Proceedings of Graphics Interfaces 1996,
Toronto, Canada, May 1996, pp. 70-77..

Multi-Frame Thrashless Ray Casting with Advancing Ray-Front

Asish Law and Roni Yagel

Department of Computer and Information Science
The Ohio State University
2036 Neil Avenue
Columbus, Ohio

Phone: 614-292-0060 Fax: 614-292-2911
Email: {law, yagel}@cis.ohio-state.edu

Abstract

ri\tI:ng the ray. The values (color and opacity) at these
factors that influences the performance of distributed r%?k?{g(_jfrg)ﬁf tolcr)g Sr a:z)e y?glgp: Sf:aea? (I:rl)lirfrfg?t;cgbg;lél or

tracing systems, especially when object dataflo ious acceleration techniques can be used to speed u
approach is employed. The enormous cost associaj%%[N P P

with remote fetches must be reduced to improve the e 1€ ray casting process. For example, rays can be made
ciency of the parallel renderer. Objects once fetched [€Minate as soon as the accumulated opacity exceeds
should be maximally utilized before replacing them witf? Pre-specified threshold value. This is knowreasy

other objects. In this paper, we describe a parallel vd@Y terminationor opacity clipping The sampling of the
ume ray caster that eliminates thrashing by efficientljolume along the ray can also be adapted to rapidly
advancing a ray-front in a front-to-back manner. Théaverse empty spaces [16], leading to significant savings
method adopts an image-order approach, but capitaliz8scomputation. The disadvantage of the image order
on the advantages of object-order algorithms as well &proach, however, is that the data access is highly irreg-
almost eliminate the communication overheads. Unlikelar, leading to low object-space coherency.

previous algorithms, we have successfully preserved the The object-order rendering approach is more data
thrashless property across a number of incrementaigherent, as voxels in the volume are traversed in a regu-
Chang|ng screen pOSItIOI’]S Q.lSO. The use Of eff|C|ent dq@ manner' making th|s approach more amenab'e to par_
structures and object ordering scheme has enabled coffjs|ization or vectorization [12]. Each voxel is projected
plete latency hiding of non-local objects. The sum t0t@)n(q the screen, and its color and opacity are composited
of all these result in a scalable parallel volume rendergy i, appropriate pixels. The major disadvantage of this

with the most coherent screen traversal. COmparisQp o4 ch is that it cannot easily take advantage of accel-
with other existing screen traversal schemes delinea tion techniques as in the case of image-order

the advantages of our approach. approaches. This might lead to considerable amount of
Keywords: parallel rendering, volume visualization, ray*"necessary work by most of the processors. Also, it is
casting. more dlf_flcult to generate high quah;y images (e.0., anti-
aliased images), especially when viewed in perspective.
On the other hand, as each voxel in the volume has to be
projected, parallel object-order techniques are inherently
1. Introduction load-balanced in the projection stage, and in the compos-
Volume ray casting is one of the most time consuniting stage [11]. Moreover, object-order methods do not
ing and memory intensive techniques used for visualigtffer from thrashing within a single frame generation.
ing three-dimensional data. Such volume data may b¥PX€ls once brought in and processed are not needed
for example, scanned by MRI (Magnetic Resonanc&ain for the generation of the current frame. The thrash-
Imaging) or CT (Computed Tomography), or simulatedEss property of these algorithms can well be pres_erved
by CFD (Computational Fluid Dynamics) programsfor a number of frames glso, as a voxgl can _be prOJected
Two of the most popular approaches used in volume relg. all the screen positions before discarding it from
dering are based dmage-order[10] andobject-order MemMory.
[15] traversals. In image-order traversal, a ray is shot Limited memory and processing power of uniproces-
from the eye point and through each screen pixel. Th#r machines make volume rendering a good candidate
method is also referred to &mward-projectionor ray- for parallelization, the algorithms presented in [1] and
casting The volume is sampled at regular interval§8] being considered as the most efficient parallel vol-

