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Abstract
Developmental processes in nature may involve complex
changes in the topology, shape, and patterns of growing
structures. Processes taking place in one or two dimen-
sions can be visualized as objects in three-dimensional
space, obtained by extruding the growing structures along
a line or curve representing the progress of time. In this
paper, we extend the notion of L-systems with turtle in-
terpretation to facilitate the construction of such objects.
This extension is based on the interpretation of the entire
derivation graph generated by an L-system, as opposed to
the interpretation of individual words. We illustrate the
proposed method by applying it to visualize the develop-
ment of compound leaves, a sea shell with a pigmentation
pattern, and a filamentous bacteria. In addition to serving
as visualization examples, these models are of interest on
their own. The sea shell model uses an L-system to ex-
press a reaction-diffusion process, thus relating these two
models of morphogenesis. The model of bacteria, which
is also of the reaction-diffusion type, sheds new light on
one of the basic problems of morphogenesis, the forma-
tion of equally spaced organs in a developing medium.

Keywords: L-system, fractal, plant, sea shell, generative
modeling, reaction-diffusion, simulation, visualization.

1 Introduction
Animation provides a natural means of visualizing devel-
opmental processes, yet it may be unsuitable as a medium
of presentation, for example in printed documents. Con-
sequently, developmental processes are often illustrated
using sequences of images that represent selected stages
of development. Unfortunately, this approach fails to con-
vey the gradual progression of forms and patterns. In ad-
dition, sequences of images make it difficult to perceive
differential aspects of development, such as the growth
rates of branches in plant models.
We describe a partial solution to this problem, suit-

able for illustrating the development of one- and two-
dimensional structures and patterns. The key idea is to

visualize a developmental process as a three-dimensional
object, obtained by extruding the growing structure along
an axis representing the progress of time.
The concept of representing developmental processes

as objects in space-time is certainly not new. In essence,
any three-dimensional plot of a function y � f�x� t�,
where the variable t represents time and the dependent
variable y is interpreted as height, color, or both [32,
Chapter 1], can be regarded as an “object in space-time.”
In the context of biological modeling, space-time plots
have been widely used by Meinhardt to illustrate the
gradual changes in morphogen distribution postulated by
reaction-diffusion models [13]. In particular, he applied
such plots to model the pigmentation patterns of sea shells
as space-time records ofmorphogendistribution along the
shell edge [15, 16]. The origins of process visualization
using space-time objects can also be traced to modeling
techniques based on sweeping time-varying planar shapes
along a line or a curve (“generative modeling” [25, 26]).
To render a space-time object, its boundary represen-

tation can be formed by connecting vertices of consecu-
tive cross-sections that capture the growing structure at
discrete time intervals. In contrast to the basic extru-
sion method, where the process of finding and connecting
corresponding vertices is straightforward (for example,
see [30]), in growing structures one must take into ac-
count changes in the topology and the number of vertices
between cross-sections. In this paper, we focus on de-
velopmental processes modeled using L-systems. The
connections between vertices and the resulting boundary
polygons can then be conveniently expressed in terms of
L-system productions.
The relationship between L-systems and extrusion has

implications that go beyond visualization of developmen-
tal processes as abstract space-time objects. In particular,
extrusion extends the range of natural phenomena that can
be modeled using L-systems to sea shells with pigmenta-
tion patterns. The possibility of modeling sea shells using
L-systems reveals a relationship between L-systems and
reaction-diffusion models, which until now were viewed



as competing rather than complementary theories of mor-
phogenesis. In addition, the integration of L-systems
and reaction-diffusion models provides a framework for
considering reaction-diffusion processes in growing me-
dia, as opposed to the static media usually considered
(c.f. [13, 28]).
The paper is organized as follows. In Sections 2 and 3

we summarize background information regarding para-
metric L-systems with turtle interpretation. On this basis,
in Section 4 we define the extruded interpretation of L-
systems, and in Section 5 we illustrate it using selected
mathematical and biological examples. In Section 6, we
use space-time objects generated by L-systems to visu-
alize numerical solutions to a class of partial-differential
equations. On this basis, we present models of the sea
shell Nautilus pompilius and of heterocyst formation and
spacing in a growing filament of the bacteria Anabaena
catenula, which establish a conceptual link between L-
systems and reaction-diffusion models. Finally, in Sec-
tion 7 we summarize the results of this paper, and present
a list of problems open for further study.

2 Parametric L-systems
An extensive exposition of parametric L-systems is given
in [23]. Aspects of this formalism essential to the vi-
sualization of developmental processes using space-time
objects are presented below.
An L-system is a parallel rewriting system operating

on strings of symbols with associated parameters. These
strings are also called parametric words, and their ele-
ments are called modules. A parametric word may rep-
resent a linear or branching structure; branches are en-
closed in well-nested pairs of brackets. At the heart of an
L-system is its set of productions, or rewriting rules for
replacing a predecessor module with zero, one, or more
successor modules. In the class of deterministic context-
sensitive parametric L-systems considered in this paper,
productions have the format:

id : lc � pred � rc : cond� succ (1)

where id is the production identifier (label), lc, pred, and
rc are the left context, the strict predecessor, and the right
context, cond is the condition, and succ is the successor.
The strict predecessor and successor are the only manda-
tory fields. A production can be applied to a module if it
appears in the proper context, and the condition evaluates
to true. For example, the production

p : A�x� � B�y� � C�z� : x� y � z � 10
� E��x � y��2��F ��y � z��2��G

(2)

can be applied to the moduleB�5� in the parametric word

� � �A�4�B�5�C�6� � � � (3)

� :

�1:

�2:

�4:

�3:

B(1)  A(2)

A(1)  B(2)  A(3)

