Probability Trees

Michael D. McCool and Peter K. Harwood

{mmccool,pkharwoo}@cgl.uwaterloo.ca
Computer Graphics Laboratory
Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1

Abstract

A Ek-D tree representation of probability distribu-
tions is generalized to support generation of samples
from conditional distributions. An interpretation of
the approach as a piecewise linear warping function
is provided which permits a priori stratified sample
generation. The representation is related to higher-
order spline estimators and representations via pro-
jection. An application in glyph-based volume visu-
alization is presented.

Keywords: sampling, antialiasing, Monte Carlo

integration.

1 Introduction

Random quantities have numerous uses in computer
graphics; many, but not all, are related to Monte
Carlo integration in antialiasing [2, 3, 6, 9, 14, 20] and
global illumination [2, 3, 9, 11, 23]. Generally speak-
ing, whenever a difficult integral needs to be evalu-
ated or a parameter estimated, a Monte Carlo ap-
proach can be used—although as a last resort when
an analytic approach is infeasible.

The most basic Monte Carlo integration approach
chooses uniform random samples {xj,Xs,...Xn}
over some domain and estimates the integral of
some function f over that domain by averaging:

1 N
=y S~ [s

While very general, the main difficulty with this ap-
proach is that basic Monte Carlo integration has ter-
rible convergence; the estimate 79 is a normally dis-
tributed random variable with a variance that de-
creases only by O(1/N). On the other hand, Monte
Carlo integration works well even when the integrand

is high-dimensional, defined over a non-Euclidean do-
main, or against an alternative measure. This flexi-
bility is the technique’s main advantage.

Several techniques have been proposed to speed
convergence:

Stratified sampling generates samples distributed
“evenly” over the domain € by binning, so the
histogram of the actual sample distribution con-
verges more rapidly to a uniform value.

Importance sampling generates samples non-
uniformly, replacing some dominant factor of f
with a different measure u(x) over €.

Weighted estimators use information about the
variance and spatial distribution of the samples
to improve the convergence of the estimate.

Intelligent application of these techniques is essential
in any practical Monte-Carlo based system.

This paper analyses and refines a basic tool that
can be used when stratified samples need to be
drawn from a multidimensional probability distribu-
tion: the k-D tree. This approach was first intro-
duced in [11] where it was used for sequential strat-
ification and antialiasing. We further the approach
in this paper by illuminating the relationship of the
k-D tree representation to warping, conditional dis-
tributions, and higher-order spline probability repre-
sentation and estimation.

The connection to warping is useful because it al-
lows the generation of stratified sampling patterns
without having to store extra information in the tree.
Conditional distributions are useful in that they per-
mit knowledge of one variable to be used to refine the
probability distributions of other variables, and in
general permit one representation to be used in mul-
tiple ways. Finally, our projection-based interpre-
tation of higher-order representations connects k-D

tree and spline representations of probability distri-
butions and suggests some new approaches to prob-
ability representation.

2 Overview

This paper is organized as follows. In Section 3 a
short summary of the uses of probability distribu-
tions and random sampling in computer graphics will
be presented. In addition, previous approaches to the
modelling, manipulation, and generation of samples
from arbitrary multidimensional probability distri-
butions will be reviewed.

The k-D tree data structure will be motivated and
presented in Sections 4-8. The main new algorithm
presented is unzfication, the generation of a random
sample from a conditioned probability distribution.
This algorithm will be presented in conjunction with
the warping interpretation of the k-D tree approach
which permits a priori stratification. Finally, we will
present a connection between higher-order spline rep-
resentations and marginal distributions.

3 Background

In this section, we first review applications of ran-
domization and attempts to model and estimate
probability distributions. The focus will be on ap-
plications that involve Monte Carlo integration and
attempt to improve its convergence by generating
specific sampling patterns.

3.1 Monte Carlo Integration

In the basic Monte Carlo integration technique, ran-
dom samples of a function f are taken and averaged.
Monte Carlo integration can be applied to rendering
[1, 2, 3, 8], as the global illumination problem can
be cast as a single integral equation [11]. Antialias-
ing and motion blur are other important rendering
problems that require integration [3, 16].

