The Effect of Turn-Taking Protocols on Children’s Learning in Mouse-Driven Collaborative Environments

Kori Inkpen1, Joanna McGrenere2, Kellogg S. Booth1, Maria Klawe1

1Department of Computer Science
The University of British Columbia
Vancouver, British Columbia, V6T 1Z4, Canada
inkpen@cs.ubc.ca, ksbooth@cs.ubc.ca, vpsas@unixg.ubc.ca

2Department of Computer Science
The University of Toronto
Toronto, Ontario, M5S 1A4, Canada
joanna@dgp.toronto.edu

Abstract

This study compared the influence of turn-taking protocols on children’s behaviour and learning when they used either one shared mouse or two individual mice in a collaborative problem-solving environment. The two-mouse case was investigated for both a give protocol, in which the child with control of the game voluntarily relinquished control, and a take protocol, in which the child without control of the game preemptively acquired control. Children in the study took part in two sessions. In the first collaborative session, children played a problem solving puzzle game with a partner using one of the three protocols (one-mouse shared, two-mouse give, or two-mouse take). This was followed by a second solo session in which each child played the game alone. The results of the study revealed that the choice of turn-taking protocol can have a significant affect on children’s learning and behaviour in a collaborative problem-solving environment. For boys, the protocol affected their access to the mouse, which in turn affected their learning: a significant correlation was found between the amount of time each boy had control of the mouse in the collaborative session and the number of puzzles that same boy could solve in a subsequent solo session. In the two-mouse take condition boys exhibited a more equal division of mouse control than did boys using either of the other two protocols.

Keywords: Computer Supported Collaborative Learning (CSCL), children, computers in education, gender, interaction styles, mouse, turn-taking.

Introduction

Children naturally gather in groups around computers, especially to play games. Previous research has shown that children can be more successful when they play with a partner than when they play by themselves [6]. Numerous researchers have also noted the social and achievement benefits of having children work together in small groups [4,7]. One of the difficulties in having small groups work together on computers is that contention arises over sharing input devices, such as the mouse that is used to control many computer games [6,2].

Our study was designed to explore how children’s mouse sharing patterns affect their learning in a collaborative environment. Three turn-taking protocols for sharing control of a mouse-driven cursor, in a single-user problem-solving puzzle game were examined: (1) two children sharing a single mouse; (2) two children, each with a mouse, using a give protocol to transfer control between the two mice; and (3) two children, each with a mouse, using a take protocol to transfer control between the two mice. The amount of time each child had control and how often control switched between the partners was measured along with the children’s achievement and learning in the game. In an earlier study, we looked at these same three turn-taking protocols but only measured achievement in the collaborative session. We found that girls solved the most puzzles using the two-mouse give protocol but boys solved the most puzzles using the two-mouse take protocol [5]. Our new study was designed to investigate this issue in more detail and attempt to quantify the degree to which the turn-taking protocol affected children’s learning in the game, something that was not examined in our earlier study.

Whether or not control of the mouse is a good indicator of how well a group is working together is unclear. A previous study qualitatively explored mixed-gender groups of four children working together on one computer [3]. This research concluded that although the mouse played a significant role in the group dynamics, it was not a reliable indicator of group collaboration.

Although mouse control was not found to be a good indicator of group performance in this study, many factors other than control of the mouse that could have
for a more detailed report on the experimental design of this work.

A Silicon Graphics Personal IRIS workstation was brought into the laboratory to support computers. A Silicon Graphics Personal IRIS of the schools, all of which had IBM-compatible partners from the same class.

Students were randomly assigned to same-gender pairs working in a collaborative environment of a mouse-driven puzzle game. We wanted to determine if access to, and control of the mouse affected children’s learning. Our restriction to same-gender pairs removed the added complexity of mixed-gender groupings, and by limiting the collaboration to just two children we minimized the amount of collaborative administration required of the players (whose idea will be tried?, who will operate the mouse?).

While qualitative observations such as Cole’s are important in understanding how groups interact with each other, possessing control of the mouse may have effects on the children that an observer cannot see. Our study performed a quantitative analysis, examining same-gender pairs of children working in a collaborative problem-solving environment of a mouse-driven computer puzzle game. We wanted to determine if access to, and control of the mouse affected children’s learning. Our restriction to same-gender pairs removed the added complexity of mixed-gender groupings, and by limiting the collaboration to just two children we minimized the amount of collaborative administration required of the players (whose idea will be tried?, who will operate the mouse?).