A(1)  A(2)  B(6)  A(4)

A(1)  A(2)  A(6)  B(24)  A(5)

A(1)  A(2)  A(6)  A(24)  A(5)

Figure 1: Derivation graph for the developmental se-
quence generated by the parametric L-system specified
in Equation (5)

because the sequence of letters A�B�C in production (2)
is the same as in parametric word (3), and the condition

4� 5� 6 � 10 (4)

is true. As a result of applying this production, the
module B�5� will be replaced by the parametric word
E�4�5��F �5�5��G.
If a module a is replaced by a parametric word � as the

result of a production application in an L-system G, we
write a �� �. Given a parametric word � � a1a2 � � � an,
we say that the word 	 � �1�2 � � � �n is derived from� in
a single derivation step (or directly), and write � �� 	, if
and only ifai �� �i for all i � 1� 2� � � � � n. By convention,
if no production explicitly included in the production set
applies to a module aj , we replace it by itself: aj �� aj .
Given a predefined word 
 called the axiom of L-system
G, a sequence of words S � �0� �1� �2� � � � such that
�0 � 
 and �0 �� �1 �� �2 �� � � � is called the
developmental sequence generated by G.
For example, Figure 1 shows the developmental se-

quence S generated by the following L-system:


 : B�1�A�2�
p1 : B�x� � A�y� : y � 5

� B�x � y�A�y � 1�
p2 : B�x� � A�x�

(5)

Thisfigure is an example of aderivation graph [8, Section
2.4]. A derivation graph lists consecutive elements of the
developmental sequence generated by G, and records all
production applications by relating predecessor modules
in a string �i to their respective successors in the string
�i�1. Unlike derivation trees for Chomsky grammars,
which are meaningful only in the context-free case, the
L-system graphs can also depict context-sensitive deriva-
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Figure 2: Example of the turtle interpretation of a para-
metric word. The default length of lines represented by
symbol F without parameters is 1, and the default mag-
nitude of angles represented by symbols� and � is 45�.

tions, since the context of eachmodule is clearly indicated
by its position in the string.

3 Turtle interpretation of L-systems
The strings generated by L-systems can be interpreted ge-
ometrically using turtle interpretation [20, 27] extended
to parametric words [23]. In a nutshell, the interpreted
string is scanned sequentially from left to right, and the
modules act as commands that control a LOGO-style tur-
tle. The interpreted modules considered in this paper are
listed below:

F �s� Move forward a step of length s and draw a line
segment from the original position to the new po-
sition of the turtle.

f�s� Move forward a step of length s without drawing
a line (the line is considered “invisible”).

���� Turn left by angle �.

���� Turn right by angle �.

� Start a branch by pushing the current state of the
turtle (position and orientation) onto a pushdown
stack.

� End a branch by popping a state from the stack
and making it the current state of the turtle. No
line is drawn, although in general the position of
the turtle is changed.

A sample parametric word and its turtle interpretation are
shown in Figure 2.

4 The extruded interpretation of L-systems
Turtle interpretation provides a means of visualizing indi-
vidual elements �i of the developmental sequence gener-
ated by an L-system G. Although selected structures can
be shown side by side, such illustrations fail to convey the
continuous aspects of the development of form and pat-
tern over time. To overcome this limitation, we introduce
an interpretation of L-systems that represents the entire
derivation graph instead of individual strings.
Assume that planarfiguresP0� P1� � � � � Pz are the struc-

tures resulting from the turtle interpretation of the de-
velopmental sequence �0� �1� � � � � �z generated by an L-
system G. These structures can be considered to be snap-
shots of a developmental process, taken at equally spaced
points in time t0� t1� � � � � tz , respectively. To visualize
this development, we construct an object �, called the
extruded interpretation of G, such that:

� any cross-section of � with a plane t � ti represents
figure Pi,

� any cross-section of � with a plane t such that
ti � t � ti�1 (where i � 0� 1� � � � � z � 1) is an
interpolation between figures Pi and Pi�1.

To describe the construction of � in more detail, we
first define the extruded interpretation of individual pro-
ductions:

� the predecessor and the successor of a production are
represented graphically using turtle interpretation,

� the resulting structures are placed in two parallel
planes, offset by an interval representing the progress
of time,

� selected points (such as vertices) of the predecessor
are connected with selected points of the successor
to form polygonal faces.

The edges and polygons between the predecessor and
the successor can be inserted in many ways. For exam-
ple, Figure 3 shows two extruded interpretations of the
production for the Koch snowflake curve,

F �a�� F �a�3� � F �a�3���F �a�3� � F �a�3�� (6)

In case (a), each vertex of the successor is connected to
the closest endpoint of the predecessor; the midpoint of
the successor is connected to both endpoints. In case (b),
the three internal vertices of the successor are connected
to a “pseudo-vertex” in the middle of the predecessor.
In both cases, the extruded objects begin and end with
the polygons resulting from the turtle interpretation of
the predecessor and the successor. Other cross-sections
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Figure 3: Two extruded interpretations of the production
for the Koch snowflake curve (Equation 6)

(perpendicular to the axis of extrusion) represent interpo-
lations between these forms.
Since many interpretations of the same production are

possible, our software allows the user to specify the in-
terpretation of each production by assigning an arbitrary
graphical procedure to it. The importance of choosing
a particular interpolation scheme is not crucial, however,
when the differences between the predecessor and succes-
sor structures are small, as is the case when productions
reflect the progress of time in small intervals. Conse-
quently, we can define the standard extruded interpre-
tation of productions, and apply it automatically to any
production set.
Consider production p, in which the turtle interpreta-

tion of the predecessor is a line segment, and the inter-
pretation of the successor is a non-branching chain of
segments. All segments are oriented by the direction in
which they are drawn by the turtle. The beginning and
end of the predecessor segment are denoted by A1 and
A2, and consecutive vertices of the successor chain are
denoted by B1� B2� � � � � Bn �n � 1�, respectively. Let
m be equal to n