ume renderers. Parallel volume rendering can be clasttched from other processors on demand and are cached
fied into two categoriesobject-dataflow and image- locally. With a coherent screen traversal, these objects
dataflow depending on the type of data transferredre likely to be used again for subsequent rays in the cur-
between the processors. In the object-dataflow approacént frame. If the cache is large enough, then the system
the voxels (objects) are fetched only on demand, and ai@n even take advantage of frame-to-frame coherency
cached locally. With a big enough cache, this methdd].
can significantly reduce cache misses by taking advan- |f the cache is not large enough, then it starts to
tage of ray-to-ray and frame-to-frame coherency. Ithrash Thrashing is manifested as the repeated transfer
image-dataflow approaches, the object is statically parlif the same data to the same processing node [5]. If a
tioned among processors. Each processor renders fgcessor’s cache cannot hold the number of blocks that
locally available data and passes the resulting imagejttheeds to render a single ray, then a cyclic refill of the
the appropriate processor according to the visibilitgache will occur for each ray. As the size of the database
order. increases, the effect of thrashing becomes more visible.
The ray-front scheme proposed here is an imagkt this respect, databases acquired from scientific
order traversal implemented with object-dataflow. Theources, like sampled data from MRI, CT-scan, or CFD,
algorithm capitalizes on the advantages of both thee enormous, and rendering such scenes on a uniproces-
image-order and the object-order traversal schemes. Td&r machine becomes extremely time consuming. To
method is basically image-order, and thus all the advamake the visualization of such databases more feasible,
tages of the image-order scheme are preserved. In adefficient parallel algorithms are being designed and
tion, the proposed voxel fetching mechanism totallimplemented. The communication overheads depend on
eliminates thrashing, and thus exploits object-spa¢®w much coherency is exploited by the algorithm, and
coherency as in the object-order methods. We have altbwus how much thrashing is avoided.
been able to avoid thrashing across a number of images Thrashing of objects in cache influences the perfor-
generated for different screen positions. The combingrance in uniprocessor ray casting systems as well since
tion of these attributes results in a system with mosie same objects are cached a number of times. For each
coherent screen traversal so much so that voxels ongghe miss, a penalty has to be paid for fetching the
fetched and used are not needed again for a number@uired object from main memory into the cache. The
frames, thus avoiding thrashing altogether. For colossgtyation is even more aggravating when processing very
volume databases, this provides significant advantaggge datasets that do not fit into the processor’'s main
over existing methods. The algorithm also predeterminggemory, and has to be fetched from disk. One would
the order of the non-local cells to be processed, whigike to avoid thrashing to improve the performance of
facilitates effective latency hiding for even minimalthe renderer. This penalty also becomes prominent when
cache sizes. Finally, the data structures we employ cibjects are fetched from remote memories in parallel ray
cumvent the need to search for the rays that should ggsting systems. Additional factors crop in when objects
traversed next. travel across the network. The latency is effected by net-
In the next section, we further illustrate the problerwvork speed, which is particularly detrimental in case of
of coherency and emphasize the importance of odrstributed implementations where communication
approach. Section 3 describes the method in detdiletween computers are sometimes carried over slow
including the data structures and memory requirementisks (e.g., Ethernet). In addition, network contention
The results of our implementation on the Cray T3Dand size of the fetched data all play a combined role to
including comparisons with existing screen traversahcrease latency and decrease performance, and there-
methods, are shown in Section 4. The advantages, diséate the scalability of the algorithm.
vantages, and some of our future goals are summarized|n view of this, it becomes particularly important to
in Section 5. exploit object-space coherency so that objects once
fetched are maximally utilized, and to ensure that objects
once replaced in the cache will not be required again,
In their classic paper, Sutherland et al., [13] havthus avoidinghrashing Replacement in this context, is
described coherency as the extent to which the enviromet due to different virtual addresses mapping to the
ment, or the picture of it, is locally constant. In thesame cache locatiorednflict replacemen}sbut due to
present context, coherency refers to the degree to whighavailability of space in the cacheapacity replace-
an object required for one ray is used again for otherents.
rays, or objects used for the generation of one image Visualizing colossal databases, as in the case of sci-
(frame) are used again for another frame. In object-datantific visualization, on limited memory multiprocessor
flow parallel ray-tracing systems, non-local objects argystems are prone to thrashing. Equivalently, the perfor-

