torus

An alternative transformation is shown in Figure 2.
Starting with the same sphere with two marked points in
(a), we can push these points into the sphere until they
touch, and then glue them together. The result is the
pinched sphere shown in Figure 2(b). From there we ob-
tain the shape in (c) by stretching the pinched point out
into a circle that becomes the inner ring of the torus.

(a) (b) (c)

Figure 2: Another transformation from a sphere to a torus

The surgeries of Figure 1 and 2 involveintermediate
shapes—an open tube or a pinched sphere—which have

a different topology from both a sphere and a torus. How-
ever, there is an important difference for our purposes. In
the transformation of Figure 1, the open tube is realized
for an extended period of time while in the transforma-
tion in Figure 2, the pinched sphere exists for only a sin-
gle point in time. In fact, considering the pinched sphere
in only geometric terms, we cannot determine whether it
is a deformed sphere (formed by pinching) or a torus with
the hole closed. So at the moment of surgery, the topol-
ogy is altered, while theappearanceof the shape remains
unchanged. It is crucial to the smoothness of the transfor-
mation that the intermediate shape exists for only a single
point in time. Otherwise, we will violate our second con-
dition on smooth transformations.

In order to completely specify a smooth transforma-
tion between a sphere and a torus, we must combine the
surgery with deformation. A first deformation is required
to deform the sphere smoothly into a pinched sphere. Af-
ter the surgery changes the topology to be that of a torus,
another deformation opens the torus hole. In this mor-
phing application, the morphing is responsible for these
deformations. As we will see in section 3.4, for cer-
tain topology changes, we must place restrictions on the
shapes generated by the morphing to ensure the kind of
smooth transition shown in Figure 2.

(a)

(b)

(c)

Figure 3: Various transformations

Three additional examples of smooth transformations
are shown in Figure 3. The transformation in (a) shows a
different type of sphere-torus evolution, sometimes called
torus “strangling” [9]. The two points on the sphere are
pulled away from the surface and glued together on the
outside of the sphere. The intermediate shape produced is
similar to that of a croissant. The pinched point stretches
out to become a ring passing through the torus hole. An
example of objects merging or splitting is shown in Fig-
ure 3(b). Points on each of the two surfaces are glued
together; then this point is stretched into a circle around
a single common “blob.” Finally, the simple puncture of
a sphere in Figure 3(c) shows how it can be unfolded into



a flat plate by poking through at a single point (like pop-
ping a balloon).

The transformations in Figures 2, 3(a) and 3(b) are
very similar. All three transformations havetwo points
that are glued together, and then expanded into a circle. In
Figure 3(c), asinglepoint on the sphere becomes a closed
curve (the boundary) of the flat plate. In the description
of the control mesh in section 3.2.1, we will see how the
correspondence of points (perhaps multiple points), and
curves is used to specify the topology changes. The meth-
ods presented in this paper handle topological changes
that map between one or two points, or one or two circles
(closed curves). Open curves may also be used (such as
for a “mouth opening”), but will not be discussed here.

These transformations are qualitatively the same as
those used in describing Morse theory [12], which de-
scribes the topological changes observed when viewing
sweeping cross-sections of surfaces. The concept of glu-
ing is borrowed from topology and the notion of quotient
space [13]. We know from the classification theorem for
compact surfaces that the operation of gluing is very pow-
erful, since all compact (orientable) surfaces can be ob-
tained by gluing together flat disks. This suggests that the
surgery operations described here allow transformations
between orientable shapes of arbitrary topology. Koen-
derink [9] provides numerous examples of “morpholog-
ical scripts,” where he attempts to qualitatively classify
shapes based on how they are formed by topological evo-
lution. These scripts can be viewed as recipes for per-
forming evolution, similar in spirit to the examples given
above.

3.2 Surface correspondence
The representation of surface correspondence used in pre-
vious surface morphing work [8] is a one-to-one mapping
betweenS1 andS2. This is a reasonable construction
given that the source shapes are topologically equivalent
(they are both genus 0 in [8]). But from topology we
know that if two surfaces differ topologically (if they are
not homeomorphic), then there is no invertible mapping
between them. Nevertheless, we must still establish some
sort of correspondence betweenS1 andS2.