2 if n is even, and
n�1
2 if n is odd. To

form the standard extruded interpretation of the produc-
tion p, we insert edges between point A1 and each of
the points B1� B2� � � � � Bm, as well as between A2 and
each of the points Bm� Bm�1� � � � � Bn. Two cases of

A1 A2

B1 B2 B3 B4 B5 B6

m n

A1 A2

B1 B2 B3 B4 B5

m n

a) b)

Figure 4: Inserted edges and triangles in the standard ex-
truded interpretation of a productionwith an even number
(a; n � 6) and with an odd number (b; n � 5) of vertices
in the successor segment chain

this construction (for even and odd n) are illustrated in
Figure 4. The original segments and the inserted edges
bound the sequence of triangles A1B1B2, A1B2B3� � � � �
A1Bm�1Bm, the triangle A1BmA2, and the sequence of
triangles A2BmBm�1, A2Bm�1Bm�2� � � � � A2Bn�1Bn.
Taken together, these triangles constitute the standard ex-
truded interpretation of the productionp. Returning to the
Koch snowflake example, Figure 3a shows the standard
interpretation of the production used.
In order to handle arbitrary productions, we comple-

ment the above definition with the following rules:

� If the predecessor of a production p is not interpreted
as a visible line segment (it is an f or a symbol with-
out graphical interpretation), the extruded interpre-
tation of p is empty (it does not contain any inserted
edges or polygons).

� If the predecessor of a production p is a visible line,
but the successor chain includes invisible line seg-
ments (represented by symbols f ), only triangles
with all edges visible are drawn (Figure 5).

� Branches created by the current production are ig-
nored (Figure 6).

We extend this extruded interpretation from individual
productions to derivation steps and then to derivation
graphs as follows:

� The extruded interpretation of a derivation step is the
union of the interpretations of all productions applied
in this step.

� The extruded interpretation of a derivation graph is
the union of the interpretations of consecutive deriva-
tion steps.

For brevity, the extruded interpretation of the derivation
graph generated by an L-system G is also called the ex-
truded interpretation of G.



Figure 5: The standard extruded interpretation of a pro-
duction with invisible line segments (represented by dot-
ted lines) in the successor chain. Triangles bound by
invisible edges are not drawn.

G F F

FG

F
F

F

G

Figure 6: The standard extruded interpretation of two
derivation steps generated using an L-system with the
production G � F �G�F . The branching segments cre-
ated by the current production are ignored, but they are
treated as any other segments in the next derivation step.

5 Examples of L-systems with extruded interpreta-
tion

The basic idea of the extruded interpretation of L-systems
can be illustrated in the simplest way using fractal curves.
We consider them in the first two examples and follow
with more biologically-oriented models.

5.1 The Koch snowflake curve
The followingL-system,presented according to [22], gen-
erates the Koch snowflake curve through a gradual pro-
gression of shapes.

#define m 10 /* integer */

 : F �1� 1�
p1 : F �a� d� : a �� d �

F
�
a
2 �

d
3

�
� F

�
0� d3

�
��

F
�
0� d3

�
� F

�
a
2 �

d
3

�
p2 : F �a� d� : a � d � F

�
a� d

2m � d
�

p3 : F �a� d� : a � d � F
�
a� d

m
� d
�

(7)

Modules F �a� d� represent line segments, with parame-
ters a and d denoting current and target lengths. The

A AB B

0 1
1
6

1
3

1
2

2
3

5
6

1 step

m steps

Figure 7: Progression of forms in a continuously devel-
oping snowflake curve

symbol �� replaces the exact equality � in production p1
as a reminder that the comparison of parameters a and d
should be carried out within the limits of the round-off er-
ror, inherent in the floating-point number representation.
Modules� and� rotate the turtle by	60�.
In the first derivation step, production p1 splits the unit-

length line F �1� 1�, specified by the axiom, into four seg-
ments labeled A, B, B, A in Figure 7. The initial length
of segmentsA equals 12 , and the initial length of segments
B equals 0. The target length of all segments is equal to
1
3 . Subsequently, production p2 decreases the length of
each segment A by d

2m � 1
6m per step, while production

p3 increases the length of each segment B by d
m

� 1
3m .

Thus, all segments reach simultaneously the same length
of 13 afterm steps. These segments then subdivide again,
and the whole process repeats recursively.
The standard extruded interpretation of L-system (7)

for m � 10 and the total number of derivation steps
z � 27 is shown in Plate 1. Notice that all faces of
the extruded object have well delineated, straight edges.
This fact attracts attention to the discontinuities in the
growth rates of segments, which occur when the existing
segments subdivide and new segments are created.

5.2 A combination of islands and lakes
In [12, page 121], Mandelbrot defined a disconnected
fractal, which he called a “combination of lakes and is-
lands”. The construction of this fractal is explained in
Figure 8. A production subdivides line segments of length
d into 6 equal sub-segments and gives rise to two isolated
points, which represent degenerate rectangles. Each rect-
angle is connected to the parent segment by an invisible
branch. The rectangles grow during the subsequent m
derivation steps, until their shorter and longer edges reach
respectively the lengths of d

6 and
d
3 . The process of di-

viding the edges, initiating new rectangles, and growing
them is recursively repeated for each of the resulting 18
sub-segments of length d

6 .
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Figure 8: Progression of forms in a continuously developing “combination of islands and lakes”

The standard extruded representation of the described
developmental process is shown in Plate 2. Notice that
this extruded object was constructed using rules for han-
dling branches and invisible edges.

