
Multi-Frame Thrashless Ray Casting with Advancing Ray-Front

Asish Law and Roni Yagel

Department of Computer and Information Science
The Ohio State University

2036 Neil Avenue
Columbus, Ohio

Phone: 614-292-0060 Fax: 614-292-2911
Email: {law, yagel}@cis.ohio-state.edu

Abstract

Coherency (data locality) is one of the most important
factors that influences the performance of distributed ray
tracing systems, especially when object dataflow
approach is employed. The enormous cost associated
with remote fetches must be reduced to improve the effi-
ciency of the parallel renderer. Objects once fetched
should be maximally utilized before replacing them with
other objects. In this paper, we describe a parallel vol-
ume ray caster that eliminates thrashing by efficiently
advancing a ray-front in a front-to-back manner. The
method adopts an image-order approach, but capitalizes
on the advantages of object-order algorithms as well to
almost eliminate the communication overheads. Unlike
previous algorithms, we have successfully preserved the
thrashless property across a number of incrementally
changing screen positions also. The use of efficient data
structures and object ordering scheme has enabled com-
plete latency hiding of non-local objects. The sum total
of all these result in a scalable parallel volume renderer
with the most coherent screen traversal. Comparison
with other existing screen traversal schemes delineates
the advantages of our approach.

Keywords: parallel rendering, volume visualization, ray
casting.

1. Introduction

Volume ray casting is one of the most time consum-
ing and memory intensive techniques used for visualiz-
ing three-dimensional data. Such volume data may be,
for example, scanned by MRI (Magnetic Resonance
Imaging) or CT (Computed Tomography), or simulated
by CFD (Computational Fluid Dynamics) programs.
Two of the most popular approaches used in volume ren-
dering are based onimage-order [10] andobject-order
[15] traversals. In image-order traversal, a ray is shot
from the eye point and through each screen pixel. This
method is also referred to asforward-projection or ray-
casting. The volume is sampled at regular intervals

along the ray. The values (color and opacity) at these
sampled locations are composited in a front-to-back or
back-to-front order to yield a final color for the pixel.
Various acceleration techniques can be used to speed up
the ray casting process. For example, rays can be made
to terminate as soon as the accumulated opacity exceeds
a pre-specified threshold value. This is known asearly
ray termination or opacity clipping. The sampling of the
volume along the ray can also be adapted to rapidly
traverse empty spaces [16], leading to significant savings
in computation. The disadvantage of the image order
approach, however, is that the data access is highly irreg-
ular, leading to low object-space coherency.

The object-order rendering approach is more data
coherent, as voxels in the volume are traversed in a regu-
lar manner, making this approach more amenable to par-
allelization or vectorization [12]. Each voxel is projected
onto the screen, and its color and opacity are composited
to the appropriate pixels. The major disadvantage of this
approach is that it cannot easily take advantage of accel-
eration techniques as in the case of image-order
approaches. This might lead to considerable amount of
unnecessary work by most of the processors. Also, it is
more difficult to generate high quality images (e.g., anti-
aliased images), especially when viewed in perspective.
On the other hand, as each voxel in the volume has to be
projected, parallel object-order techniques are inherently
load-balanced in the projection stage, and in the compos-
iting stage [11]. Moreover, object-order methods do not
suffer from thrashing within a single frame generation.
Voxels once brought in and processed are not needed
again for the generation of the current frame. The thrash-
less property of these algorithms can well be preserved
for a number of frames also, as a voxel can be projected
to all the screen positions before discarding it from
memory.