The variance of the result in the basic Monte Carlo
approach decreases with O(1/N), which is very slow
relative to other numerical integration techniques;
the standard deviation of the error decreases only by
O(1/v/N). Convergence can be improved by strat-
ification, importance sampling, and weighted esti-
mators [9]—all techniques that modify the sampling
pattern and/or the estimator.

3.1.1 Stratification

Stratification distributes samples evenly across the
domain of integration using binning, in an attempt
to avoid “clumping” of samples. Secondary stratifi-
cation of marginal sample distributions and decorre-
lation of the samples can also improve convergence
[17].

In order to perform stratification, some knowledge
of how past samples were placed is required, either
explicitly (in the form of stored samples) or implic-
itly, e.g. parametric estimation of the sample density,
or a priori selection of bins. Stratification has limited
usefulness in more than two dimensions [9, 19]. At
best, it can improve the convergence of the variance
to O(N~2) in smooth regions of the integrand.

However, in antialiasing applications stratified
sampling patterns also shape the correlation func-
tion of the aliasing noise, shifting its energy to higher
frequencies and thus making it less noticeable to the
human visual system [6]. This fact, together with the
improvement of convergence, has inspired several al-
gorithms for generating sampling patterns with de-
sirable spatial characteristics [13, 14, 16, 17]. The
theory of discrepancy analysis can be used to iden-
tify sampling patterns that are optimal relative to
specific analytic image models [7, 18].

3.1.2 Importance Sampling

Importance sampling uses an estimate of the magni-
tude and/or variance of the integrand to guide sam-
pling to more interesting parts of the integrand.

An importance function defines the probability
distribution of the sampling pattern. The true
mean can be correctly estimated from importance-
distributed sampling by dividing the samples of the
integrand by the value of the importance function at
each sample point. It has been shown that using an
importance function which is a dominating factor of
the integrand best improves convergence.

There are many analytic techniques for generating
non-uniform samples [4, 5, 12] distributed according
to specific probability distributions. However, if the
importance function is not known in advance, or is
too difficult to integrate, invert, and/or bound ana-
lytically, a general technique based on approximation
is useful.

An approximation to an importance function does
not have to be very accurate or smooth to improve
convergence, as long as the approximation can be
bounded and the actual value of the approximate
distribution can be accurately computed. However,

it is more convenient if the importance function is
in fact a good approximation to some factor of the
integrand, as it is then unnecessary to divide out the
importance function and multiply by a more accurate
value for that factor.

Algorithms have been developed that permit the
generation of stratified sampling patterns that can be
refined [11, 20] and/or be simultaneously distributed
according to an importance function [14]. This gen-
eralized form of stratification tries to improve con-
vergence by choosing a sequence of samples whose
histogram converges more rapidly to the target dis-
tribution than arbitrary samples drawn from the tar-
get distribution.

Finally, if samples are generated non-uniformly,
they must be combined somehow without introduc-
ing bias. One technique that also improves conver-
gence for n < 4 is weighted averaging, which uses
the m-dimensional volume of the points closest to
a particular sample to weight that sample. It has
been shown that if the samples are generated inde-
pendently and the volumes of the corresponding d-
dimensional Voronoi cells are used as weights, then
the convergence of the variance will be O(1/N*/4)—
which is a great improvement in 1D, good in 2D, mi-
nor in 3D, and equal to or worse than crude Monte
Carlo in higher dimensions. It is unclear just how
stratification, importance sampling, and weighted re-
construction interact, however; the derivation in [25]
depends explicitly on the properties of completely
independent samples.

3.2 Representation of
Probability Distributions

In the discussion of Monte Carlo sampling techniques
above, two prior works present representations of
n-dimensional probability distributions from which
non-uniform sampling patterns can be generated:
the k-D tree data structure in [11] and the tensor
product B-spline model in [21].

The k-D tree data structure in [11] was presented
in the context of hierarchical stratification and an-
tialiasing. A k-D tree is a binary tree whose internal
nodes subdivide space one dimension at a time, us-
ing axis-aligned splitting planes. This is illustrated
in Figure 1 for the case of a two-dimensional domain.