5.3 A recursively compound leaf
Visualization of biological development is a particularly
important practical application of the proposed technique.
The following L-system, adapted from [23, Section 6.2.2]
models the growth of a recursively compound leaf.


 : Fa�0� 0�
p1 : Fa�l� t� : t� �t � ��

Fa�ga�t� �t�� t� �t�
p2 : Fa�l� t� : t� �t �� ��

Fb�gb�0�� 0�
p3 : Fb�l� t� : t� �t � 
 �

Fb�gb�t� �t�� t� �t�
p4 : Fb�l� t� : t� �t �� 
 �

Fs�gs�0�� 0���Fa�0� 0����Fa�0� 0��
Fb�gb�0�� 0�

p5 : Fs�l� t�� Fs�gs�t� �t�� t� �t�

(8)

All modules are interpreted as line segments. Parameter l
represents the length of the line, and parameter t indicates
the age of the module. The relationship between the age
and the length is expressed using growth functions ga, gb,
and gs defined further down.
The simulation begins with a segment Fa, which rep-

resents a juvenile apex. Its elongation is described by
production p1. When Fa reaches the threshold age of �,
production p2 transforms it into a mature apex Fb1. The
subsequent elongation of Fb is captured by production
p3. Upon reaching the age of 
, Fb divides into an in-
ternode Fs, two branches with juvenile apices Fa, and an
apex Fb with the initial age of zero (production p4). All
apices then reiterate the developmental pattern described

1It is assumed for simplicity that the threshold age values � and �
are integer multiples of the time increment �t. Methods for eliminating
this assumption are discussed in [7].

above. Meanwhile, the internodes Fs elongate according
to production p5.
The growth functions must be properly chosen to cap-

ture continuous development. We have assumed that the
mature apices and the internodes elongate exponentially:

gb�t� � Abe
Bbt�

gs�t� � Ase
Bst�

(9)

In contrast, the development of juvenile apices is ex-
pressed by a polynomial function of time, which allows
the initial length to be set to zero:

ga�t� � Aat
3 �Bat

2 � Cat�Da� (10)

Section 6.2.2 of reference [23] contains a detailed discus-
sion of the relationships that the constants in Equations (9)
and (10) must satisfy to produce a model in which the
lengths of all branch axes (sequences of internodes ter-
minated by an apex) are first-order continuous functions
of time. Consistent with this discussion, the following
values were incorporated into L-system (8) to produce
the extruded object shown in Plate 3: � � 
 � 1,
Aa � �1�52, Ba � 2�52, Ca � Da � 0, Ab � 1,
Bb � 0�48, As � 0�616,Bs � 0�48. The first-order con-
tinuity of leaf development is clearly represented by the
curves traced by the apices of all branches, which show
no sudden changes in slope.

5.4 Pinnate leaf
A pinnate leaf is a compound leaf composed of a
main stem (rachis) which supports a number of smaller
leaflets. The L-system presented below has been adapted
from [21], for a more detailed model based on the same
principle see [24].


 : Fa�l0� n0�
p1 : Fa�l� n� : l � lth �

Fa�l � g�l� rl� lamax��t� n�
p2 : Fa�l� n� : l 
 lth & n � 0�

Fi�kl�����0�L�s0������0�L�s0��
Fa��1� k�l� n� 1�

p3 : Fa�l� n� : l 
 lth & n � 0�
Fi�l�L�s0�

(11)



p4 : Fi�l� � Fi�l � g�l� ri� limax��t�
p5 : L�s� � L�s� g�s� rs� smax��t�
p6 : 	��� � 	��� g��� r�� �max��t�

Development begins with an apex Fa; the associated pa-
rameters specify its initial length l0 and the number of
leaflet pairs to be produced n0. While the length l is
less then the threshold value lth, production p1 increases
l according to a logistic growth function [5, 29], which is
defined by the differential equation:

dl

dt
� rl

�
1�

l

lamax

�
l � g�l� rl� lamax�� (12)

When the length reaches the threshold lth, one of two
events can take place. If there are one or more leaflet
pairs yet to be produced, the apex is replaced by a branch-
ing structure consisting of an internode Fi, two leaflets L
within branches, and another apex (production p2). Al-
ternatively, if n0 leaflet pairs have already been produced,
the apex creates an internode and a terminal leaflet (pro-
duction p3). Productions p4, p5, and p6 control further
growth of the internodes and leaflets, and the increase of
the magnitude of branching angles.
An extruded object illustrating the operation of this L-

system is shown in Plate 4. The values of constants used
in the simulation are: n0 � 4, l0 � 1, lth � 2, ra � 2,
lamax � 3, k � 0�5, ri � 1, limax � 3, s0 � 0�05,
rs � 2, smax � 6, �0 � 2�, r� � 1, �max � 60�. The
leaflets are represented as diamond-shaped polygons as
described in [23, page 120]. The extruded object clearly
shows that the production of consecutive leaflet pairs is
offset in time, and that leaflet expansion is faster than the
gradual increase of the branching angles that define leaflet
position on the rachis (rs � r�).

6 L-systems and partial differential equations
Interesting applications of parametric context-sensitiveL-
systems stem from their capability of expressing numer-
ical solutions to initial value problems for partial differ-
ential equations. This capability was originally explored
in the context of simulations performed using CELIA, the
first software implementation of L-systems [1, 2, 8, 11],
with the most general observations made in [9]. In this
section, we present an approach to solving the initial value
problem for PDEs with L-systems, using a parabolic (dif-
fusion) equation as an example. We then apply this ap-
proach to solve a system of reaction-diffusion equations
operating in a one-dimensional medium of constant size,
as well as in an expanding medium. These solutions
represent the evolution of the spatial distribution of the
dependent variable(s) over time, and therefore lend them-
selves in a natural way to visualizations using extruded
objects in space-time. In the examples considered, the

visualizations lead to a realistic image of the shell of
Nautilus pompilius with a pigmentation pattern, and to a
graphical representation of the development of a filamen-
tous bacteria Anabaena catenula.