To address this issue, we construct a new modelS,
where we can find two surjective (onto) maps:M1 from
S to S1, andM2 from S to S2. Therefore, each node
in S has a unique corresponding point inS1 and inS2.
If S1 andS2 are topologically equivalent, thenM1 and
M2 will also be invertible. WhenS1 andS2 differ topo-
logically, then eitherM1 or M2 (or both) will not be
injective. In general, the mappingsM1 andM2 will
be locally invertible everywhere except where topology
changes occur.

For example, ifS1 is a sphere, andS2 is a torus, then

the constructed modelS will have the topology of an
open tube, as in Figure 4(b). In a sense, the mappings
M1 andM2 perform the puncturing and gluing opera-
tions associated with the transformation of Figure 1. The
mappingM1 andM2 will be locally invertible every-
where except on the boundary rings of the tube where
topology changes occur.M1 maps each of the ends of
the open tube to its associated pole of the sphere. Basi-
cally, the circles on the tube boundaries each collapse to
a point. This collapse reflects the fact that the poles are
punctured during the transformation.M2 maps the ends
of the tube together into the central ring of the torus. This
corresponds to the gluing.

M1
 �

M2
�!

(a) (b) (c)

Figure 4: Mappings from the constructed modelS (b) to
S1 (a) andS2 (c)

In order to buildS and the associated mappings, we
need to find a merged mesh which contains mesh topol-
ogy information from bothS1 andS2. Doing so will al-
low us to associate nodes inS with locations inS1 and
S2—information necessary to buildM1 andM2. For
now, we will only be concerned with the locally invert-
ible regions ofM1 andM2. In section 3.2.3, the regions
where topology changes occur will be addressed.

To constructS, we will adapt the technique from Kent
et al [8] which produces a common vertex/edge/face net-
work from the source shapes. For each of the nodes in
S1 andS2, we must add a corresponding node toS. The
edges of the shapes are overlaid and also added toS. To
perform this algorithm, all that is needed is a correspon-
dence between the two surfaces–for each node in one sur-
face, the corresponding position of the node in the other
surface is known.

3.2.1 The Control Mesh
In order to specify the correspondence betweenS1 and
S2, the user places acontrol mesh“on top of” each ofS1
andS2, which we will callC1 andC2 respectively. This
control mesh is independent of the surface mesh used to
define the surface geometry and topology. The nodes of
this control mesh are placed on the surface of the shape,
and the edges follow the surface of the shape. The exact
nature of these surface edges is an implementation issue.
The faces of this mesh are generally triangular, with some
quadrilateral faces allowed at locations where the topol-
ogy changes (more details on this later). Example control
meshes for a sphere and torus are shown in Figure 5(a)
and (b), which produce the transformation shown in Fig-
ure 2.



(a) (b) (c)

Figure 5: Sample control meshes for a sphere and torus

In addition to defining the control mesh, the user also
performs a manual correspondence operation between
pairs of faces–taking one fromC1 and one fromC2 (so
C1 andC2 will have the same number of faces, as well as
having the same topology except where surgery occurs).
An example of a specified correspondence is shown in
Figure 6, with corresponding faces tagged appropriately.
By defining this correspondence between two faces, the
user is in effect saying that the portion of the surface in-
side one face will be transformed into the surface con-
tained within the other face. Thus, the specification of the
control mesh gives the user complete control over which
part of one surface maps to the other surface. Using this
control, the user can add to a morph the dramatic char-
acter observed in the many animations produced using
image morphing. Later, in Figure 13, we will see an ex-
ample of this precise control.

D

A B
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 !

A B
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Figure 6: Control mesh correspondence

Given two points that correspond on the models, large
regions on one shape around the point on that shape will
often map to large regions around the point on the other
shape. This coherency information can be used to have
a fairly sparse control mesh. In general, there will far
fewer faces of the control mesh than in the actual sur-
face mesh describing the shapes. In fact, it is not dif-
ficult to have the same control mesh used on identical
surfaces triangulated at different resolutions (assuming a
correspondence is available between these two triangu-
lated surfaces). This can allow more interactive use of
the correspondence system, analogous to the use of lower
resolution images in image morphing [1] to speed up the
design phase.