Sequential stratification starts with a single cell
and inserts a random sample into it. When another
sample is needed, the cell is split. The old sample
ends up in one half of the split cell, so the new sample

Figure 1: A k-D tree adaptively subdivides space into
cells by splitting along one dimension at a time. The
representation in memory uses a binary tree data
structure.

is drawn from the other, empty subcell. This process
is repeated recursively, using a probalistic selection
strategy that results in a breadth-first subdivision of
the tree and uniform or adaptive distribution of sam-
ples. Once all samples have been drawn, the integral
can be estimated by forming a piecewise constant ap-
proximation to the sampled function using the value
of the sample in each cell. This amounts to weighting
each sample by the size of the cell in which it lies.

This technique requires the storage of samples, but
could be used to incrementally drive a sampling pat-
tern to a desired importance distribution, while keep-
ing samples from becoming too clumped together.
It also automatically provides a weighted averaging
scheme, called hierarchical integration, for recombin-
ing samples and improving convergence for n < 4.

The k-D tree idea was refined in [20], where the
idea of using a per-node sample counter rather than
stored samples to control stratification was intro-
duced. This approach can still drive a sampling pat-
tern quickly towards a desired global probability dis-
tribution, but requires less storage.

In [21] tensor-product splines are proposed for the
representation of probability distributions. If the dis-
tribution is represented by

P(x) = ZPiBi(x)

where the B; are spline basis functions, then an un-
biased estimator of the probability distribution that
generated a sequence of samples x; is given by

1
sz:Bi(Xj)-

Generation of samples distributed according to a B-
spline basis function can be done using the urn inter-

P =

pretation of B-splines, which for a uniform B-spline
basis function amounts to the sum of n uniform ran-
dom variables. Generating a sample from the com-
plete spline representation interprets P(x) as a mix-
ture: choose some i based on the discrete probabili-
ties P;, then distribute the sample according to B;.
This sample generation technique is not based on
warping, and so it is not possible to stratify samples
a priori, although it would be wise to at least drive
the actual selection of the i’s to match the discrete
distribution given by the P;’s.

In Section 8 we will show how the k-D tree and
B-spline approaches are related via projection, and
will give the estimation technique above a simple ge-
ometric interpretation.

3.3 Other Applications

Two other applications of multidimensional sampling
patterns are worth mentioning in light of the algo-
rithm and data structure presented in this paper:
glyph distribution for volume visualization [22] and
dithering.

We give an example of the first application at the
end of this paper. Any algorithm which can gen-
erate stratified samples distributed according to an
importance function can be used for dithering, al-
though producing dithering patterns for real print-
ers requires attention to clustering, a problem not
addressed by the data structure given here.

4 Functional k-D Trees

The probability tree data structure is built around a
k-D tree representation of a real-valued importance
function. This representation has the desirable prop-
erties of simplicity, space and time efficiency, freedom
from dependence on a fixed number of dimensions,
and hierarchical adaptability. We obtain this result
by sacrificing smoothness: a piecewise constant ap-
proximation is used.

A Ek-D tree subdivides a rectangular k-dimensional
domain into k-dimensional rectangular cells at its
leaves. By specifying a constant approximation to
a function over each cell, we can approximate the
function over the entire domain. To adaptively sub-
divide, an upper bound on the approximation error
is needed; further subdivision can be performed if
the error of the piecewise constant approximation ex-
ceeds a threshold.

The restriction of the k-D tree representation to a
bounded, rectangular domain can be removed by in-

troducing an appropriate nonlinear coordinate space
mapping. The Jacobian of this mapping can be built
into the probability distribution as needed. As long
as the mapping is a homeomorphism, the built-in
flexibility afforded by the hierarchical representation
can adapt to the distortion.

There are several variations on this theme. The
splitting plane can always be in the center of the cell
being split, or can be movable. The dimensions being
split can cycle in a strict order, or the dimension
being split can be specified in each internal node.

Here we consider only the simplest case: the split-
ting plane is always in the center of the cell being
split, and the dimensions being split cycle in strict or-
der. In addition, we assume that the approximation
to the function in our leaf cells is simply a constant,
so the overall approximation is piecewise constant.