6.1 Diffusion and decay
Let us consider the following equation:

�u

�t
� �	u�D

�2u

�x2
� (13)

If u is interpreted as the concentration of a substance C,
this equation represents the decay ofC with time constant
	 and the diffusion of C along axis x with the diffusion
coefficient D (for example, see [5]). Suppose that we
want to solve this equation in the interval �a� b� for t 
 0,
assuming the boundary conditionsu�a� t� � ua� u�b� t� �
ub, and the initial conditions

u�x� 0� � ua � �ub � ua�
x� a

b� a
� (14)

Following the finite-difference method [19, Chapter 19],
we approximate the derivatives in Equation (13) using
values taken at equally spaced sampling points along both
the x and t axes:

xi � x0 � i�x� where i � 0� 1� � � � �m�
tj � t0 � j�t� where j � 0� 1� 2� � � � �

(15)

Using notation uji � u�xi� tj�, we obtain:

uj�1i � uji
�t

� �	uji �D
uji�1 � 2u

j
i � uji�1

��x�2
� (16)

which leads to

uj�1i � uji �

�
�	uji �D

uji�1 � 2u
j
i � uji�1

��x�2

�
�t�

(17)
For any values of indices i and j, Equation (17) can be
regarded as assigning a new value uj�1i to the variable
uji , taking into account the values u

j
i�1 and u

j
i�1 at the

neighboring sampling points. Any sampling point along
the axis x (except for the boundary points) is subject to
a similar assignment, thus Equation (17) can be rewritten
as the following context-sensitive L-system production:

M�ul� � M�u� � M�ur��

M
�
u� ��	u�D ul�2u�ur

��x�2 ��t
�
�

(18)

Notice that the L-system notation eliminates the need for
index arithmetic. The subscripts in the formal parameter
names ul, u, and ur are not numbers, but mnemonic
descriptors of the left and right neighbors. Similarly,



indices are not needed to distinguish between the “old”
and “new” values of variable u at any point in space,
because the progress of time is implicit in the notion of a
derivation step in an L-system.
To provide a framework for finite differencing ex-

pressed by production (18) a complete L-system solving
Equation (13) must also:

� create a string ofm modulesM from the axiom,

� set the initial value of variable u in each module,

� maintain the boundary values of u in the first and the
last modulesM during the derivation process.

In addition, a graphical output must be associated with
each moduleM if a visual representation of the solution
is needed.
Figure 9a shows an extruded representation of the solu-

tion to PDE (13) obtained using anL-system inwhich each
moduleM is shown as a line segment of unit length, with
the color dependent on the value of variableu. The values
of constants used in this simulation were: 	 � 0�01� D �
5� a � 0� ua � 64� b � 128� ub � 256��t � 1� and
m � 128� yielding �x � b�a

m
� 1.

6.2 Reaction-diffusion
The described approach to solving partial differential
equations using L-systems can easily be extended to sys-
tems of equations. In this case, a module M will have
several parameters, each representing a different depen-
dent variable. We will illustrate this technique by re-
ferring to reaction-diffusion models of the formation of
pigmentation patterns in sea shells [6, 14, 15, 16, 17]2.
The models recreate pattern formation in nature, which is
characterized by Meinhardt as follows [15, p. vii]:

A mollusc can enlarge its shell only at the shell
margin. In most cases, only at this margin
are new elements of the pigmentation pattern
added. Therefore, the shell pattern preserves a
record in time of a process that took place in
a narrow zone at the growing edge. A certain
point on the shell represents a certain moment
in its history. Like a time machine one can go
into the past or the future just by turning the
shell back and forth.

2The idea of modeling shell patterns using L-systems is not entirely
new. Specifically, Baker and Herman generated pigmentation patterns
similar to those found inOliva porphyria [2] (see also [9, Chapter 18]) by
applying L-systems to express a cellular automaton model proposed by
Waddington and Cowe [31]. This approach preceded the formulation of
the reaction-diffusion models of pigmentation, first reported in [14], and
therefore did not expose the general possibility of expressing reaction-
diffusion models using L-systems.
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Figure 9: a) Visual representation of a solution to the
PDE (13) obtained using anL-system based on production
(18). The generated object is a rectangle, with boundaries
separating black and white regions indicating the values
of variable u. b) Visual representation of a solution to the
PDE (19) obtained using anL-system based on production
(22). White areas represent concentrations a � 0�15, and
black areas represent concentrations a 
 0�15. In both
figures, time progresses from the top down.