2. Exploiting Coherency for Efficient Rendering

mance of shared memory systems with very small Cell = 4x4x3 voxels
caches also degrade for the same reason. These datR—~—w

bases sometimes become so huge that they have to b
stored in a compressed form on remote disks. Object
needed are decompressed and fetched on demand usi \
the bottleneck I/0O channels. Finally, there is an increas-|]
ing demand for rendering multiple databases simulta-
neously. In all these cases, thrashing becomes
unavoidable, thereby warranting a need for a thrashless
visualization system.

FIGURE 1. (left) A volume made up of 32 x24x15 voxels

3. Method is divided into 8 x6x5 cells each of size 4 x4x3 voxels.
. o . L Each processor is home to 60 random cells in a 4-
The ray-front visualization method is a distributed processor system. (right) A screen divided into 12

; ; : stripes of equal width and distributed cyclically to 4
memory Imple,me,ntatlon Qf parallel volume re”de”,”g- processors, P1, P2, P3, and P4. For example, the black
The scene is initially distributed among all the partici- cells and the dark screen segments are assigned to P1.
pating processors. Each processor employs the image
order scheme_ (forwa_rd prole(_:tlon) for casting raygg Preprocessing
through each pixel assigned to it. Voxels that are neede The first step in th . ¢ is to divid
in the process but are not available locally, are fetched € Nirst step In neé preprocessing stage IS to divide

from other processors using explicit message passin ne \(olume and image among th_e processors - as
no data is shared among the processors. We chose cribed above. T_he local memory 1S partitioned into

distributed memory paradigm as it provides control tBNﬁ segmer:’;]s. trlﬁ first segm?r_]t IS u?jed to storﬁ thg h(_)l_r;'e
the programmer for mapping the fetched data in loc&F!IS: While the other segment is used as a cache [3]. The

memory, so that conflict replacements are avoided anf® of the home memory in number of cells equals the

only capacity replacements take place. By restricting téégtal number of cells in the volume divided by the num-

er of processors. The home region of the memory is

the effect of capacity misses even with smaller dat§Iatic as cells residing in this region (hor_ne cells) are
bases. The algorithm has been implemented on the aqpver replaced. The rest of the memory, in number of

processor Cray T3D available at the Ohio Supercorﬁ-e"S 's denoted by C, and is used as cache.
puter Center. 3.3 Ray Casting

Although our algorithm is essentially an image-order pqy generating an image the following procedure is
method, it exploits the advantages of both the imag@xecuted. Each processor computes which cells lie
order algorithm (like opacity clipping and adaptive saminside the view frustum defined by its image segment(s).
pling) and object-order algorithm (like object-spacerhe Jist of these cells is then ordered in a front-to-back
coherency and no thrashing due to capacity replacgmnner depending on the position and orientation of the
ments) to implement a caching system which totallycreen. This list is referred to as FTBL (Front-To-Back-
eliminates thrashing across a number of frames by effiist) Each processor also determines the first cell
ciently traversing the image plane while caching data intered by each ray assigned to it. Next, each processor

an efficient manner. In the method discussed below, Wends a request to fetch the first C non-home cells in the
first describe how thrashing is avoided for a singleTpg| .

frame, and then extend it to preserve its thrash-free prop-
erty across multiple frames.

size of locally available memory, we can demonstra

The ray casting algorithm with advancing ray-front is
given in Figure 2. All the rays are initially marked as
3.1 Screen and Scene Subdivision unfinished. A ray is finished if it had either accumulated
eenough opacity or if it exited the volume. Each ray is