There are obvious disadvantages to these simpli-
fications. The volume of a cell can only decrease
by a factor of two at each level of the tree, and
so adapting the hierarchy to a function with a lot
of detail in a concentrated area will require many
levels in the tree—the approximation can only con-
verge linearly. In addition, one can easily construct
functions for which the dimension rotation rule will
construct unnecessary subdivisions, for example f :
z,y + sin?(z). On the other hand, the subdivision
produced will be adaptive.

Constant approximation also has the very impor-
tant advantage that since the basis functions don’t
overlap, we don’t have to search an exponential num-
ber of leaves to find all the coefficients affecting a
point.

A k-D tree approximation can easily be con-
structed bottom-up from a regular grid of samples
of the function; given a maximum depth all the leaf
cells are the same size. In addition, the storage per
node in the tree is very small. In fact, at a mini-
mum we simply have to distinguish an internal node
from a leaf. To handle probability and a constant
functional approximation, we will have to add a sin-
gle floating-point or fixed-point number to each node
and leaf.

Consider briefly how a specific leaf cell containing
the spatial position x = (21,2, ...,) in a k-D tree
is found. As we descend the tree, the central dividing
plane of each node is compared with each coordinate
in turn. If z; is less than the position of the splitting
plane for dimension ¢, then x must lie in the lower
cell of a node that splits that dimension; otherwise,
x lies in the upper cell. In other words, the leaf cell
containing x is found by a rotating binary search.

5 Non-uniform Generation

One approach to generating samples drawn from a
non-uniform probability distribution uses the inverse
of the cumulative distribution function. Alterna-
tively, we can use a hierarchical approximation to a
probability distribution, with analytic inversion over
a simple approximation as the base case. Both of
these approaches can be generalized to an arbitrary
number of dimensions.

5.1 Cumulative Distributions

To generate samples distributed according to an ar-
bitrary probability density function f(z), the inverse
F~1(y) of the cumulative distribution function F(z)
can be used, with F(z) defined using

F(z) = /_ e de.

If y is a random variable over [0, 1], then z = F~1(y)
will be distributed according to f(z).

Since f(z) is non-negative, F(x) is always mono-
tonic, and the inverse exists. Actually, since f(x)
could be locally zero, F(z) might not be strictly
monotonic. That happens not to matter; we can
easily resolve the ambiguity in the evaluation of the
inverse because samples are never generated over re-
gions with probability zero.

j—‘—f‘
0 —

T
X

Figure 2: The inverse of the cumulative distribution
function can be used to generate samples distributed
according to a given probability density. Here the
probability density is piecewise constant, so the cu-
mulative distribution is piecewise linear.

Assuming we have a representation of y = F(z),
since F' is monotonic given y we can find x using
binary search as in Figure 2.

To generalize to a higher number of dimensions, we
need to generate a univariate marginal cumulative

distribution function by integrating out all but one
parameter. Once we have inverted one dimension,
we invert the resulting conditional cumulative distri-
bution over the remaining dimensions. It does not
matter in which order we eliminate variables [5, 4].
We can generalize this structure; the processes
of marginalization and conditioning can be inter-
changed, and performed over regions rather than en-
tire dimensions, leading to a hierarchical cumulative
distribution which can be represented in a k-D tree.

5.2 Hierarchical Representation

Construction of a probability tree approximation to
a probability distribution defined over a rectangular
region R proceeds recursively as follows:

1. Base case: If an adequate approximation of the
given probability density f over R is possible,
create the approximation and return it as a leaf
node.

2. Otherwise, create an internal node that splits
dimension (i + 1) mod k, if the last dimension
split was 1.

3. Using the splitting plane, subdivide the domain
R into two non-overlapping subdomains P, and
Py.

4. Compute the marginal probabilities p; for each
subregion P; by integrating the given probabil-
ity density f over P;.

5. Store the value po/(po + p1) at the node. This
is the probability that a random sample point
will appear in region Py, given that it appears
in region R, or py = Pr(x € Py|x € R).

6. Recursively generate representations of the con-
ditional probability densities f(x|x € P;) for
each subregion.

Once the tree is generated, to generate a ran-
dom sample first choose k uniform random numbers
y; € [0,1], then descend the tree starting from the
root. At a node splitting dimension ¢, descend the
upper subtree if y; > pg, and the lower subtree oth-
erwise. At each step, renormalize y; to the total
relative probability of the subtree. At a leaf, ana-
lytically invert the local approximation to the prob-
ability density. If the approximation is constant, the
inversion is simply a linear interpolation.