Method

Subjects and Setting

The study took place in four elementary schools on the East Side of Vancouver, British Columbia, during May and June of 1996. The time spent at each school ranged from two to four days depending on the number of classes participating in the study. In total, 252 students (126 girls and 126 boys) ranging in age from nine to twelve years old, chosen from twenty Grade Five and Grade Six classes, participated in the study. The students from these schools comprised several different cultural groups. None of the students had previously played The Incredible Machine [10], the commercial game used in the study. Students were arbitrarily placed into one of three experimental conditions and were randomly assigned a same-gender partner from the same class.

The sessions were run in the computer laboratories of the schools, all of which had IBM-compatible computers. A Silicon Graphics Personal IRIS workstation was brought into the laboratory to support the two experimental conditions that required multiple mice. Regular use of the computer laboratory was restricted during the majority of the time the study was being run.

Software

The software used in the study was The Incredible Machine, a puzzle-solving game produced by Sierra [10]. The game features a series of challenges in which a player must construct various Rube Goldberg-type machines to achieve particular goals such as breaking all of the balloons depicted on the screen or making “Mort the Mouse” run in his mouse cage. A host of entertaining objects such as balls, trampolines, balloons, scissors, and cats are available to be placed on the screen in a variety of ways to achieve these goals when the machine is “run”. Students position the objects, test the configuration by running the machine, and then reposition objects as required until they discover a solution. Many of the puzzles have more than one solution. Upon completion of a puzzle, the student can move on to the next puzzle.

An example of one puzzle in the game, The Incredible Machine, and one of its solutions is shown in Figures 1a and 1b. The goal of Puzzle #3 is to build a machine that will break all three of the balloons that appear on the screen in the puzzle. The initial configuration shown in Figure 1(a) will break the leftmost balloon when the machine is started by the student clicking on the "run" button that appears in the upper right-hand corner of the screen. Running the machine causes gravity to take effect, which makes the baseball and some other objects start to fall. As the baseball drops on the bellows, the bellows contract and blow the balloon into the pair of scissors, causing the balloon to break. A similar configuration of tennis ball, bellows and scissors can be used to break the balloon on the bottom right. Students must discover this and drag one of the bellows, the second pair of scissors, and the tennis ball to the appropriate positions on the screen from their initial location in the toolbox on the right side of the screen. Because both pairs of scissors are needed to break the first two balloons, the gear attached to the mouse motor must be used to break the third balloon. The impact of the cannon ball falling on the top of the mouse motor will cause Mort the Mouse to run in his cage, which then will in turn cause the gear to spin. If the basketball and the third bellows are positioned to the right of the top balloon, the bellows can be used to blow the balloon into the spinning gear as the basketball drops onto the bellows. This breaks the third balloon. Figure 1(b) shows the completed machine running.

1 For a more detailed report on the experimental design of this study, see [9].
Procedure

The study was conducted in sets of two sessions. The first session involved having students play The Incredible Machine using one of three turn-taking protocols (the collaborative session). The second session involved the students playing alone (the solo session). Each session lasted approximately forty minutes (one class period). The second session took place one to three days after the first session. Before taking part in the study, all children were asked to complete a background questionnaire to assess the amount of electronic game playing experience and preferences.

The three experimental conditions in the collaborative sessions were: (1) one-mouse shared, in which two children played together on one machine sharing a single mouse; (2) two-mouse give, in which two children played together on one machine, each with a separate mouse, using a give protocol in which turn-taking had to be initiated by the child currently in control of the game cursor; (3) two-mouse take, in which two children played together on one machine, each with a separate mouse, using a take protocol in which turn-taking had to be initiated by the child currently not in control of the game cursor.

The first experimental session consisted of welcoming remarks by a researcher, a brief introduction to the experimental study and to the game, The Incredible Machine, a ten minute hands-on interface training session, and twenty-five minutes of time playing The Incredible Machine. The interface training session was intended to teach the students how to manipulate objects in the game in order to help eliminate problems with the user interface during the session.