The control mesh also allows the user to decide how
and where topology changes occur. Gluing of the sur-
face can be accomplished by having the correspondence
of two faces that are not adjacent (they share no edges) in
one shape with two faces that share an edge in the other
shape. Cutting the surface often involves stretching a sin-
gle point on the surface of the shape into a curve. Where

no topology changes should occur, the user constructs a
local graph isomorphism between corresponding parts of
the control meshes. As seen in Figure 6, the control mesh
topologies are the same in the corresponding regions.

For example, the control meshes in Figure 5(a) and (b)
correspond to the sphere-torus transformation shown in
Figure 2. If we examine the regions near the pole of the
sphere, and near the hole of the torus, we will see the cor-
respondence shown in Figure 7. On the left, we see how
the four patches that touch a pole of the sphere meet at a
single point. This point will be cut, and stretched into the
circle at the center of the torus hole, as in Figure 1. The
right side of Figure 7 shows the corresponding location
of the control mesh on the torus (with the corresponding
faces labeled A, B, C and D). Each of the four-sided faces
on the torus control mesh have one edge that is collapsed
into a point into the sphere mesh. On the other side of
the torus central ring, is another group of four-sided faces
corresponding to the other pole of the sphere.

A B

CD  !

A

C
D

B

Figure 7: Correspondence involving a topological change

For an analogous reason, using the same control mesh
for a sphere (a), and the torus control mesh in Figure 5(c),
will result in the transformation in Figure 3(a). The ring
of four-sided control mesh faces that collapse into the
pinched points on the croissant can be seen near the top
of the picture.

3.2.2 Mapping construction
First, consider building the locally invertible portions of
the mappingsM1 andM2. The user specifies a corre-
spondence by giving two faces and a mapping between
their edges, as shown in Figure 8(a). Our correspon-
dence must associate a point onS1 with each point on
S2 and vice versa. Moreover, at face boundaries, points
should be mapped to the same surface location—no mat-
ter which of the two adjacent control faces determines
the mapping. If this does not occur, then points near
the boundary can end up overlapping points in adja-
cent control faces, causing local surface kinks and self-
intersections. This restriction is actually fairly simple to
attain, if the mapping of points on the boundary is de-
pendent only on information from the two control mesh
nodes that are on the common edge.

Given a triangular surface patch specified by a control
mesh face, and a point within the patch, we can find a
reasonable set of coordinates for this point on this patch
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Figure 8: Correspondence specification for control faces

(on the surface). Here, we can use one of the available
methods which establish a local coordinate system on the
surface of the shape [16]. For the applications here, how-
ever, we use a simple “barycentric” map, described in
section 4. So given the patch in Figure 9(a) and a pointp,
we can find its coordinates inside the patch. Also, given
the patch in (b), we can find the pointq that corresponds
to pointp.

p

 !

q

(a) (b)

Figure 9: Point-point correspondence

3.2.3 Surface Surgery
Now, consider topology changes, where eitherM1 or
M2 is not invertible. Such changes arise when the user
associates a four-sided face with a three-sided face, as
in Figure 8(b). The key step for such correspondences
is to add the additional structure toS needed to define
the mappingsM1 andM2. This additional structure lets
M1(S) andM2(S) overlap on critical features ofS1 and
S2. These overlaps can then be pulled apart during topo-
logical evolution.

For example, for the sphere-torus evolution in Figure 1,
a correspondence must be found between the two control
nodes at the sphere poles, and the inner ring of the torus.
For the sphere, we add the nodes inS which correspond
to positions of the control mesh nodes on the sphere (we
must also subdivide the surface face inS to maintain the
triangulation properly). For the torus, we must also add
edges (and nodes) along the control edges that specify
where the torus will be cut. In Figure 10(a), a mesh is
shown with a dotted line indicating the path of the con-
trol edge that makes a “cut” along the surface. After cut-
ting, additional nodes are added along this path, as well
as additional edges to preserve the triangulation. The re-
sult is shown in Figure 10(b). In addition, weduplicate
these edges and nodes along this control edge. This is be-
cause these two parts of the surface will actually separate
topologically, since the single ring is evolving into two
separate points on the sphere.

Now that this additional structure has been added to
S, we can construct the mappingsM1 andM2. The

topology if S is now equivalent to an open tube, as in
Figure 1(b). By collapsing each of the tube ends into
separate points, we can form the poles of the sphere. By
gluing together the tube ends, we can form a torus.