A formalization of the descent algorithm is given
in Figure 4. This descent algorithm can be inter-
preted as a multidimensional, rotating binary search

_—

o2
. -
!
I 1 : =
Ao —
T L

Figure 3: A hierarchical representation of a proba-
bility distribution integrates over subregions.

that inverts the (hierarchical) cumulative distribu-
tion function. The search region is contracted one
dimension at a time by conditioning the probabil-
ity distribution to smaller and smaller regions. At
the leaves, we again invert the analytic form of the
approximation to the probability distribution.

6 Unification

The unification algorithm presented in Figure 5 takes
a k-D tree representation of a probability distribu-
tion over k dimensions and interlaces a rotating bi-
nary search for position with a rotating binary search
to invert the probability distribution.

Suppose some number n of the variables are fixed,
i.e. have given values. The k& —n others are free, and
we would like to generate random values for them
according to the conditional probability distribution
given by the fixed variables. For each of the free vari-
ables, uniform random numbers between 0 and 1 are
generated to seed the algorithm. Then the unifica-
tion algorithm descends the tree. For fixed dimen-
sions, the choice of child cell is made by comparing
the fixed coordinate with the position of the splitting
plane—doing a rotating binary search on spatial po-
sition. For the free dimensions, the choice of child cell
is made by comparing the value of the correspond-
ing random seed number with the threshold stored
in the cell—doing a rotating binary search to invert
the hierarchical cumulative distribution function. At
a leaf node, we invert the free variables analytically.

We also return the joint probability density at the
generated point, since that value is stored at the leaf.

REAL
Generate (INT k; REAL y[k], VAR x[k],
REAL lower[k], upperl[k])
i = 0;
WHILE NOT node INSTANCEOF Leaf DO
// Update cell bounds
middle := (lower[i] + upper[il])/2.0;
// Choose upper or lower branch and
// renormalize
IF node.f < y[i] THEN
lower[i] := middle;

y[i] := (y[i] - node.f)/(1.0 - node.f);
node := node.upperTree;
ELSE

upper[i] := middle;

y[il := y[il / node.f;
node := node.lowerTree;
ENDIF;

// Rotate to next dimension
i := (i+1) mod k;
ENDWHILE;
// Invert normalized free variables
FOR i:=0 TO k DO
x[i] := y[il*(upper[il-lower[i])+lower[i];
ENDFOR;
// Leaf cell contains function value
RETURN node.f;

Figure 4: Pseudocode that generates a sample from
a hierarchical representation of a probability distri-
bution.

Note that this value is not a sample of the conditional
density. In order to compute the actual conditional
density we would need to first generate a sample of
the marginal density by walking the appropriate sub-
set of the tree and summing all cells that intersect
the £ —n dimensional subspace defined by the given
combination of fixed and free parameters. Dividing
the joint density by the value of the marginal den-
sity would give the value of the conditional density.
Once we knew the marginal density for a given set of
fixed parameters we could reuse it for all conditional
samples.

It is not immediately apparent that interlacing
these two binary searches in this way is valid. How-
ever, given the way we have constructed the proba-
bility tree, each subtree represents a probability dis-
tribution conditioned over just its subdomain.

As a base case of an inductive proof of the validity
of this algorithm, we know the analytic inversion at a
leaf is valid. Assuming the inversion of each subtree
is valid, at a node splitting a free dimension we deter-

REAL
Unify (INT k; REAL y[k], VAR x[k];
BOOL fixed[k],
REAL lower[k], upperl[k])
i = 0;
WHILE NOT node INSTANCEOF Leaf DO
middle := (lower[i] + upper[il])/2.0;
IF fixed[i] THEN
IF middle < x[i] THEN
lower[i] := middle;

node := node.upperTree;
ELSE
upper[i] := middle;
node := node.lowerTree;
ENDIF;
ELSE

IF node.f < y[i] THEN
lower[i] := middle;

y[i] := (y[i] - node.f)/(1.0 - node.f);
node := node.upperTree;
ELSE

upper[i] := middle;
y[i] := y[i] / node.f;

node := node.lowerTree;
ENDIF;
ENDIF;
i := (i+1) mod k;
ENDWHILE;