According to this description, a pigmentation pattern can
be captured by simulating processes taking place at the
growing edge and extruding this edge along an axis rep-
resenting time. For example, the following system of dif-
ferential equations was proposed by Meinhardt to model
the formation of the pigmentation pattern on the shell of
Nautilus pompilius [16] (see also [15, page 61]):

�a
�t

� a� � �a�Da
�2a
�x2

�
�s
�t

� ��x� � a� � 	s�Ds
�2s
�x2

�
(19)

where

a� � �s
a2

1� �a2
� �0� (20)

and
��x� � �min � ��max � �min�

2minfx�xmin�xmax�xg
xmax�xmin

�
(21)

The variables a and b in Equation (19) describe concen-
trations of two chemical substances, called the activator
and the substrate, which diffuse along the growing edge
and react with each other. Equation (21) characterizes
the production of the substrate ��x� as a triangle-shaped



function of the position of the sampling point x along the
edge �xmin� xmax�.
To solveEquation (19) using anL-system,we discretize

the growing edge and represent it as a string of modules
M . The production that implements the finite difference
method is:

M�al� sl� �l� � M�a� s� �� � M�ar� sr� �r�

�M
�
a� �a� � �a�Da

al�2a�ar
��x�2 ��t�

s� �� � a� � 	s�Ds
sl�2s�sr
��x�2 ��t� �

�
�

(22)

where a� is defined by Equation (20). As in the diffusion-
decay example discussed in Section 6.1, the complete
L-system for solving Equations (19) must also create the
string of modulesM and assign the initial and boundary
values to the variables. This includes, in particular, the
values of substrate production �, which depend on the
module position in the string (Equation 21).
A solution to Equation (19) in the interval

�xmin� xmax� � �0� 100� (23)

with the initial conditions a�x� 0� � s�x� 0� � 0 and
boundary conditions a�0� t� � a�100� t� � s�0� t� �
s�100� t� � 0, is visualized in Figure 9b. The following
constants were used: � � 0�5� � � 1� �0 � 0�004� � �
0�1� Da � 0�1� 	 � 0� Ds � 0�1� �min � 0�012� �max �
0�038��x � 1, and �t � 1.
The extruded objects depicted in Figures 9a and 9b

are planar meshes with different colors assigned to the
individual polygons composing the mesh. However, the
geometry of the extruded objects can be easily modified,
leading to more involved visualizations. For example,
a realistic model of the Nautilus shell can be obtained
assuming that the shell opening has the shape of a cir-
cle, growing exponentially from one derivation step to
another, and that the axis of extrusion is coiled into a
logarithmic spiral (see [6, 15] for details regarding the
modeling of shell shape). Both phenomena can be eas-
ily expressed using an L-system, resulting in the model
shown in Plate 5.

6.3 Reaction-diffusion in an expanding medium
The model of Nautilus pompilius extends the range of
applications of L-system models to sea shells with pig-
mentation patterns. More generally, it demonstrates that
reaction-diffusion processes can be expressed using L-
systems. However, the integration of reaction-diffusion
processes and L-systems also leads to a wider class
of models of morphogenesis, characterized by reaction-
diffusion taking place in expanding media.
From a historical perspective, reaction-diffusion mod-

els were originally formulated under the simplifying as-
sumption that the medium in which diffusion takes place

does not grow [28]. This assumption dominated subse-
quent applications of the reaction-diffusion model. Ex-
ceptions include the consideration of edge growth in mod-
els of the pigmentation pattern of selected sea shells
[15, 16], a model of stripe rearrangement during growth
on the skin of the fish Pomacanthus semicirculatus [10],
and a genericmodel of a growingfilament thatmaintains a
constant spacing between dividing and non-dividing cells
[3]. In this section we present a related model of the
development of the bacteria Anabaena catenula.

As described by Mitchison and Wilcox [18], the cells
of Anabaena are organized into filaments which consist
of sequences of vegetative cells separated by heterocysts.
The vegetative cells divide into two cells of unequal length
and, in some cases, differentiate into heterocysts which
do not further divide. Due to this differentiation, the
organism maintains an approximately constant spacing
between heterocysts: whenever the distance between two
heterocysts becomes too large due to the division and
elongation of vegetative cells, a new heterocyst emerges.

What mechanisms is responsible for the differentiation
of heterocysts and the maintenance of constant spacing
between them? Baker and Herman [1, 2] (see also [4, 8,
11] proposed the following model. The heterocysts fix
atmospheric nitrogen and transform it into nitrogenous
compounds. These compounds diffuse along the filament
and are used by the vegetative cells. When the level of
nitrogenous compounds drops below a threshold value,
the cells that detect this reduced level differentiate into
heterocysts.

Although the model of Baker and Herman is capable of
reproducing the observed pattern of heterocyst spacing, it
is very sensitive to parameter values. Small changes in
these values easily result in filaments with pairs of het-
erocysts appearing almost simultaneously, close to each
other. This is not surprising, considering the operation
of the model. The gradient of the concentration of ni-
trogenous compounds may be too small near the mid-
dle of a sequence of vegetative cells to precisely define
the point in which a new heterocyst should differentiate.
Consequently, the threshold value may be reached almost
simultaneously by several neighboring cells, resulting in
the differentiation of two or more heterocysts close to
each other.

The describedmodel can be improved assuming that the
prospective heterocysts compete until one “wins” and sup-
presses the differentiationof its neighbors. To express this
concept, we use the framework of the activator-inhibitor
class of reaction-diffusionmodels [13]. In addition to the
nitrogenous compounds that inhibit the differentiation,
the cells are assumed to carry a hypothetical substance
referred to as the activator. The concentration of the ac-



tivator is the criterion that distinguishes the vegetative
cells (low concentration) from the heterocysts (high con-
centration). The activator and inhibitor are antagonistic
substances: the production of the activator is suppressed
by the inhibitor unless the concentration of the inhibitor
is low. In that case, production of the activator drastically
increases through an autocatalytic process (an increased
concentration of the activator promotes its own further
production). High concentration of the activator also pro-
motes the productionof the inhibitor, which diffuses to the
neighboring cells. This establishes a ground for competi-
tion inwhich activator-producing cells attempt to suppress
production of the activator in the neighboring cells. For
proper values of parameters that control this process, only
individual, widely spaced cells are able to maintain the
high-activation state.