The volume is subdivided into cubical cells (Figur) L -
1a) similar to [4][5][8]. The cells are statically distrib-als0 marked with the cell it initially enters and is linked
a list of rays waiting for the same cell as we describe

. t
uted to the processors in a pseudo-random manner %o . ;
P P ater. The algorithm traverses all the cells in FTB order,

avoid hot-spotting. A cell is assigned to exactly one pri)) o
cessor, referred to as the celisme nodeThe screen is PUt has. only one cell active at atime. Al rays waiting for
! 6he active cell are advanced till they exit the cell. The

subdivided into stripes that are distributed cyclically t " Ilis th qf th h it it
the processors (Figure 1b) to accomplish partial loadclive cell IS then removed from the cache memory (ifi
ot a home cell) and a request is sent for the next non-

balancing among processors. We have not taken am i the FTBL
care to perfectly load-balance the system, as the st gme cellin the :

Sors. the latency of the requested cell may not be completely

hidden. But if there is enough space for a few cells, thexdvance only those rays which are waiting for the cur-
the latency of fetching non-home cells can be hiddemgntly active cell. This gives the search complexity of the
except for the first few cells. This is done by sendingendering process as K§mCellxNumRayys where

requests for the next few cells in the FTBL, while workNumCellsis the total number of cells in the volume and

ing on the currently active cell. NumRayss the total number of rays to be traced by a
processor. The traversal of the complete set of rays can
Preprocessing be partially avoided by limiting the search to the bound-
ing box of the cell's projection on the screen. A simpler
Divide the volume into cells. and more efficient scheme is used here.
Randomly distribute the cells to the processors.
Divide the screen into stripes. Cell first_ray Ray.next_ray
Distribute the stripes to the processors in a cyclic manne A —
Rendering on each pocessor
* Initialization..... * | MoIzal 22 10N
Determine the FTBL of all the cells in the volume. JH
of cells in .
for eachray rdo the volume T 35 ﬁ;’cféa3
determine the first cell r enters - °
call this Ray][r].entering_cell . ¥
if r does not hit the volunteen Ray(r].finished = true|
elseRay[r].finished = false [21.8,13]NIL 42 27
[* Rendering.... */ v
for eachcell c in FTBL orderdo V

fqr each ray .rd° _ FIGURE 3. lllustration of the linked list data structure used
if Ray[r].finished = fals¢hen for efficiently advancing only certain rays through a cell.
if Ray[r].entering_cell = then The example shows that the first ray entering cell [10,12,4]
C 1 is the 42nd ray, and there are only 3 rays entering this cell
advance ray r through cell ¢ (42, 27, and 10). A NIL in the first_ray field of a cell implies

update Ray[r].entering_cell that no rays enter this cell.
if ray r exits volumer
Ray[r].opacity>threshold_opacithery We use a linked list to keep track of all the rays enter-
Ray([r].finished = true ing a cell (Figure 3). Each cad| points to the first ray
entering itself first_ray), and each ray, points to the
FIGURE 2. Ray-casting algorithm with advancing ray-front. next ray entering the same cell as |tse1é)(t_ray

Whenever a particular cell becomes active (i.e., a cell

After advancing each ray through a cell, the bufferBrought into the cache), this linked list is traversed start-
are polled for messages with a non-blocking probe. i®g from thefirst_ray of the cell until all rays in the list
software handler is provided for each kind of messag&€ processed. This data structure precludes the necessity
[6]. Depending on the type of message a correspondifj traversing the complete list of rays for each cell in
action is taken. For example, if the message contains cée volume. If no rays enter a cell, fitst_ray itself will
information, it is read from the buffers and directly pupe marked asliL, as shown for cell [21,8,13] in Figure
in a proper place in memory (cache). If the message i3aThis reduces the search complexity of the algorithm to
request for a cell, it is immediately serviced by sendin@(NumRay}
the requested cell to the requesting processor using aThe complete image generation process can be
non-blocking send. The interleaving of these non-blockdewed as being composed of severassesas shown
ing sends and receives provides ample latency hidingiof Figure 4. In the first pass, all the rays will proceed
data in the network. At the same time, it prevents deathdvance) approximately the same distance from the
lock due to filling up of communication buffers. screen. In the next pass, the rays continue approximately