FOR i := 0 TO k DO
IF fixed[i] THEN
x[i] := y[il*(upper[il-lower[i])+lower[i];
ENDIF;
ENDFOR;
RETURN node.f;

Figure 5: Pseudocode for the unification algorithm.

mine if the generated sample point lies in the upper
or lower subregion, and pick the appropriate con-
ditioned probability distribution using the marginal
cumulative distribution. At a node splitting a fixed
dimension, similar reasoning applies: we condition
the probabilities of the subtrees on the knowledge
we have about the fixed parameter. Given the non-
overlapping nature of the subregions, one subregion
will have conditional probability 1 and the other will
have conditional probability O.

Note that each step of the unification algorithm in-
volves only a comparison, perhaps some trivial com-
putation to update the position of the splitting plane,
and possibly a renormalization. We show renormal-
ization on the fly; in fact, renormalization can be
built into the values stored at each node. Therefore,
the algorithm is relatively fast, depending only on

the depth of the tree. With precomputed normaliza-
tion the algorithm is also symmetrical, it being no
more expensive to make a decision with respect to a
free variable than with respect to a fixed one.

The probability thresholds define a dual tree with
movable splitting planes; we could imagine an equiv-
alent representation of a probability tree where every
cell at a given depth had the same probability, with
the spatial position of the splitting plane adjusted
rather than the probability threshold.

The simple rotating-dimension approach to gener-
ating k-D tree representations of distributions may
create unnecessarily deep trees, and this will impact
both the running time and the storage cost. It is
possible to extend this algorithm to trees with m-
way splits at each internal node, with splitting di-
mensions stored at nodes, and with movable planes.
An interesting question when the last two options
are combined is the generation of optimal represen-
tations of probability distributions.

7 Stratified Sampling

The k-D probability tree as described is a warping
function from [0, 1]* to the domain of the probabil-
ity distribution. Stratified importance sampled pat-
terns can be generated by warping a uniform strati-
fied sampling pattern.

In Figure 6 we show an k-D tree approximation
to a function, and both a stratified and unstratified
importance function sampling patterns distributed
over it, along with histograms of these sampling pat-
terns. The relative error tolerance is relatively large
in these examples (1/10) to show the structure of
the approximation. The uniform stratified sampling
pattern was generated by jittering on a regular grid,
with full subcell coverage.

A visualization of the warp induced by our k-D
tree data structure is shown in Figure 7. Observe
what happens to the shaded square in this diagram;
the warp is not continuous: it can shear cells, break-
ing them up into subcells. At each level of the tree,
each subdomain is stretched linearly to map a spe-
cific proportion of the input domain to one side or
another of the splitting plane.

8 Higher-Order Representations
As pointed out in [15, 10], B-spline basis functions

are just projections of appropriate convex polytopes
from higher dimensions. In particular, B-spline basis

Figure 6: Stratified sampling with a probability tree:
a) the test function; b) the probability tree with
e = 0.1; ¢) a stratified importance weighted sam-
pling pattern and histogram; d) a non-stratified im-
portance weighted sampling pattern.

functions can be represented as projections of sim-
plices or hypercubes, and many of the familiar prop-
erties of B-splines—partition of unity, subdivision,
recurrence—can be derived from geometric consider-
ations.

This observation can be used to connect the B-
spline representation in [21] with the k-D tree rep-
resentation. Consider Figure 8. In this diagram,
a piecewise linear probability distribution is gener-
ated by projecting a piecewise constant probability
distribution along a skew axis. Each box in the con-
stant approximation projects down onto a single B-
spline basis function. The “ray” R pierces several
cells of the k-D tree. If this ray were a sample and
we needed to determine how to distribute its contri-
bution among the cells in order to estimate a prob-
ability density, one approach would be to take the
size of the intersection of the ray with each cell. But
this size is just the value of the basis function B; at
the position of the ray, so we obtain the following
estimator:

1
Pi = N ZBi(Xj).
J

In general, the “ray” will not be one-dimensional,
but the principle remains the same. The particu-

Uniform Jitter Warped Jitter
Figure 7: Stratified sampling is accomplished by
piecewise linear warping of a uniform stratified sam-
pling pattern.

lar projection shown gives rise to uniform B-splines,
but projections for tensor product splines, simplex
splines, Bézier splines, and box splines can also be
defined.