 : M�0�5� 1� 200� right�M�0�5� 1� 100� right�
M�0�5� 1� 100� right�

p1 : M�sl� al� hl� pl� � M�s� a� h� p� �
M�sr� ar� hr� pr� :

s � smax & a � ath �M�s�� a�� h�� p�
p2 : M�sl� al� hl� pl� � M�s� a� h� p� �

M�sr� ar� hr� pr� :
s 
 smax & a � ath & p � left�
M�ks�� a�� h�� left�
M��1� k�s�� a�� h�� right�

p3 : M�sl� al� hl� pl� � M�s� a� h� p� �
M�sr� ar� hr� pr� :

s 
 smax & a � ath & p � right�
M��1� k�s�� a�� h�� left�
M�ks�� a�� h�� right�

p4 : M�sl� al� hl� pl� � M�s� a� h� p� �
M�sr� ar� hr� pr� :

a 
 ath �M�s� a�� h�� p�

(24)

where

s� � s�1� r�t��

a� � a�
�
�
s
� a2

1��a2 � �0�� �a�

Da�
al�a

1
2 �sl�s�
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�
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�
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1
2 �sl�sr��s

�
�t�

(25)

L-system (24) implements these mechanisms. The cells
are specified as modules M , where parameter s stands
for cell length, a is the concentration of the activator, h is
the concentration of the inhibitor, and p denotes polarity,

which plays a role during cell division. All productions
are context-sensitive to capture diffusion of the activator
and inhibitor. Production p1 characterizes elongation of
vegetative cells (a � ath). A cell that reaches the maxi-
mumn length of smax divides into two unequal daughter
cells, with the lengths controlled by constant k � 0�5.
The respective positions of the longer and shorter cells
depends on the polarity p of the mother cell, as described
by productions p2 and p3. Increase of the concentration
of the activator a to or above the threshold value ath
indicates the emergence of a heterocyst. According to
production p4, a heterocyst does not further elongate or
divide. Equations (25) govern the exponential elongation
of the cells and the activator-inhibitor interactions [13].
Note the form of the expressions capturing diffusion, with
the length of individual cells used to specify current dis-
tance between the cell centers. This modification of the
standard activator-inhibitor model is intended to mini-
mize the error in estimating the diffusion of substances in
a growing filament consisting of cells of unequal size.
To visualize this model, we represent cells as rectan-

gles, with the width indicating cell length and the height
indicating concentration of the inhibitor. The extruded
interpretation of the development of a filament is shown
in Plate 6. The parameters used in the simulation were:
� � 3, � � 0�001, �0 � 0�001, � � 0�05, Da � 0�003,
	 � 0�15,Dh � 0�9, �1 � 0, ath � 1, k � 1

3 , smax � 1,
sth � 0�57. In addition to the geometric attributes, color
indicates concentration of the activator (white: low con-
centration characteristic of the vegetative cells, red: high
concentration defining the heterocysts). Notice the sharp
peak of the activator concentration at the heterocysts and
high levels of the inhibitor in the neighboring vegetative
cells preventing their differentiation.

7 Conclusions
In this paper we applied the notion of extrusion to repre-
sent the development of one- and two-dimensional struc-
tures and patterns using objects in three-dimensional
space-time. The developmental processes are simulated
using L-systems. The boundary representation of the
space-time objects is formed on the basis of predecessor-
successor relationships specified by L-system produc-
tions. Sample applications include the development of
fractal curves and compound leaves, growth of sea shells
with pigmentation patterns, and development of a fila-
mentous organism. The Nautilus and Anabaena models
reveal a possibility of expressing reaction-diffusion pro-
cesses using L-systems. In contrast to the original for-
mulation of reaction-diffusion models, limited to media
of constant size, L-systems make it possible to consider
reaction-diffusion in expanding media as well.
The presented visualization method was motivated by



a need to illustrate developmental models operating in
continuous time, such as those presented in [21] and [23,
Chapter 6]. A continuity in the progression of forms is
the focal feature of these models and was inadequately
represented using sequences of developmental stages.
Several ramifications of the extruded interpretation of

L-systems require further research.

� In this paper, we have focused on the automatic con-
struction of a polygon-mesh representation of ex-
truded space-time objects. We left open, however,
problems related to the rendering of these objects,
such as the determination of which colors or normal
vectors should be interpolated for shading purposes.

� The extruded interpretation defines an interpola-
tion between consecutive forms generated by an L-
system. This interpolation may be useful in ani-
mations of development, making it possible to re-
duce the number of forms generated directly by an
L-system (if this generation is a time-consuming
process), and providing a means for temporal anti-
aliasing.

� L-systems with extruded interpretation can be re-
garded as a variant of the generative modeling
paradigm [25, 26], using fractal cross-sections. The
modeling power of this technique remains to be in-
vestigated.

� Is there an elegant method which would make it
possible to model sea shells of arbitrary shape using
L-systems with extruded interpretation?

� The combination of reaction-diffusion and L-system
models, outlined in Sections 6.2 and 6.3, deserves
a thorough study aimed at a better understanding of
morphogenetic processes in which both the reaction-
diffusion and the growth of the medium play an im-
portant role.

Acknowledgement
The reported research has been sponsored by research
and equipment grants from the Natural Sciences and En-
gineering Research Council of Canada.

References
[1] R. Baker and G. T. Herman. CELIA — a cellular

linear iterative array simulator. In Proceedings of
the FourthConference onApplications of Simulation
(9–11 December 1970), pages 64–73, 1970.

[2] R.Baker andG. T.Herman. Simulation of organisms
using a developmentalmodel, parts I and II. Int. J. of
Bio-Medical Computing, 3:201–215 and 251–267,
1972.

[3] J.-P. Boon and A. Noullez. Development, growth,
and form in living systems. In H. E. Stanley and
N. Ostrowsky, editors, On growth and form, pages
174–183. Martinus Nijhoff Publ., Boston, 1986.