The method described above traverses the screertfig same distance again. In this manner, a ray-front
the most coherent manner, as all the rays entering a dapves through the volume like a wave, generating a par-
are advanced before any other rays are processed. Ttikimage in each pass. The image converges to the final
implies that cells once used will not be required agaifnage with each pass. The first few passes of the thrash-
for the current frame. The raw algorithm given in Figure
2 requires one to traverse the complete list of rays and

frames, and thus the cells will be processed in the same

_ 16 22 27 31 34 36 order. The algorithm can now be followed for updating
2D Object Space i all such frames in the same pass. A frame number is
11 17 23 28 32 35 attached to each ray to be processed. All the rays for all
frames in a region are advanced simultaneously before
29 33 the currently active cell is given up. This provides an
algorithm which is thrashless across several frames. All
23 3(the frames with the same FTBL is referred to phase
20 26 W, i
1 15 21 31| 32| 33| 34 35| 36

25| 26| 27| 28 29| 30

Advancing 19| 20| 21} 22 23| 24

3 Ray-Fron 13| 14| 15| 1¢ 17| 18
1D Screen — 9
1 71819 10 11} 12
FIGURE 4. An example of advancing ray-front with 11 1 23| 4|5|6
rays. The figure shows the advancement of the ray-front | I
for the first 5 passes only. The 2D object space is divided ;
into cells, and the numbers in each cell indicate its 2D Object Space

position in the FTBL.

FIGURE 5. For all viewing positions in region |, and when
. . . . viewed towards the center,of the volume, the FTB order of
less advancing ray-front method are exemplified in Fighe cells are as shown. denotes the center of the volume.

ure 4 and in Table 1.

_ _ , 4. Results
TABLE 1. The first 5 passes of the ray-casting algorithm
with advancing ray-front for the example shown in 4.1 Number of Frames per Phase
Figure 4. Figure 6 shows the times and number of cells
Active received as the number of frames in a phase increases.
cells in Rays Timings are taken for generating 30 incrementally
pass (in advanced in Ray-Front Changing frames for a 256screen rotating around a
Pass # order) pass at line 128 volume. Frames/phasendicates the number of
1 1 5.7 frames across which thrash-free operation is preserved.
Figure 6(a) shows a consistent decrease in total anima-
_— tion time with increase in frames/phase. This is mainly
2 2-3 3-9 due to the savings in the communication required to
ASS SN fetch the drastically reduced number of cells, along with
3 4-6 1-11 other associated overheads, like less frequent updating
— of local memory with the fetched cells, and reduced net-
work contention. The bump in the curve at 5 and 6
4 7-10 1-11 frames/phase is not clear at this time.
T Ty, . . A . . .
The improvement in timing performance is not sig-
5 12-14 1-11 nificant as the Cray T3D uses extremely fast and effi-
— cient communication channels for transferring data. The

communication of extra cells has minimal effect of the

The algorithm as described so far is thrashless Withmerformance of the system. We expect the savings in

a single frame. Now we extend the method so that sufipe to be mUCh. more S|gn|f|g:ant when the communica-
coherency can be exploited across a number of similgy" IS not as efficient, espema;lly on a network of work-
frames also. By similar frames, we mean those screéﬁ’mons with sIowgr Ethernet I|n.ks..])
positions for which the FTBL order remains the same. Although the improvement in time is not consider-
For example, in Figure 5, if the screen position remairfble, the total number of cglls fetchgd d_ecreases drasti-
in region | while viewing towards the center of the vol£ally. When all 30 frames in the animation process are
ume, then the FTBL order remains the same for all tgocessed all in the same phase, then a cell is fetched