(a) (b)

Figure 10: Surface mesh surgery to allow cutting

In general, we must always perform the underlying
surface mesh surgery (as in Figure 10) along those con-
trol edges (or at those control nodes) where topological
changes occur. We must also count the number of con-
nected components in each control mesh that are present
at the location of topological change (for the types of
topologial changes addressed, there will be either one or
two components). The duplication operation described
above need only be performed if the number of compo-
nents differs. For example, the sphere-torus morph has
two components in the control mesh of the sphere (the
control mesh nodes at the poles), and one component
in the control mesh of the torus (a single center ring).
Hence, duplication is necessary (as we already know).

For a sphere morphing to a surface with boundary, such
as in Figure 3(c), we do not need to perform the dupli-
cation of nodes and edges along the boundary. This is
because the components of the the control mesh of the
sphere (the single control mesh node where the open-
ing occurs) and the control mesh of the open surface (its
boundary being the single component) each have a single
component. Node identification is all that is necessary to
close up the boundary.

So we see that by the addition of appropriate structure
toS, we can create a shape that can be easily changed into
that of eitherS1 andS2 by simple node identifications.
It will also be able to represent any of the intermediate
topologies encountered in the morph. During the course
of the morph, we can keep track of the current topology
of the surface, and perform the appropriate node identifi-
cations to produce a shape of the correct topology.

3.3 Interpolation
Once a correspondence is established, a simple linear
interpolation of node positions usingS will produce a
morph fromS1 to S2. As always, we can parameterize
this interpolation using a variablet 2 [0; 1], so that
whent = 0, S has the geometric shape ofS1, and when
t = 1, S has the geometric shape ofS2.

In addition to linear interpolation, Kent et al [8] sug-
gests Hermite interpolation of nodes, using the surface



normals at these nodes as start and end vectors. Alter-
natively, the control mesh can be used to allow the user
to specify different start and end vectors for each con-
trol node. For nodes on the surface within control mesh
faces, we can interpolate the vectors at the nearby control
nodes using the coordinates developed for mapping con-
struction. This additional control can be used to further
personalize the morphing process, as well as to help the
user avoid surface intersections during the morphing.

We will see in the next section that the motion of nodes
ast goes from0 to 1 must be restricted, so that topology
changes occur smoothly.

3.4 Intermediate Geometry
The representation of correspondence developed in sec-
tion 3.2 is powerful enough to describe the transforma-
tion in Figure 1 as well as Figure 2. Additional con-
straints on transformations are required to avoid abrupt
changes in shape and to prevent surfaces from opening.
These constraints are needed when the number of con-
nected components in the respective control meshes (de-
scribed in section 3.2.3) are not equal at locations where
topological change will occur. In these cases, direct lin-
ear interpolation between the geometries ofS1 andS2
will produce an open surface.

A simple example will illustrate the problem and moti-
vate our solution. Consider the evolution of a sphere into
a torus. If linear interpolation is used, the poles of the
sphere will begin to grow into rings as soon as morph-
ing begins, resulting in an open tube. Suppose however
that we break the morph into two steps. In the first, we
pinch the sphere; in the second, we open the hole. Now
the surface is sure to remain closed.

Thus, to keep closed the regions where the surface
might split open, we use a series ofintermediate shapes.
These shapes will have “safe” geometries in which any
regions which may potentially open up during morphing
have been collapsed. Denoting these intermediate shapes
asT1 andT2 (the safe shapes forS1 andS2 respectively),
the following sequence of morphs will not open the sur-
face:

S1 $ T1 $ T2 $ S2
Performing topology alteration and morphing deforma-
tion as separate steps would produce a very restrictive
morph. We will soon see how we can perform both at
the same time by only moderately restricting the morph-
ing deformation.

To generate an intermediate shape, we must perform a
deformation which collapses regions that are ultimately
pulled apart during topological evolution. The regions
on the shape where this collapsing must occur are spec-
ified by controlcurves, which are sequences of control
mesh edges formed from the connected component at the

location of surgery. For the sphere-torus evolution, the
desired control curve are those edges along the center
ring of the torus that are identified with the sphere poles.
Methods for collapsing control curves that lie on surfaces
were presented in [16]. The goal of these methods is to
maintain the surface while collapsing a control curve into
the pointc. For our applications, we use a simple de-
formation method, which is described in section 4. Fig-
ure 11(a) shows the result of applying such a deformation
to the torus in Figure 5(b).