Limited memory and processing power of uniproces-
sor machines make volume rendering a good candidate
for parallelization, the algorithms presented in [1] and
[8] being considered as the most efficient parallel vol-

Proceedings of Graphics Interfaces 1996,
Toronto, Canada, May 1996, pp. 70-77..

ume renderers. Parallel volume rendering can be classi-
fied into two categories:object-dataflow, and image-
dataflow, depending on the type of data transferred
between the processors. In the object-dataflow approach,
the voxels (objects) are fetched only on demand, and are
cached locally. With a big enough cache, this method
can significantly reduce cache misses by taking advan-
tage of ray-to-ray and frame-to-frame coherency. In
image-dataflow approaches, the object is statically parti-
tioned among processors. Each processor renders the
locally available data and passes the resulting image to
the appropriate processor according to the visibility
order.

The ray-front scheme proposed here is an image-
order traversal implemented with object-dataflow. The
algorithm capitalizes on the advantages of both the
image-order and the object-order traversal schemes. The
method is basically image-order, and thus all the advan-
tages of the image-order scheme are preserved. In addi-
tion, the proposed voxel fetching mechanism totally
eliminates thrashing, and thus exploits object-space
coherency as in the object-order methods. We have also
been able to avoid thrashing across a number of images
generated for different screen positions. The combina-
tion of these attributes results in a system with most
coherent screen traversal so much so that voxels once
fetched and used are not needed again for a number of
frames, thus avoiding thrashing altogether. For colossal
volume databases, this provides significant advantage
over existing methods. The algorithm also predetermines
the order of the non-local cells to be processed, which
facilitates effective latency hiding for even minimal
cache sizes. Finally, the data structures we employ cir-
cumvent the need to search for the rays that should be
traversed next.

In the next section, we further illustrate the problem
of coherency and emphasize the importance of our
approach. Section 3 describes the method in detail,
including the data structures and memory requirements.
The results of our implementation on the Cray T3D,
including comparisons with existing screen traversal
methods, are shown in Section 4. The advantages, disad-
vantages, and some of our future goals are summarized
in Section 5.

2. Exploiting Coherency for Efficient Rendering

In their classic paper, Sutherland et al., [13] have
described coherency as the extent to which the environ-
ment, or the picture of it, is locally constant. In the
present context, coherency refers to the degree to which
an object required for one ray is used again for other
rays, or objects used for the generation of one image
(frame) are used again for another frame. In object-data-
flow parallel ray-tracing systems, non-local objects are

fetched from other processors on demand and are cached
locally. With a coherent screen traversal, these objects
are likely to be used again for subsequent rays in the cur-
rent frame. If the cache is large enough, then the system
can even take advantage of frame-to-frame coherency
[7].

If the cache is not large enough, then it starts to
thrash. Thrashing is manifested as the repeated transfer
of the same data to the same processing node [5]. If a
processor’s cache cannot hold the number of blocks that
it needs to render a single ray, then a cyclic refill of the
cache will occur for each ray. As the size of the database
increases, the effect of thrashing becomes more visible.
In this respect, databases acquired from scientific
sources, like sampled data from MRI, CT-scan, or CFD,
are enormous, and rendering such scenes on a uniproces-
sor machine becomes extremely time consuming. To
make the visualization of such databases more feasible,
efficient parallel algorithms are being designed and
implemented. The communication overheads depend on
how much coherency is exploited by the algorithm, and
thus how much thrashing is avoided.

Thrashing of objects in cache influences the perfor-
mance in uniprocessor ray casting systems as well since
the same objects are cached a number of times. For each
cache miss, a penalty has to be paid for fetching the
required object from main memory into the cache. The
situation is even more aggravating when processing very
large datasets that do not fit into the processor’s main
memory, and has to be fetched from disk. One would
like to avoid thrashing to improve the performance of
the renderer. This penalty also becomes prominent when
objects are fetched from remote memories in parallel ray
casting systems. Additional factors crop in when objects
travel across the network. The latency is effected by net-
work speed, which is particularly detrimental in case of
distributed implementations where communication
between computers are sometimes carried over slow
links (e.g., Ethernet). In addition, network contention
and size of the fetched data all play a combined role to
increase latency and decrease performance, and there-
fore the scalability of the algorithm.