This diagram immediately raises these new pos-
siblilities, but also points out several flaws in both
the k-D tree and spline representations of probability
distributions. First of all, note how sample genera-
tion works: a sample is distributed across a cell, but
then the extra dimension is thrown away when the
sample is projected. It will be very hard to strat-
ify samples in the “marginal distribution” without
an auxiliary data structure; stratification within the
k-D tree will help, but will not be ideal. Secondly,
note that the k-D tree data structure is redundant;
two of the cells that intersect the ray shown project
onto exactly the same support. This redundancy can
be removed by using a DAG rather than a tree, but
that complicates subdivision, as now a search-and-
merge step is required. Therefore, the k-D tree is
probably not the best representation of a spline—
although note how simple the representation of hi-
erarchical spline basis functions are. Finally, note
that evaluating the value of a density is more com-
plex with a spline representation—the contributions
of several basis functions need to be summed.

9 Glyph Distribution

As shown in [22], three-dimensional stratified
importance-weighted sampling patterns can be use-
ful for volume visualization. Glyphs—small, easily
rendered shapes—are generated at random points ac-
cording to a function that identifies the interesting
parts of the volume. The shape, orientation, size,
and/or colour of the glyph may then be modified

R

[ATZ 77

No 2N ~_ - Noo ~ .
|

-
-

Figure 8: A higher-order hierarchical spline proba-
bility density approximation can be viewed as the
off-axis projection of a piecewise constant approxi-
mation.

according to the values of the three-dimensional vec-
tor or scalar function being visualized. Stratification
minimizes the number of collisions between glyphs.
Both volume densities and isosurfaces of scalar func-
tions can be visualized by picking the importance
function appropriately.

In Figures 9, 10, and 11 we show the result of
using our probability tree to represent a scalar vol-
ume (HIPIP, from the Chapel Hill test data set) and
generate glyph distributions. We orient the glyphs
according to the gradient of the scalar volume den-
sity, estimated according to the 3 x 3 operator given
in [26].

Figure 9: A scalar volume density is visualized by
using the scalar value to control the density and ori-
entation of glyphs.

Using the hierarchical Poisson disk algorithm in
[14] to generate sampling patterns as in [22] has
an advantage here: denser sampling patterns reuse
old glyph positions, providing a smoother transition
when the number of glyphs changes. The current al-
gorithm does not have this property, unfortunately,
but has the compensation that “glyph slices” can

Figure 10: A isosurface is visualized by using a de-
rived importance function (here a Gaussian about
the threshold value).

Figure 11: A glyph slice can be extracted by fixing
one dimension and using unification to distribute the
glyphs in the remaining dimensions.

be extracted by fixing one coordinate before unifica-
tion, as in Figure 11. Also, no precomputed tables
are required—other than the probability tree repre-
sentation of the importance function. A probability
tree representation of a scalar volume could also be
used for direct volume rendering, after [24].

10 Conclusions

A simple data structure has been presented that
can represent a multidimensional probability distri-
bution, and can generate samples drawn from that
probability distribution or from various conditional
distributions based on the original distribution. An
interpretation as a warp permits space-efficient strat-
ified sampling.

Acknowledgements

The Chapel Hill volume rendering test data set was
used to test our glyph rendering algorithm. I would
like to thank Takafumi Saito for seeking the first au-
thor out at SIGGRAPH ’94 to provide a copy of
[22], which indirectly inspired the current paper. I
would like to thank NSERC and ITRC for providing
funding in direct support of this research and also to
the Computer Graphics Laboratory at the University
of Waterloo. MathSci, SciDex, the SIGGRAPH on-
line database, and the MultiText multi-bibliography
search engine were used to obtain references.

References

[1] P. Blasi, B. Le Saec, and C. Schlick. An impor-
tance driven monte-carlo solution to the global illu-
mination problem. Fifth Eurographics Workshop on
Rendering, pp. 173-183, Darmstadt, Germany, June
1994.

[2] R. L. Cook, T. Porter, and L. Carpenter. Dis-
tributed ray tracing. SIGGRAPH '8} Conference
Proceedings, pp. 137-145, July 1984.