Time performance of the system. For example, for rendering

196 using compression caches, 35000 cells will undergo
12‘2" decompression in the case of 1 frame/phase as opposed
190 to 4000 cells in the case of 30 frames/phase.
188
186 Speedup
184 30
182
180 25 128° head
17

0 5 10 15 20 25 30

Frames/phase
20 &8 égggmetric
Cells Received (in thousands) 15 256" hea
12
30 10 transparent
25
20 5
15 0
10 0 5 10 15 20 25 30 35
Processors
0
0 5 10 15 20 25 30 FIGURE 8. Scalability of the ray-front algorithm for different
Frames/phase sized volumes

FIGURE 6. Times (in secs.) and Number of cells received
(in thousands) with number of frames generated in each 4.2 Comparison
phase of the algorithm for generating 30 frames. .
Figure 7 compares the performance of the RayFront

onlv once during the whole process. Erom Fiaure 6(b Igorithm with three of the most common screen-tra-
Y g P : 9 (dZErsal algorithms: scan-line, spiral, and Hilbert [2]. In
e

\;ve ;22 (Ser?ag:)‘t mg?]n:brgﬁta?gggl; éﬁgig Ff)é?;ﬁesj?r Weh of these, the screen regions were distributed to the
b P ' (? cessors in exactly the same manner as in our algo-
i

distant memory. In contrast, if all 30 frames can be pr lhm' The only difference was the way in which the
8pective regions were traversed by each algorithm. Out

caches or when data is being fetched from disk q
demand. In such cases, thrash-free operation acrosg
number of frames will have an enormous impact on tr]

at the screen traversal used for the ray-front algorithm
uiclasses the others at all cache sizes for parallel pro-
&ction ray casting. The performance gain at lower cache
sizes is particularly noteworthy. The primary advantage

Time
45
aof
35
30
25 Hilbert) Scan-Line
20 / Spiral / Ray-Front
15} Kbl

m\; J
10

0 50 100 150 200 250 300 350 400 450 . . .

Cache Size FIGURE 9. Volume rendered images of geometric object
(left) and MRI dataset (right). Both are 256 ° resolution

FIGURE 7. Comparison of four different screen traversal and are rendered to 360 “image.

schemes - scan-line, spiral, hilbert, and rayfront. The graph
shows the times taken for generating 30 frames in the
animation.

is the algorithm’s thrash-free property even for minimathrashing is bound to occur due to shortage of memory.
cache sizes. Thrashing manifests itself in the degraded turn-around

The consistent improvement in the timings at aflime of the rendering system. Our method is particularly
cache sizes can be attributed to two main reasons. Figiplicable in such cases, and will show significant
for para||e| projection ray Casting, the ray-front a|goadvantage over existing screen traversal schemes. It is
rithm predetermines the order in which the cells shoufeur intent to show that the ray-front method is advanta-
be processed. It further culls all the cells which do n@€ous even on uniprocessor systems. This is because
fall within its view frustum. A processor thus fetchegvith the proposed advancing ray-front scheme, the cache
exactly those cells that are needed, and in the corré&fticiency improves, and thrashing is avoided even in
order. Second, the predetermination of the cells facilitniprocessor machines. This can be asserted by verify-
tates latency hiding - an attribute which cannot bi#g that the improvement gained by efficient caching of
exp|oited advantageous|y by the other a|gorithms_ cells is not offset by the traversal of the data structures