In view of this, it becomes particularly important to
exploit object-space coherency so that objects once
fetched are maximally utilized, and to ensure that objects
once replaced in the cache will not be required again,
thus avoidingthrashing. Replacement in this context, is
not due to different virtual addresses mapping to the
same cache location (conflict replacements), but due to
unavailability of space in the cache (capacity replace-
ments).

Visualizing colossal databases, as in the case of sci-
entific visualization, on limited memory multiprocessor
systems are prone to thrashing. Equivalently, the perfor-

mance of shared memory systems with very small
caches also degrade for the same reason. These data-
bases sometimes become so huge that they have to be
stored in a compressed form on remote disks. Objects
needed are decompressed and fetched on demand using
the bottleneck I/O channels. Finally, there is an increas-
ing demand for rendering multiple databases simulta-
neously. In all these cases, thrashing becomes
unavoidable, thereby warranting a need for a thrashless
visualization system.

3. Method

The ray-front visualization method is a distributed
memory implementation of parallel volume rendering.
The scene is initially distributed among all the partici-
pating processors. Each processor employs the image-
order scheme (forward projection) for casting rays
through each pixel assigned to it. Voxels that are needed
in the process but are not available locally, are fetched
from other processors using explicit message passing -
no data is shared among the processors. We chose this
distributed memory paradigm as it provides control to
the programmer for mapping the fetched data in local
memory, so that conflict replacements are avoided and
only capacity replacements take place. By restricting the
size of locally available memory, we can demonstrate
the effect of capacity misses even with smaller data-
bases. The algorithm has been implemented on the 32-
processor Cray T3D available at the Ohio Supercom-
puter Center.

Although our algorithm is essentially an image-order
method, it exploits the advantages of both the image-
order algorithm (like opacity clipping and adaptive sam-
pling) and object-order algorithm (like object-space
coherency and no thrashing due to capacity replace-
ments) to implement a caching system which totally
eliminates thrashing across a number of frames by effi-
ciently traversing the image plane while caching data in
an efficient manner. In the method discussed below, we
first describe how thrashing is avoided for a single
frame, and then extend it to preserve its thrash-free prop-
erty across multiple frames.

3.1 Screen and Scene Subdivision
The volume is subdivided into cubical cells (Figure

1a) similar to [4][5][8]. The cells are statically distrib-
uted to the processors in a pseudo-random manner to
avoid hot-spotting. A cell is assigned to exactly one pro-
cessor, referred to as the cell’shome node. The screen is
subdivided into stripes that are distributed cyclically to
the processors (Figure 1b) to accomplish partial load-
balancing among processors. We have not taken ample
care to perfectly load-balance the system, as the static
scheme provides ample load-balancing among proces-
sors.

3.2 Preprocessing
The first step in the preprocessing stage is to divide

the volume and image among the processors as
described above. The local memory is partitioned into
two segments: the first segment is used to store the home
cells, while the other segment is used as a cache [3]. The
size of the home memory in number of cells equals the
total number of cells in the volume divided by the num-
ber of processors. The home region of the memory is
static as cells residing in this region (home cells) are
never replaced. The rest of the memory, in number of
cells is denoted by C, and is used as cache.

3.3 Ray Casting
For generating an image the following procedure is

executed. Each processor computes which cells lie
inside the view frustum defined by its image segment(s).
The list of these cells is then ordered in a front-to-back
manner depending on the position and orientation of the
screen. This list is referred to as FTBL (Front-To-Back-
List). Each processor also determines the first cell
entered by each ray assigned to it. Next, each processor
sends a request to fetch the first C non-home cells in the
FTBL.