Pole 1

Pole 2
c

v

(a) (b)

Figure 11: (a) Intermediate shape produced for a torus (b)
Restricting the motion to allow smooth transitions

Once this intermediate shape is generated, it can be
used to smoothly morph betweenS1 andS2. Suppose we
are doing a torus-sphere morph, whereS1 is a torus, and
S2 is a sphere. Then if we have generatedT1, the inter-
mediate shape forS1, we can create a deforming model
R1(ts) = S1(1� ts) + T1ts by simple node position in-
terpolation (sinceT1 is simply a deformed version ofS1).
The parameterts changes with the morphing parametert,
so that ast changes from0 to tsurgery (the user-specified
time that the topology change occurs),ts changes from
0 to 1. We can then morph between the geometries ofR

andS2. After t = tsurgery, we can be assured that the
morph will proceed reasonably, since the torus hole will
have collapsed to a point.

As noted earlier, morphs fromS1 toR to S2 are unde-
sirable. To improve the quality, we note that we only need
to perform this restriction “near” the surgery location—
all other nodes can move freely. We can define a distance
functionD(p) which measures if the pointp is nearby
the surgery location as follows:

D(p) =

�
0 if Dsurg(p) > dmax

1�
Dsurg(p)
dmax

otherwise
(1)

wheredmax is a user-specified constant controlling the
extent of the region, andDsurg(p) is the shortest distance
from the pointp to the surgery location measured along
the surface.D(p) is 1 for points at the surgery location,
and0 for points far away.

Using D, we can give even more freedom to those
nodes near the surgery location, by allowing them to
move in a “safe” direction—the direction that does not



spatially separate the duplicated nodes. Figure 11(b)
shows how to compute the safe directionv usingc, and
the location of the poles from the control meshC2. The
idea is as follows. First, ordinary interpolation is per-
formed. Then, the displacement vector between the cur-
rent position and that inR1 is computed. The tangen-
tial component of this displacement in the direction of
v is then computed, and is cancelled by a factor ofD.
Hence, if a node is on the control curve, this tangential
component is completely cancelled. This effect falls off
as one moves away from the curve. This method allows
the surgery locations to move, even during the topologi-
cal change.

4 Implementation
Figure 12 shows the layout of the user interface used to
produce the animations (on an SGI platform). The in-
terface is similar to those used in image morphing, with
side-by-side object views, and seems intuitive.

Figure 12: User interface for specifying control mesh

Section 3.2.2 described the need for a method for gen-
erating coordinates within a surface patch—we use a sim-
ple projection method. This places a restriction on the
size and shape of the faces of the control mesh: the sur-
face patches specified by the user must be fairly flat, so
the projection is unique.

Given the control mesh face correspondences in Fig-
ure 8, we need to perform two operations:

� Given a control mesh face and a pointp, find the
barycentric coordinates� of p within the face
� Given a control mesh face and barycentric coordi-

nates�, find the pointp on the surface which has
these barycentric coordinates

By projecting upward from the surface onto a plane, we
can determine barycentric coordinates for points on the
shape surface. These barycentric coordinates are unique,
and also adhere to the boundary restriction mentioned in
section 3.2.2.

Section 3.4 describes the need for intermediate shapes
to ensure the smoothness of the transition. These in-
termediate shapes have control curves which have been
collapsed into a pointc. We can findc as the evenly
weighted barycenter of the curve. A deformation which

maps all points on this curve toc is constructed. Nearby
points are also moved towardc to provide a smooth de-
formation, andD is used to restrict its effect as distance
from the control curve increases.

5 Summary
Here, we briefly summarize the steps necessary to per-
form the evolution of shape given the two source polyg-
onal shapes. The user specifies control meshes on top of
each of the source shapes and specifies correspondences
between the faces of the control meshes. The user also
specifies times for each topological change. The com-
puter does the following:

� Computes correspondence information (described in
section 3.2) from the control meshes in the locations
where surgery does not occur.

� Creates a unified mesh,S, by combining the meshes
of the two source shapes [8].