[4] C. G. de Koster and A. Lindenmayer. Discrete and
continuous models for heterocyst differentiation in
growing filaments of blue-green bacteria. Acta Bio-
theoretica, 36:249–273, 1987.

[5] L. Edelstein-Keshet. Mathematical models in biol-
ogy. Random House, New York, 1988.

[6] D. R. Fowler, H. Meinhardt, and P. Prusinkiewicz.
Modeling seashells. Proceedings of SIGGRAPH ’92
(Chicago, Illinois, July 26–31, 1992), in Computer
Graphics, 26, 2 (July 1992), pages 379–387, ACM
SIGGRAPH, New York, 1992.

[7] M. Hammel. Simulation and animation of plant de-
velopment using differential L-systems. PhD thesis,
University of Calgary, Calgary, Alberta, 1996. In
preparation.

[8] G. T. Herman and G. Rozenberg. Developmental
systems and languages. North-Holland, Amster-
dam, 1975.

[9] G. T. Herman and G. L. Schiff. Simulation of multi-
gradient models of organisms in the context of L-
systems. Journal of Theoretical Biology, 54:35–46,
1975.

[10] S. Kondo and R. Asai. A reaction-diffusion wave
on the skin of the marine angelfish Pomacanthus.
Nature, 376:765–768, 31 August 1995.

[11] A. Lindenmayer. Adding continuous components to
L-systems. In G. Rozenberg and A. Salomaa, edi-
tors, L Systems, Lecture Notes in Computer Science
15, pages 53–68. Springer-Verlag, Berlin, 1974.

[12] B. B. Mandelbrot. The fractal geometry of nature.
W. H. Freeman, San Francisco, 1982.

[13] H. Meinhardt. Models of biological pattern forma-
tion. Academic Press, London, 1982.

[14] H. Meinhardt. Models for positional signalling, the
threefold subdivision of segments and the pigmen-
tations pattern of molluscs. Journal of Embryology
and Experimental Morphology, 83:289–311, 1984.

[15] H. Meinhardt. The algorithmic beauty of sea shells.
Springer-Verlag, Berlin, 1995.



[16] H. Meinhardt and M. Klinger. A model for pat-
tern formation on the shells of molluscs. Journal of
Theoretical Biology, 126:63–89, 1987.

[17] H. Meinhardt and M. Klinger. Pattern formation
by coupled oscillations: The pigmentation pat-
terns on the shells of molluscs. In Lecture Notes
in Biomathematics, volume 71, pages 184–198.
Springer-Verlag, Berlin, 1987.

[18] G. J. Mitchison andM.Wilcox. Rules governingcell
division in Anabaena. Nature, 239:110–111, 1972.

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical recipes in C: The art
of scientific computing. Second edition. Cambridge
University Press, Cambridge, 1992.

[20] P. Prusinkiewicz. Graphical applications of L-
systems. In Proceedings of Graphics Interface ’86
— Vision Interface ’86, pages 247–253, 1986.

[21] P. Prusinkiewicz, M. Hammel, and E. Mjolsness.
Animation of plant development. Proceedings of
SIGGRAPH 93 (Anaheim, California, August 1–6,
1993). In Computer Graphics Proceedings, Annual
Conference Series, 1993. ACM SIGGRAPH, New
York, 1993, pp. 369–378.

[22] P. Prusinkiewicz and J. Hanan. L-systems: From
formalism to programming languages. In G. Rozen-
berg andA. Salomaa, editors, Lindenmayer systems:
Impacts on theoretical computer science, computer
graphics, and developmental biology, pages 193–
211. Springer-Verlag, Berlin, 1992.

[23] P. Prusinkiewicz and A. Lindenmayer. The algorith-
mic beauty of plants. Springer-Verlag, New York,
1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler,
M. J. M. de Boer, and L. Mercer.

[24] P. Prusinkiewicz, W. Remphrey, C. Davidson, and
M. Hammel. Modeling the architecture of expand-
ing Fraxinus pennsylvanica shoots using L-systems.
Canadian Journal of Botany, 72:701–714, 1994.

[25] J. M. Snyder. Generative modeling for computer
graphics and CAD. Academic Press, Boston, 1992.

[26] J. M. Snyder and J. T. Kajiya. Generative mod-
eling: A symbolic system for geometric model-
ing. Proceedings of SIGGRAPH’92 (Chicago, Illi-
nois, July 26-31, 1992) in Computer Graphics, 26,
2 (July 1992), pages 369–378, ACM SIGGRAPH,
New York, 1992.

[27] A. L. Szilard and R. E. Quinton. An interpretation
forDOL systems by computer graphics. The Science
Terrapin, 4:8–13, 1979.

[28] A. Turing. The chemical basis of morphogenesis.
Philosophical Transactions of the Royal Society of
London B, 237:37–72, 1952.

[29] P. F. Verhulst. Notice sur la loi que la population suit
dans son accroissement.CorrespondanceMathema-
tique et Physique, 10:113–121, 1838.

[30] J. Vince. 3–D computer animation. Addison-
Wesley, Wokingham, 1992.

[31] C. H. Waddington and J. Cowe. Computer simula-
tions of a molluscan pigmentation pattern. Journal
of Theoretical Biology, 25:219–225, 1969.

[32] S.Wolfram.Mathematica: A system for doingmath-
ematics by computer. Addison-Wesley, Redwood
City, 1988.



Plate 1: Development of the Koch snowflake curve

Plate 2: Development of the “islands and lakes” fractal

Plate 3: Development of a compound leaf

Plate 4: Development of a pinnate leaf

Plate 5: Model of a Nautilus pompilius shell

Plate 6: Development of Anabaena catenula