The ray casting algorithm with advancing ray-front is
given in Figure 2. All the rays are initially marked as
unfinished. A ray is finished if it had either accumulated
enough opacity or if it exited the volume. Each ray is
also marked with the cell it initially enters and is linked
to a list of rays waiting for the same cell as we describe
later. The algorithm traverses all the cells in FTB order,
but has only one cell active at a time. All rays waiting for
the active cell are advanced till they exit the cell. The
active cell is then removed from the cache memory (if it
is not a home cell) and a request is sent for the next non-
home cell in the FTBL.

If there is space for exactly one cell in the cache, then
the latency of the requested cell may not be completely

Cell = 4×4×3 voxels

FIGURE 1. (left) A volume made up of 32 ×24×15 voxels
is divided into 8 ×6×5 cells each of size 4 ×4×3 voxels.
Each processor is home to 60 random cells in a 4-
processor system. (right) A screen divided into 12
stripes of equal width and distributed cyclically to 4
processors, P1, P2, P3, and P4. For example, the black
cells and the dark screen segments are assigned to P1.

P1P2P3P4P1P2P3P4P1P2P3P4

hidden. But if there is enough space for a few cells, then
the latency of fetching non-home cells can be hidden,
except for the first few cells. This is done by sending
requests for the next few cells in the FTBL, while work-
ing on the currently active cell.

After advancing each ray through a cell, the buffers
are polled for messages with a non-blocking probe. A
software handler is provided for each kind of message
[6]. Depending on the type of message a corresponding
action is taken. For example, if the message contains cell
information, it is read from the buffers and directly put
in a proper place in memory (cache). If the message is a
request for a cell, it is immediately serviced by sending
the requested cell to the requesting processor using a
non-blocking send. The interleaving of these non-block-
ing sends and receives provides ample latency hiding of
data in the network. At the same time, it prevents dead-
lock due to filling up of communication buffers.

The method described above traverses the screen in
the most coherent manner, as all the rays entering a cell
are advanced before any other rays are processed. This
implies that cells once used will not be required again
for the current frame. The raw algorithm given in Figure
2 requires one to traverse the complete list of rays and

Preprocessing:

Divide the volume into cells.
Randomly distribute the cells to the processors.
Divide the screen into stripes.
Distribute the stripes to the processors in a cyclic manner.

Rendering on each processor:

/* Initialization..... */
Determine the FTBL of all the cells in the volume.

for each ray rdo
determine the first cell r enters -

call this Ray[r].entering_cell
if r does not hit the volumethen Ray[r].finished = true
else Ray[r].finished = false

/* Rendering.... */
for each cell c in FTBL orderdo

for each ray rdo
if Ray[r].finished = falsethen

if Ray[r].entering_cell = cthen
advance ray r through cell c
update Ray[r].entering_cell
if ray r exits volumeor

Ray[r].opacity>threshold_opacitythen
Ray[r].finished = true

FIGURE 2. Ray-casting algorithm with advancing ray-front.

advance only those rays which are waiting for the cur-
rently active cell. This gives the search complexity of the
rendering process as O(NumCells×NumRays), where
NumCells is the total number of cells in the volume and
NumRays is the total number of rays to be traced by a
processor. The traversal of the complete set of rays can
be partially avoided by limiting the search to the bound-
ing box of the cell’s projection on the screen. A simpler
and more efficient scheme is used here.

We use a linked list to keep track of all the rays enter-
ing a cell (Figure 3). Each cellc, points to the first ray
entering itself (first_ray), and each rayr, points to the
next ray entering the same cell as itself (next_ray).
Whenever a particular cell becomes active (i.e., a cell
brought into the cache), this linked list is traversed start-
ing from thefirst_ray of the cell until all rays in the list
are processed. This data structure precludes the necessity
for traversing the complete list of rays for each cell in
the volume. If no rays enter a cell, itsfirst_ray itself will
be marked asNIL, as shown for cell [21,8,13] in Figure
3. This reduces the search complexity of the algorithm to
O(NumRays).