[3] R. L. Cook. Stochastic sampling in computer graph-
ics. ACM Transactions on Graphics, 5(1):51-72,
January 1986.

[4] J. Dagpunar. Principles of random variate genera-
tizon. Oxford University Press, New York, 1988.

[6] L. Devroye. Non-uniform random variate genera-
tion. Springer-Verlag, New York, 1986.

[6] M. A. Z. Dippé and E. H. Wold. Antialiasing
through stochastic sampling. SIGGRAPH ’85 Con-
ference Proceedings, pp. 69-78, July 1985.

[7] D. P. Dobkin and D. P. Mitchell. Random-edge dis-
crepancy of supersampling patterns. Proceedings of
Graphics Interface ’93, pp. 62—-69, Toronto, Ontario,
May 1993. Canadian Information Processing Soci-
ety.

[8] P. Dutre and Y. D. Willems. Importance-driven
monte carlo light tracing. Fifth Eurographics Work-
shop on Rendering, pp. 185-194, Darmstadt, Ger-
many, June 1994.

[9] A.S. Glassner. Principles of Digital Image Synthe-
sts. Morgan Kaufman, 1995.

[10] K. Hollig. Box splines. TR 640, Computer Sciences
Department, University of Wisconsin, Madison, WI,
April 1986.

[11] J. T. Kajiya. The rendering equation. SIGGRAPH
’86 Conference Proceedings, pp. 143-150, August
1986.

[12] D. E. Knuth. Seminumerical Algorithms. Addison-
Wesley, 1969.

[13] M. E. Lee, R. A. Redner, and S. P. Uselton. Statisti-
cally optimized sampling for distributed ray tracing.
SIGGRAPH ’85 Conference Proceedings, pp. 61-67,
July 1985.

[14] M. D. McCool and E. Fiume. Hierarchical poisson
disk sampling distributions. Proceedings of Graphics
Interface ’92, pp. 94-105, May 1992.

[15] M. D. McCool. Analytic antialiasing with prism
splines. SIGGRAPH ’95 Conference Proceedings,
pp- 429-436, August 1995.

[16] D. P. Mitchell. Generating antialiased images at
low sampling densities. SIGGRAPH ’87 Conference
Proceedings, pp. 65—-72, July 1987.

[17] D. P. Mitchell. Spectrally optimal sampling for dis-
tributed ray tracing. SIGGRAPH ’91 Conference
Proceedings, pp. 157-164, July 1991.

[18] D. P. Mitchell. Ray tracing and irregularities of dis-
tribution. Third Eurographics Workshop on Render-
ing, pp. 61-69, May 1992.

[19] D. P. Mitchell. Consequences of stratified sampling
in graphics. SIGGRAPH ’96 Conference Proceed-
wngs, pp. 277-280, August 1996.

[20] J. Painter and K. Sloan. Antialiased ray tracing by
adaptive progressive refinement. SIGGRAPH ’89
Conference Proceedings, pp. 281-288, July 1989.

[21] R. A. Redner, M. E. Lee, and S. P. Uselton.
Smooth B-spline illumination maps for bidirectional
ray tracing. ACM Transactions on Graphics, 14(4),
October 1995.

[22] T. Saito. Real-time previewing for volume visual-
ization. 1994 Symposium on Volume Visualization,

pp. 99-106. ACM SIGGRAPH, October 1994.

[23] E. Veach and L. J. Guibas. Optimally combining
sampling techniques for monte carlo rendering. SIG-
GRAPH ’95 Conference Proceedings, pp. 419-428,
August 1995.

[24] J. Wilhelms and A. Van Gelder. Multi-dimensional
trees for controlled volume rendering and compres-
sion. 1994 Symposium on Volume Visualization, pp.

27-34. ACM SIGGRAPH, October 1994.

[25] S. Yakowitz, J. E. Krimmel, and F. Szidarovszky.
Weighted monte carlo integration. SIAM J. Numer.
Anal., 15(6), December 1978.

[26] S. W. Zucker and R. A. Hummel. A three dimen-
sional edge operator. Pattern Analysis and Machine
Intelligence, 3(3):324-331, May 1981.