That the latency is significantly hidden is manifeste§MPIoyed by our algorithm.
by number of cells fetched. The pattern of the number of Our method is advantageous over other similar
transferred cells as a function of cache size is similar t@plementations [14], as we have achieved thrash-free
what is shown in Figure 7. Previous algorithms, liké@roperty across a number of frames also. Our efficient
scan-line, spiral, and Hilbert, fetch cells only if andlata structures optimizes the complexity of the ray
when needed. The RayFront algorithm, on the oth&garch, and the cell ordering scheme we employ facili-
hand, makes a conservative estimate of the cells whites effective latency hiding making the algorithm scal-
may be required in the future. For higher cache sizes, tAgle. Finally, we have brought the two classes of volume
number of cells fetched becomes more than that of thendering algorithm, image-order and object-order,
other algorithms. This is because it is difficult to pretogether, and successfully exploited the advantages of
determine the nature of the object’s transparency prop&oth these approaches.
ties, making it impossible to predict if a back-cell will be The main disadvantage of this method is the extra
traversed by a ray or not. As a result, some unneede@mory used for maintaining the data structures. Also,
back-cells are also fetched. In spite of fetching theses the rays are not traversed to completion, the attributes
extra cells, the total animation time remains constartdf all the rays have to be stored. This is not required in
implying total latency hiding of these cells. traditional approaches as a ray starts and traverses to
. completion before starting the next ray. The parallel-pro-
4.3 Scalability jection system developed here should also be extended
The efficiency and speedup graphs of the ray-frofg include perspective projection. It will not be trivial to
algorithm for different volumes are shown in Figure 8dete|’mine the FTBL of cells when viewed in perspec-

Four different datasets were used to test the Scalabilitymfe' making it more difficult to hide the |atency for non-
the algorithm: a 12Btotally transparent volume, a 128 |ocal fetches.

illuminated head, a 256illuminated head, and a 2%6

)) i With this space-time trade-off, we want to extend the
geometric object. The completely tra_msparent object WaSoposed parallel projection ray casting method to ray
chosen to ensure that each ray will traverse its ent

i facing also. In this sense, we suggest a breadth-first pro-
length. As such, all the cells along the ray will beegging of rays instead of the commonly used depth-first
fetched. This maximizes the number of cel_ls COMMUNyhoach. In existing parallel ray-tracing systems, the
cated between processors. The_geometrlc object WaSmary ray and all its secondary rays are processed
made up of 252 spheres, organized in the form of Qufore" nroceeding to the next pixel. For huge databases,
dodecahedron with triangular faces. The images gengf \yith sufficient depth of the ray-tree, this method is
ated by the algorithm for the 2_%Bead and the geomet- 556 g thrashing. If a breadth-first approach is adopted
ric object are shown in Figure 9. The algorithM,gieaq all the primary rays entering a cell can be pro-
demonstrates about 80% efficiency for 32 processors fQLssed before moving on to the next level of secondary
all these test volumes. The good speedup also SUY&SIS Data structures similar to the one used here can be
that considerable load-balancing has been achievgd,ioved to efficiently keep track of all the primary and
using the static block-cyclic scheme as described in Seéécondary rays entering a cell. All the rays waiting for a
tion 3.1. particular cell should be advanced once this cell has
been fetched. Of course, this method is not free from
thrashing, but the chances of thrashing will reduce. The
The RayFront algorithm provides the most cohererfetermination of which cell to bring next is an open
screen traversal scheme to avoid thrashing in objeetue, as for ray-tracing systems, a front-to-back order
dataflow parallel ray casting systems. Its main advantagannot be assigned to the cells.
lies in the arena of rendering colossal databases, where

5. Discussion

6. Conclusion 7.

We have developed a distributed memory ray-casting
scheme which incorporates the advantages of both
object-order (no thrashing, regularity of access, objec®
space coherency) and image-order (opacity clipping -
avoiding extraneous calculations, higher image quality,
simplicity, and usage of other acceleration techniques)
algorithms. We have shown that our most cohereft
screen traversal method exploits coherency far more effi-
ciently than the traditional counterparts. For rendering
colossal databases, this provides significant improve-
ment by making the system thrashless. The algorithm

has been extended to avoid thrashing for a number 1.

frames also. Efficient data structures have been sug-
gested to improve the time complexity, and to facilitate
effective latency hiding. This makes the method scalabig

to a number of processors. In the future, we would like '

to extend the algorithm to view in perspective and to use
a similar scheme for ray tracing also.