The complete image generation process can be
viewed as being composed of severalpasses, as shown
in Figure 4. In the first pass, all the rays will proceed
(advance) approximately the same distance from the
screen. In the next pass, the rays continue approximately
the same distance again. In this manner, a ray-front
moves through the volume like a wave, generating a par-
tial image in each pass. The image converges to the final
image with each pass. The first few passes of the thrash-

Cell.first_ray Ray.next_ray

42
NIL

10

27

10

27

42

[10,12,4]

FIGURE 3. Illustration of the linked list data structure used
for efficiently advancing only certain rays through a cell.
The example shows that the first ray entering cell [10,12,4]
is the 42nd ray, and there are only 3 rays entering this cell
(42, 27, and 10). A NIL in the first_ray field of a cell implies
that no rays enter this cell.

of cells in
the volume # of rays to

trace

[21,8,13] NIL

less advancing ray-front method are exemplified in Fig-
ure 4 and in Table 1.

The algorithm as described so far is thrashless within
a single frame. Now we extend the method so that such
coherency can be exploited across a number of similar
frames also. By similar frames, we mean those screen
positions for which the FTBL order remains the same.
For example, in Figure 5, if the screen position remains
in region I while viewing towards the center of the vol-
ume, then the FTBL order remains the same for all the

TABLE 1. The first 5 passes of the ray-casting algorithm
with advancing ray-front for the example shown in
Figure 4.

Pass #

Active
cells in
pass (in
order)

Rays
advanced in
pass

Ray-Front
at line

1 1 5 - 7

2 2 - 3 3 - 9

3 4 - 6 1 - 11

4 7 - 10 1 - 11

5 12 - 14 1 - 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
2D Object Space

1D Screen

21

Advancing
Ray-Front

1
2

3
4

5
6

7
8

9
10

11
FIGURE 4. An example of advancing ray-front with 11
rays. The figure shows the advancement of the ray-front
for the first 5 passes only. The 2D object space is divided
into cells, and the numbers in each cell indicate its
position in the FTBL.

frames, and thus the cells will be processed in the same
order. The algorithm can now be followed for updating
all such frames in the same pass. A frame number is
attached to each ray to be processed. All the rays for all
frames in a region are advanced simultaneously before
the currently active cell is given up. This provides an
algorithm which is thrashless across several frames. All
the frames with the same FTBL is referred to as aphase.

4. Results

4.1 Number of Frames per Phase
Figure 6 shows the times and number of cells

received as the number of frames in a phase increases.
Timings are taken for generating 30 incrementally
changing frames for a 2562 screen rotating around a
1283 volume. Frames/phase indicates the number of
frames across which thrash-free operation is preserved.
Figure 6(a) shows a consistent decrease in total anima-
tion time with increase in frames/phase. This is mainly
due to the savings in the communication required to
fetch the drastically reduced number of cells, along with
other associated overheads, like less frequent updating
of local memory with the fetched cells, and reduced net-
work contention. The bump in the curve at 5 and 6
frames/phase is not clear at this time.

The improvement in timing performance is not sig-
nificant as the Cray T3D uses extremely fast and effi-
cient communication channels for transferring data. The
communication of extra cells has minimal effect of the
performance of the system. We expect the savings in
time to be much more significant when the communica-
tion is not as efficient, especially on a network of work-
stations with slower Ethernet links.

Although the improvement in time is not consider-
able, the total number of cells fetched decreases drasti-
cally. When all 30 frames in the animation process are
processed all in the same phase, then a cell is fetched

FIGURE 5. For all viewing positions in region I, and when
viewed towards the center of the volume, the FTB order of
the cells are as shown. × denotes the center of the volume.