The interface training session was conducted individually so that all children became familiar with the interface. It showed children how to begin playing a puzzle, how to move objects from the toolbox onto the playing screen, how to hook objects together, how to flip objects, how to size objects, and how to run the machine by clicking on the appropriate icon on the screen. Each child was asked to duplicate the picture of the practice machine (see Figure 2) to ensure that they were able to perform all operations required to play the game. Upon completion of the interface training session, children were placed into pairs with their collaborative partners and given twenty-five minutes to solve puzzles in the game. When the children solved a puzzle, a researcher recorded the time at which the puzzle was solved and then helped the children start the next puzzle in the game.

Figure 2. Picture used for the interface training session to familiarize the children with the game and its mouse-driven user interface.

The second session took place one to three days after the first session. In this solo session, all of the children played The Incredible Machine individually for twenty-five minutes. If a child completed a puzzle, the child was responsible for recording the time at which the puzzle was solved and for recording a password that the game provided after each puzzle was solved. In this second session, the game automatically advanced to the next puzzle each time a puzzle was solved2.

After the solo play session, the children were asked to rate on a nine-point scale whether they would prefer to play The Incredible Machine alone or with a partner. To facilitate accurate responses from the children, they were given a pinwheel on which to demonstrate their preferences.

2 The game did not advance automatically in the first session because the puzzles were created using freeform mode, to create a set of similar but slightly different puzzles.
The pinwheel consisted of two different colored cardboard circles, each sectioned into eight pie-shaped pieces. Each circle had a slit on one of the section lines going from the outer edge of the circle to the centre. When the two circles were joined using the slits, the resulting pinwheel could be turned to show various amounts of each color. If children preferred to play alone, they could turn the pinwheel so that more of the alone color was showing. If children preferred to play with a friend, they could turn the dial so that more of the friend color was showing (see Figure 3).

Figure 3. The Pinwheel used by children to rate preference on a nine-point scale.

Experimental Setup
In order to allow for the use of two mice in the game, a Silicon Graphics Personal IRIS workstation was used to receive input simultaneously from two serial mice and to determine which of the two mouse inputs would be sent to the IBM-compatible computer running the game software (see Figure 4). The game software was not modified in any way for the two-mouse conditions. There still was only one cursor visible on the screen and only one mouse was active at a time. Instead of physically passing the single shared mouse between two partners, control of the cursor was transferred between the two mice by the click of a button. The serial mice used in the experiment had two buttons. The game software only uses one of the mouse buttons, so the other button was reserved for exclusive use by the turn-taking protocol. To provide feedback on turn-taking, the IRIS workstation screen displayed a large arrow to indicate to the children which mouse was active.

Figure 4. Set-up for the two-mouse conditions

The two-mouse give and take protocols were implemented using a two-button mouse. The left button controlled the normal operation of the game, as in the one-mouse shared condition, while the right button transferred control back and forth between the two mice.

In the two-mouse give condition, when the partner in control of the game cursor pressed the right mouse button, control of the game cursor would be passed over to the other partner’s mouse (nothing happened if the partner not in control of the game cursor pressed the right button). In the two-mouse take condition, either partner could take control of the game cursor by pressing the right mouse button at any time (for the partner who had control, this would be a “no-op”, but the software permitted this action).

Results
Mouse Control
Mouse control was measured by how long each partner had physical control of the shared mouse in the one-mouse shared condition or logical control of the game cursor in the two-mouse give and take conditions. Table 1 summarizes the results for mouse sharing in the three collaborative conditions. The two-mouse control columns present the average percentage of time each partner had control of the mouse. The first number is the percentage of time the mouse was controlled by the child within a pair, who had control of the mouse for the shorter total time. The second number is the percentage for the child who had control of the mouse for the longer total time. The exchanges column (the third number) in Table 1 is the average number of times control was passed between the two children. In the one-mouse shared condition, an exchange of control was considered to have occurred whenever the single shared mouse was physically passed from one child to the other. In the two-mouse give and take conditions, an exchange of control was considered to have occurred whenever control of the game cursor was switched from one mouse to the other by pressing a right mouse button.