Acknowledgments

This work has been partially supported by the
National Science Foundation under grant CCR-9211288,
and DARPA under BAA 92-36. We thank The Ohio

Supercomputer Center for allowing us to use of the Cray.

T3D.

~

. References

M.B. Amin, A. Grama, V. Singh. “Fast Volume Render-
ing Using an Efficient, Scalable Parallel Formulation of
the Shear-Warp Algorithm”Proceedings of Parallel
Rendering SymposiyrAtlanta, October 1995, pp. 7-14.

2. J. Arvo. “Space-Filling Curves and a Measure of Coher-
ence”.Graphics Gems JIChapter 1.8, pp. 26-30.

3. D. Badouel, K. Bouatouch, T. Priol. “Ray Tracing on Dis-
tributed Memory Parallel Computers: Strategies for Dis-

tributing Computations and Data”, SIGGRAPH ‘90,17.

Parallel Algorithms and Architecture for 3D Image Gen-
eration, Course Notes. pp. 185-198.

4, J. Challinger. “Parallel Volume Rendering on a Shared-
Memory Multiprocessor”, Department of Computer and
Information Sciences, UC Santa Cruz, Technical Report
UCSC-CRL-91-23, revised March 1992.

5. B. Corrie, P. Mackerras. “Parallel Volume Rendering and
Data Coherence”Proceedings of Parallel Rendering
SymposiumSan Jose, California, October 1993, pp. 23-
26.

6. T. von Eicken, D.E. Culler, S.C. Goldstein, K.E.
Schauser. “Active Messages: a Mechanism for Integrated
Communication and ComputationACM Transactions
1992, pp. 256-266.

12.

14.

15.

16.

S. Green, D. Paddon. “Exploiting Coherence for Multi-
processor Ray TracinglEEE Computer Graphics and
Applications9, (6), pp. 12-26, November 1989.

P. Lacroute. “Real Time Volume Rendering on Shared
Memory Multiprocessors Using the Shear-Warp Factor-
ization”. Proceedings of Parallel Rendering Symposium
Atlanta, October 1995, pp. 15-22.

A. Law, R. Yagel. “CellFlow: A Parallel Rendering
Scheme for Distributed Memory Architectures?yo-
ceedings of the International Conference on Parallel and
Distributed Techniques and ApplicatignsAtlanta,
November, 1995, pp. 1-10.

M. Levoy. “Display of Surfaces from \olume Data”,
IEEE Computer Graphics and Applicatignél. 8, No.

5, May 1988, pp. 29-37.

K.L. Ma, J.S. Painter, C.D. Hansen, M.F. Krough. “A
Data Distributed, Parallel Algorithm for Ray-Traced Vol-
ume Rendering”,Proceedings of Parallel Rendering
SymposiumSan Jose, California, October 1993, pp. 15-
22.

R. Machiraju, R.Yagel. “Efficient Feed-Forward Volume
Rendering Techniques for Vector and Parallel Proces-
sors”,Proceedings of Supercomputing ;9%ortland, OR,
pp. 699-708.

I.E. Sutherland, R.F. Sproull, R.A. Schumacker. “A Char-
acterization of Ten Hidden-Surface Algorithms”, Com-
puting Surveys, \Vol. 6, No. 1, March 1974, pp. 1-55.

R. Westermann, S. Augustin. “Parallel Volume Render-
ing”, Proceedings of International Parallel Processing
Symposium1995, pp. 693-699.

L. Westover. “Footprint Evaluation for Volume Render-
ing”., Computer Graphics (SIGGRAPH ‘90 Proceed-
ings), Vol. 24, 1990, pp. 367-376.

R. Yagel, Z. Shi. “Accelerating Volume Animation by
Space-Leaping”,Proceedings of Visualization’93San
Jose, California, October 1993, pp. 62-69.

H. Zhang, S. Liu. “Order of Pixel Traversal and Parallel
Volume Ray Tracing on the Distributed Volume Buffer”.
Presented at the Eurographics Workshop on \olume
Visualization, 1995.