1

7

2

13

8

3

19

14

9

4

25

20

15

10

5

31

26

21

16

11

32

27

22

17

12

33

28

23

18

34

29

24

35

30

36

2D Object Space

6
I II

IIIIV

×

only once during the whole process. From Figure 6(b),
we can see that when only a single frame is processed in
a pass (phase), then about 35000 cells are fetched from
distant memory. In contrast, if all 30 frames can be pro-
cessed in the same pass, then this figure drops down to
the minimum required (about 4000). The algorithm is
much more effective when it is used with compression
caches or when data is being fetched from disk on
demand. In such cases, thrash-free operation across a
number of frames will have an enormous impact on the

FIGURE 6. Times (in secs.) and Number of cells received
(in thousands) with number of frames generated in each
phase of the algorithm for generating 30 frames.

178
180
182
184
186
188
190
192
194
196

0 5 10 15 20 25 30

Time

Frames/phase

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Cells Received (in thousands)

Frames/phase

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450

Time

Cache Size

Scan-Line
Spiral

Hilbert
Ray-Front

FIGURE 7. Comparison of four different screen traversal
schemes - scan-line, spiral, hilbert, and rayfront. The graph
shows the times taken for generating 30 frames in the
animation.

performance of the system. For example, for rendering
using compression caches, 35000 cells will undergo
decompression in the case of 1 frame/phase as opposed
to 4000 cells in the case of 30 frames/phase.

4.2 Comparison
Figure 7 compares the performance of the RayFront

algorithm with three of the most common screen-tra-
versal algorithms: scan-line, spiral, and Hilbert [2]. In
each of these, the screen regions were distributed to the
processors in exactly the same manner as in our algo-
rithm. The only difference was the way in which the
respective regions were traversed by each algorithm. Out
of these, the Hilbert is believed to be the most coherent
screen-traversal scheme [17]. It is evident from is graph
that the screen traversal used for the ray-front algorithm
outclasses the others at all cache sizes for parallel pro-
jection ray casting. The performance gain at lower cache
sizes is particularly noteworthy. The primary advantage

FIGURE 8. Scalability of the ray-front algorithm for different
sized volumes

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Speedup

Processors

1283

1283 head

2563 head
2563

transparent

geometric

FIGURE 9. Volume rendered images of geometric object
(left) and MRI dataset (right). Both are 256 3 resolution
and are rendered to 360 2 image.

is the algorithm’s thrash-free property even for minimal
cache sizes.

The consistent improvement in the timings at all
cache sizes can be attributed to two main reasons. First,
for parallel projection ray casting, the ray-front algo-
rithm predetermines the order in which the cells should
be processed. It further culls all the cells which do not
fall within its view frustum. A processor thus fetches
exactly those cells that are needed, and in the correct
order. Second, the predetermination of the cells facili-
tates latency hiding - an attribute which cannot be
exploited advantageously by the other algorithms.

That the latency is significantly hidden is manifested
by number of cells fetched. The pattern of the number of
transferred cells as a function of cache size is similar to
what is shown in Figure 7. Previous algorithms, like
scan-line, spiral, and Hilbert, fetch cells only if and
when needed. The RayFront algorithm, on the other
hand, makes a conservative estimate of the cells which
may be required in the future. For higher cache sizes, the
number of cells fetched becomes more than that of the
other algorithms. This is because it is difficult to pre-
determine the nature of the object’s transparency proper-
ties, making it impossible to predict if a back-cell will be
traversed by a ray or not. As a result, some unneeded
back-cells are also fetched. In spite of fetching these
extra cells, the total animation time remains constant,
implying total latency hiding of these cells.

4.3 Scalability
The efficiency and speedup graphs of the ray-front

algorithm for different volumes are shown in Figure 8.
Four different datasets were used to test the scalability of
the algorithm: a 1283 totally transparent volume, a 1283

illuminated head, a 2563 illuminated head, and a 2563

geometric object. The completely transparent object was
chosen to ensure that each ray will traverse its entire
length. As such, all the cells along the ray will be
fetched. This maximizes the number of cells communi-
cated between processors. The geometric object was
made up of 252 spheres, organized in the form of a
dodecahedron with triangular faces. The images gener-
ated by the algorithm for the 2563 head and the geomet-
ric object are shown in Figure 9. The algorithm
demonstrates about 80% efficiency for 32 processors for
all these test volumes. The good speedup also suggests
that considerable load-balancing has been achieved
using the static block-cyclic scheme as described in Sec-
tion 3.1.