Distribution of Mouse Time
For girls, there was no significant effect of turn-taking protocol on the amount of time a partner controlled the mouse. For boys, a significant effect was found for the amount of time a partner controlled the mouse, p<.05, with a medium to large effect size of .13 and a power of 76%. The post-hoc analysis revealed that boys in the two-mouse take condition had a significantly more equal distribution of mouse-control time than boys in the one-mouse shared condition.
Table 1. Mouse control represents the average percentage of time each partner had control of the mouse. The first value represents the child within a pair who had control of the mouse for the shorter total time. The second value represents the child who had control of the mouse for the longer total time. Exchanges represents the number of times control was passed between the two children.

<table>
<thead>
<tr>
<th></th>
<th>Girls Mouse Control</th>
<th>Exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared</td>
<td>30% 70%</td>
<td>13</td>
</tr>
<tr>
<td>Give</td>
<td>33% 67%</td>
<td>25</td>
</tr>
<tr>
<td>Take</td>
<td>30% 70%</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Boys Mouse Control</th>
<th>Exchanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared</td>
<td>24% 76%</td>
<td>18</td>
</tr>
<tr>
<td>Give</td>
<td>33% 67%</td>
<td>22</td>
</tr>
<tr>
<td>Take</td>
<td>38% 62%</td>
<td>46</td>
</tr>
</tbody>
</table>

A significant correlation was found for boys between the amount time a partner had control of the mouse in the collaborative session and the number of puzzles he was able to solve in the subsequent solo session, \(p<.01\), Pearson Correlation .30. Figure 6 shows the average number of puzzles solved by pairs in the first session (collaborative session) and the average number of puzzles solved in the second session (solo session), for both the partner that had control of the mouse for the shorter total time (minimum) and the partner that had control of the mouse for a longer total time (maximum).

Boys who had control of the mouse for a longer period of time in the collaborative session solved significantly more than their partners who had control of the mouse less, \(p<.01\) with an effect size of .07 and a power of 82%. Examining the children’s improvement in the solo session over their score in the collaborative session revealed that again, the boys who had control of the mouse longer in the collaborative session showed a significantly larger improvement in score than their partner who had control of the mouse for a shorter period of time, \(p<.01\), with a medium effect size of .10 and a power of 85%. Further analysis revealed that these differences were significant for boys in the one-mouse shared and the two-mouse give conditions, but not for boys in the two-mouse take condition.

Number of Mouse Exchanges

The number of exchanges by condition, as shown in Table 1, for both girls and boys were significantly different, \(p<.01\), with a large effect size of .17 and a power of 88%. The post-hoc analysis revealed that girls exchanged control of the mouse significantly more times in both the two-mouse give condition and the two-mouse take condition than girls in the one-mouse shared condition, \(p<.05\). The post-hoc analysis for boys revealed that boys in the two-mouse take condition exchanged control of the mouse significantly more than boys in either the one-mouse shared condition or the two-mouse give condition, \(p<.05\).

A correlation was found for boys between the number of exchanges in a collaborative session and the percentage of time each partner had control of the mouse in the one-mouse shared and the two-mouse give conditions, \(p<.01\) and \(p<.05\) respectively. In these two conditions, a higher number of exchanges correlated with a more equal distribution of time that each partner had control of the mouse. No significant correlation was found for the girls’ mouse exchanges by condition.

Figure 6.
The average number of puzzles solved by the pair in each condition during Session 1 and for each partner in Session 2. The child within a pair who had control of the mouse for the shorter total time in the collaborative session is designated the minimum and the child who had control of the mouse for a longer total time in the collaborative session is designated the maximum.
Playing Preference

The children’s preference of playing either alone or with a partner was measured on a nine point scale with zero representing a strong preference to play alone and eight representing a strong preference to play with a friend. There was no significant difference on the rankings for girls by condition. The girls’ average rank of 5.0 demonstrated a preference to play with a partner. A significant difference was found for boys rankings by condition, p<.05. Post-hoc analysis revealed that boys in the two-mouse give condition gave higher rankings (mean 5.6) than boys in the one-mouse shared condition (mean 4.0).

The percentage of girls and boys who preferred to play alone or with a friend are shown in Table 2. A significant difference was found for both girls and boys preference, p<.01. Significantly more girls expressed a preference to play with a friend than girls who either preferred to play alone or girls who didn’t have a preference, p<.01. Significantly more boys preferred to play with a friend than alone, p<.05 and more boys expressed a preference to play with a friend than those who didn’t have a preference, p<.01.