� Adds additional edges along control mesh edges (as
in Figure 10) that permit the shape to “split” along
these boundaries (see section 3.2.3). After these
“splitting” nodes have been added, the remainder of
the correspondence information is computed.

� Computes the intermediate shapes for the transfor-
mation (see section 3.4).

� For any timet 2 [0; 1]:

– Determines active topological changes
– Identifies the appropriate nodes ofS together,

based on the current topology.
– Interpolates the shapes, restricting the motions

of those nodes near surgery locations.

6 Results
Each of the following polygonal surfaces was rendered
using SGI OpenGL. Because of this method, the sur-
faces occasionally show some Mach banding artifacts.
These objects are texture mapped, with the texture co-
ordinates interpolated as suggested by Kent et al [8].
Animations described in this section are available at
http://www.cis.upenn.edu/˜dmd/evol.html .

Figure 13 shows how the control mesh can be locally
altered to vary the correspondence using a transition from
a banana (a) to an orange (c). The three intermediate
shapes in Figure 13(b) are produced by varying the con-
trol mesh on the orange (in the area that corresponds to
the stem of the banana). The leftmost shape is from a
transition that people we asked usually preferred. In the
center shape, the stem region is larger than the preferred
one; in the right one, it is much smaller.

Figure 14 shows two different sequences of a sphere-
torus morph. The transition in (a) corresponds to Fig-
ure 2, and (b) to Figure 3(a). Of interest to topology fans,



is the fact that these two transitions are qualitatively dif-
ferent. In both cases, the poles of the sphere are brought
together. Yet in (a), the lines pass through the torus hole,
while in (b) they go around the torus hole.

Figure 15 shows morphing from a banana (a) to an
open surface with two holes (e). The three topology
changes necessary occur at different times. In (b), the
banana opens up at the tip to form the border of the sur-
face. The central hole pinches in (c), and opens further
in (d) where the ends of the banana have come together.
This continues until the resulting final shape in (e). The
construction of the control mesh for this example took
about 45 minutes, with another 30 minutes of control
mesh “tweaking” to get the desired look.

Figure 16 show samples from “Mutafruit”, which is a
standard dynamics based animation using shapes gener-
ated by surface evolution. The morphing violates energy
conservation, and also creates interesting inertial forces,
creating a lively, almost surreal effect commonly associ-
ated with image morphing. In each of these examples,
the lighting and shadows present would be extremely dif-
ficult and time consuming to produce by image morphing
techniques.

7 Conclusion
The main contribution of this paper is that the frame-
work described here allows smooth transformations be-
tween topologically different models while providing the
animator with control over the morph. Previous systems
have not dealt with topology seriously, and many other
systems do not provide user control. The presented exam-
ples show the new flexibility in surface transformation.

This technique could be extended in a number of ways.
The generation of the control meshes can become rather
tedious for large objects. Most of the repetitive effort
could be eliminated by using a multiresolution repre-
sentation of the underlying mesh [4] in which large re-
gions of the control mesh would duplicate the underly-
ing mesh—at a lower level of detail. Combining this
method with existing correspondence generators [8, 14]
would also prove useful. Nevertheless, it is unreasonable
to expect an aesthetically pleasing morph (either surface
or image) without a detailed user specification.

This system could also benefit from more powerful fa-
cilities for avoiding self-intersections during morphs. In
our system, the specification of initial directions at the
control nodes can help the user avoid some intersections.
A more flexible strategy would be to allow the user to
specify additional topology changes not vital to the trans-
formation. For example, in a transformation from a torus
to a knotted torus (which are topologically equivalent),
the user could avoid self-intersection by cutting the torus
(an extra topological change) and then tying the knot. In

general, self-intersections can cause problems for all sur-
face morphing systems, and finding general techniques
remains an important research issue.

Finally, the extension of this method to spline surfaces
and time dependent shapes (perhaps articulated) will pro-
duce even better animations.
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(a) (b) (c)

Figure 13: Example of correspondence control (banana stem size variation)

(a)

(b)

Figure 14: Morphing between a sphere and a torus (a) pinched sphere (b) strangled torus

(a) (b) (c) (d) (e)

Figure 15: Morphing between a banana and a genus 2 bordered surface

(a) (b)

Figure 16: From “Mutafruit”: (a) morphing from an apple to a banana (b) morphing from a mushroom to a donut