5. Discussion

The RayFront algorithm provides the most coherent
screen traversal scheme to avoid thrashing in object
dataflow parallel ray casting systems. Its main advantage
lies in the arena of rendering colossal databases, where

thrashing is bound to occur due to shortage of memory.
Thrashing manifests itself in the degraded turn-around
time of the rendering system. Our method is particularly
applicable in such cases, and will show significant
advantage over existing screen traversal schemes. It is
our intent to show that the ray-front method is advanta-
geous even on uniprocessor systems. This is because
with the proposed advancing ray-front scheme, the cache
efficiency improves, and thrashing is avoided even in
uniprocessor machines. This can be asserted by verify-
ing that the improvement gained by efficient caching of
cells is not offset by the traversal of the data structures
employed by our algorithm.

Our method is advantageous over other similar
implementations [14], as we have achieved thrash-free
property across a number of frames also. Our efficient
data structures optimizes the complexity of the ray
search, and the cell ordering scheme we employ facili-
tates effective latency hiding making the algorithm scal-
able. Finally, we have brought the two classes of volume
rendering algorithm, image-order and object-order,
together, and successfully exploited the advantages of
both these approaches.

The main disadvantage of this method is the extra
memory used for maintaining the data structures. Also,
as the rays are not traversed to completion, the attributes
of all the rays have to be stored. This is not required in
traditional approaches as a ray starts and traverses to
completion before starting the next ray. The parallel-pro-
jection system developed here should also be extended
to include perspective projection. It will not be trivial to
determine the FTBL of cells when viewed in perspec-
tive, making it more difficult to hide the latency for non-
local fetches.

With this space-time trade-off, we want to extend the
proposed parallel projection ray casting method to ray
tracing also. In this sense, we suggest a breadth-first pro-
cessing of rays instead of the commonly used depth-first
approach. In existing parallel ray-tracing systems, the
primary ray and all its secondary rays are processed
before proceeding to the next pixel. For huge databases,
or with sufficient depth of the ray-tree, this method is
prone to thrashing. If a breadth-first approach is adopted
instead, all the primary rays entering a cell can be pro-
cessed before moving on to the next level of secondary
rays. Data structures similar to the one used here can be
employed to efficiently keep track of all the primary and
secondary rays entering a cell. All the rays waiting for a
particular cell should be advanced once this cell has
been fetched. Of course, this method is not free from
thrashing, but the chances of thrashing will reduce. The
determination of which cell to bring next is an open
issue, as for ray-tracing systems, a front-to-back order
cannot be assigned to the cells.

6. Conclusion

We have developed a distributed memory ray-casting
scheme which incorporates the advantages of both
object-order (no thrashing, regularity of access, object-
space coherency) and image-order (opacity clipping -
avoiding extraneous calculations, higher image quality,
simplicity, and usage of other acceleration techniques)
algorithms. We have shown that our most coherent
screen traversal method exploits coherency far more effi-
ciently than the traditional counterparts. For rendering
colossal databases, this provides significant improve-
ment by making the system thrashless. The algorithm
has been extended to avoid thrashing for a number of
frames also. Efficient data structures have been sug-
gested to improve the time complexity, and to facilitate
effective latency hiding. This makes the method scalable
to a number of processors. In the future, we would like
to extend the algorithm to view in perspective and to use
a similar scheme for ray tracing also.

Acknowledgments

This work has been partially supported by the
National Science Foundation under grant CCR-9211288,
and DARPA under BAA 92-36. We thank The Ohio
Supercomputer Center for allowing us to use of the Cray
T3D.