Table 2. Percentage of children who preferred to play alone, didn’t have a preference, or preferred to play with a friend

<table>
<thead>
<tr>
<th></th>
<th>Alone</th>
<th>No Preference</th>
<th>Friend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls*</td>
<td>22%</td>
<td>24%</td>
<td>54%</td>
</tr>
<tr>
<td>Boys*</td>
<td>29%</td>
<td>23%</td>
<td>48%</td>
</tr>
</tbody>
</table>

Discussion

Previous Experience

The children’s previous experience in playing electronic games or the presence of a computer at home, as reported in the background questionnaires, did not affect the children’s achievement in either session of play. The percentage of time a child had control of the mouse was also not affected by children’s previous experience. In addition, any other affect of previous experience was minimized by randomly assigning children to conditions. Follow-up analysis did not find any significant differences in the children’s previous experiences in each of the conditions.

Mouse Control & Learning

The average percentage of time each girl in a pair had control of the mouse was not affected by the experimental conditions and control of the mouse did not correlate to increased performance in the subsequent solo session for girls. For girls, mouse control did not appear to be a good indicator of learning in the collaborative session.

The distribution of mouse control time for boys ranged from a distribution of 24% / 76% in the boys’ one-mouse shared condition to a more equal distribution in the two-mouse take condition, 38% / 62%. Since mouse control time for boys correlated with their achievement in the second solo session, mouse control appears to have an effect on learning in the collaborative session.

Exchanges

Both girls and boys exhibited different sharing patterns using the various turn-taking protocols as shown by the number of times the children exchanged control. For both genders, the least number of exchanges occurred in the one-mouse shared condition while the highest number of exchanges occurred in the two-mouse take condition. These results may be attributed to the ease of obtaining control of the game cursor. In the one-mouse shared condition, gaining control is typically more difficult because a child must physically obtain control of the shared mouse. In contrast, obtaining control in the two-mouse take condition is relatively easy because a child only needs to press a button on the mouse to gain control.

For girls in the two-mouse give condition, the number of exchanges was close to the number of exchanges in the two-mouse take condition. This suggests that girls in the two-mouse give condition may have experienced easier access to control of the cursor, as in the two-mouse take condition, than did girls in the one-mouse shared condition. One the other hand, the average number of exchanges for boys in the two-mouse give condition was close to the average for the one-mouse shared condition. This suggests that boys in the two-mouse give condition may have had a more difficult time obtaining control, as in the one-mouse shared condition, than did the boys in the two-mouse take condition.

Playing Preference

More girls and boys expressed a preference to play with a partner than to play alone. For girls, this was not dependent on the experimental condition they played in while boys in the two-mouse give condition had a higher ranking towards playing with a friend than boys in the one-mouse shared condition.

Children’s preference towards playing with a friend may be stronger than was evident in this study due to the fact that the experimental design biased the results towards playing alone. One bias was the effect of recency: the condition the children played in immediately before giving their rankings was a solo
condition. Another bias may have occurred because the first session in which the children played with a friend was also the children’s first introduction to the game. As a results, more learning frustrations were evident in the first session. In the second solo session, the children already had an understanding of the game and this in turn may have biased the children’s preference towards playing alone.

Lessons Learned from the Mouse Control Results

Our goal in this study was to find out more about how the choice of turn-taking protocol influences children’s learning while playing a problem-solving game collaboratively.

Girls

The turn-taking protocol influenced girls’ achievement in their collaborative session but had no affect on the distribution of mouse control. For girls, control of the mouse or number of exchanges was not affected by experimental condition and did not affect learning. Girls results showed that they were most successful in both sessions using the two-mouse give setup. An alternative measure could be the opportunities that a turn-taking protocol provides for sharing ideas. Qualitative observations of girls interacting in the two-mouse give condition revealed that girls sometimes pass control to their partner, even when the partner has not requested it. This action encourages the other child to share her ideas which she otherwise might have kept to herself.

Boys

The fact that a positive correlation existed between the amount of time a boy had control of the mouse in the collaborative session and subsequent achievement in the solo session indicates that control of the mouse and manipulation of the environment may be important for boys’ learning. The results for the one-mouse shared and two-mouse give conditions show that the boys who had control of the mouse for a longer period of time during the collaborative session scored higher in the solo session and improved significantly over their collaborative session scores compared to their partners who had control of the mouse for a shorter total time in the collaborative session. In contrast, the results for the two-mouse take condition showed that the performance of both partners in the solo session was very comparable.