7. References

1. M.B. Amin, A. Grama, V. Singh. “Fast Volume Render-
ing Using an Efficient, Scalable Parallel Formulation of
the Shear-Warp Algorithm”,Proceedings of Parallel
Rendering Symposium, Atlanta, October 1995, pp. 7-14.

2. J. Arvo. “Space-Filling Curves and a Measure of Coher-
ence”.Graphics Gems II, Chapter 1.8, pp. 26-30.

3. D. Badouel, K. Bouatouch, T. Priol. “Ray Tracing on Dis-
tributed Memory Parallel Computers: Strategies for Dis-
tributing Computations and Data”, SIGGRAPH ‘90,
Parallel Algorithms and Architecture for 3D Image Gen-
eration, Course Notes. pp. 185-198.

4. J. Challinger. “Parallel Volume Rendering on a Shared-
Memory Multiprocessor”, Department of Computer and
Information Sciences, UC Santa Cruz, Technical Report
UCSC-CRL-91-23, revised March 1992.

5. B. Corrie, P. Mackerras. “Parallel Volume Rendering and
Data Coherence”,Proceedings of Parallel Rendering
Symposium, San Jose, California, October 1993, pp. 23-
26.

6. T. von Eicken, D.E. Culler, S.C. Goldstein, K.E.
Schauser. “Active Messages: a Mechanism for Integrated
Communication and Computation”,ACM Transactions
1992, pp. 256-266.

7. S. Green, D. Paddon. “Exploiting Coherence for Multi-
processor Ray Tracing”,IEEE Computer Graphics and
Applications 9, (6), pp. 12-26, November 1989.

8. P. Lacroute. “Real Time Volume Rendering on Shared
Memory Multiprocessors Using the Shear-Warp Factor-
ization”. Proceedings of Parallel Rendering Symposium,
Atlanta, October 1995, pp. 15-22.

9. A. Law, R. Yagel. “CellFlow: A Parallel Rendering
Scheme for Distributed Memory Architectures”,Pro-
ceedings of the International Conference on Parallel and
Distributed Techniques and Applications, Atlanta,
November, 1995, pp. 1-10.

10. M. Levoy. “Display of Surfaces from Volume Data”,
IEEE Computer Graphics and Applications, Vol. 8, No.
5, May 1988, pp. 29-37.

11. K.L. Ma, J.S. Painter, C.D. Hansen, M.F. Krough. “A
Data Distributed, Parallel Algorithm for Ray-Traced Vol-
ume Rendering”,Proceedings of Parallel Rendering
Symposium, San Jose, California, October 1993, pp. 15-
22.

12. R. Machiraju, R.Yagel. “Efficient Feed-Forward Volume
Rendering Techniques for Vector and Parallel Proces-
sors”,Proceedings of Supercomputing ‘93, Portland, OR,
pp. 699-708.

13. I.E. Sutherland, R.F. Sproull, R.A. Schumacker. “A Char-
acterization of Ten Hidden-Surface Algorithms”, Com-
puting Surveys, Vol. 6, No. 1, March 1974, pp. 1-55.

14. R. Westermann, S. Augustin. “Parallel Volume Render-
ing”, Proceedings of International Parallel Processing
Symposium, 1995, pp. 693-699.

15. L. Westover. “Footprint Evaluation for Volume Render-
ing”., Computer Graphics (SIGGRAPH ‘90 Proceed-
ings), Vol. 24, 1990, pp. 367-376.

16. R. Yagel, Z. Shi. “Accelerating Volume Animation by
Space-Leaping”,Proceedings of Visualization’93, San
Jose, California, October 1993, pp. 62-69.

17. H. Zhang, S. Liu. “Order of Pixel Traversal and Parallel
Volume Ray Tracing on the Distributed Volume Buffer”.
Presented at the Eurographics Workshop on Volume
Visualization, 1995.