For boys, one way to help ensure a more equal distribution of mouse control and manipulation of the environment is by providing easy access to control, such as in the two-mouse take condition. The ease of access allows for more exchanges of control, which for boys, correlates to a more equal distribution of mouse time. By providing boys with a mechanism to obtain a more equal distribution of mouse time, as in the two-mouse take condition, both partners will benefit from the experience. This type of set-up can help to prevent situations where one boy dominates control of the game and the other partner is left out which can commonly happen in the one-mouse shared condition.

Conclusions

The results of this study show that seemingly similar ways of sharing limited resources (in our case turn-taking for mouse-driven control of a game cursor) in a collaborative environment can have significant influence on the participants, both in terms of learning and behavior. In this study, the protocol for controlling turn-taking affected girls’ achievement while playing collaboratively. For boys, the turn-taking protocol affected their ability to perform the task on their own later, which may suggest that boys’ learning during collaborative play was influenced by the turn-taking protocol.

One important observation that arises from this study is that boys and girls interact quite differently using the various turn-taking protocols. Because of this, we must realize that the turn-taking protocol that best suits one gender may not be the best for all children; gender does appear to make a difference. It could be argued that the two-mouse take protocol was most suited for boys because it allowed for the most equitable access to control of the game cursor and thus was of mutual benefit for both partners given the way that boys play the game. In contrast, the girls performed best using the two-mouse give protocol. This generalization does not hold true for all girls or for all boys, but it does indicate that we should be extremely careful when designing collaborative environments, especially if they are to be used in educational settings. If we want to ensure that the environment is equally appropriate for both girls and boys, we may have to provide more than one turn-taking protocol to support effective collaboration.

A limitation of our study is that the children only took part in the study for two forty-minute class periods. The behavior reported here may change when children work in collaborative environments for a longer period of time. As children become familiar with the turn-taking protocols and with the software application, we may see different behavior patterns arise.

Our study focused on quantitative analysis of mouse control time and the number of exchanges that took place. As Cole’s study suggests, it is also important to investigate children’s behaviors qualitatively to further test our hypothesis [3]. Our informal qualitative observations during this study, and observations in our
previous studies [5, 6], indicate that most of the time both partners were engaged in the task.

Three areas for future research include generalizing the give and take turn-taking protocols for more than two children, investigating methods for collaboration when children interact simultaneously with the system, and examining collaboration that occurs over a distance. We looked only at two children playing together because this reduced the number of confounding issues. If more than two children play, the take turn-taking protocol extends in an obvious way, but the give turn-taking protocol would have to be more complex because it would require some mechanism to specify the child who was to assume control of the game cursor.

Our study deals with children interacting with the system sequentially, using a turn-taking protocol. A system that allows both children to interact simultaneously with each other might allow for children to be more engaged and to become more actively involved in the game, but it might also diminish some of the need for collaboration, which is promoted by the need to share limited resources, and thus some of the benefits of collaboration might be lost with parallel interaction. Parallel interaction might also foster excessive competition and aggressive behavior in the form of a race to see which partner can accomplish the most in the puzzle.

The collaborative environments examined in this study were implemented using a single machine, where both partners worked side-by-side. An interesting extension to this study would be to have children work together using the two-mouse give and take turn-taking protocols operating over a distance, perhaps in a networked environment. It is important to ask whether the sequential nature of give and take will be as effective when the children are physically separated. Auxiliary support, such as audio or visual feedback, might provide a sense of presence for the collaboration to offset the lack of side-by-side awareness. This needs to be investigated further to understand what other parameters are required for developing turn-taking protocols that can be used effectively in collaboration over a distance in educational settings. This has important implications for distance education and telelearning.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada through Postgraduate Scholarships and a Cooperative R&D Project Grant, and by Electronic Arts, the TeleLearning Network of Centres of Excellence, the BC Advanced Systems Institute, and the Media and Graphics Interdisciplinary Centre at the University of British Columbia. Special gratitude is extended to Dr. Shelley Hymel for her assistance in the design of this study and to all of the teachers and students in the schools we visited for their participation in our research.

References