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Abstract

A k�D tree representation of probability distribu�
tions is generalized to support generation of samples
from conditional distributions� An interpretation of
the approach as a piecewise linear warping function
is provided which permits a priori strati�ed sample
generation� The representation is related to higher�
order spline estimators and representations via pro�
jection� An application in glyph�based volume visu�
alization is presented�
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� Introduction

Random quantities have numerous uses in computer
graphics� many� but not all� are related to Monte
Carlo integration in antialiasing ��� 	� 
� �� �� ��� and
global illumination ��� 	� �� ��� �	�� Generally speak�
ing� whenever a di�cult integral needs to be evalu�
ated or a parameter estimated� a Monte Carlo ap�
proach can be used�although as a last resort when
an analytic approach is infeasible�
The most basic Monte Carlo integration approach

chooses uniform random samples fx��x�� � � �xNg
over some domain � and estimates the integral of
some function f over that domain by averaging�

�� �
�

N

NX
i��

f�xi� �
Z
�

f�x� dx

While very general� the main di�culty with this ap�
proach is that basic Monte Carlo integration has ter�
rible convergence� the estimate �� is a normally dis�
tributed random variable with a variance that de�
creases only by O���N�� On the other hand� Monte
Carlo integration works well even when the integrand

is high�dimensional� de�ned over a non�Euclidean do�
main� or against an alternative measure� This �exi�
bility is the technique�s main advantage�
Several techniques have been proposed to speed

convergence�

Strati�ed sampling generates samples distributed
�evenly� over the domain � by binning� so the
histogram of the actual sample distribution con�
verges more rapidly to a uniform value�

Importance sampling generates samples non�
uniformly� replacing some dominant factor of f
with a di�erent measure ��x� over ��

Weighted estimators use information about the
variance and spatial distribution of the samples
to improve the convergence of the estimate�

Intelligent application of these techniques is essential
in any practical Monte�Carlo based system�
This paper analyses and re�nes a basic tool that

can be used when strati�ed samples need to be
drawn from a multidimensional probability distribu�
tion� the k�D tree� This approach was �rst intro�
duced in ���� where it was used for sequential strat�
i�cation and antialiasing� We further the approach
in this paper by illuminating the relationship of the
k�D tree representation to warping� conditional dis�
tributions� and higher�order spline probability repre�
sentation and estimation�
The connection to warping is useful because it al�

lows the generation of strati�ed sampling patterns
without having to store extra information in the tree�
Conditional distributions are useful in that they per�
mit knowledge of one variable to be used to re�ne the
probability distributions of other variables� and in
general permit one representation to be used in mul�
tiple ways� Finally� our projection�based interpre�
tation of higher�order representations connects k�D



tree and spline representations of probability distri�
butions and suggests some new approaches to prob�
ability representation�

� Overview

This paper is organized as follows� In Section 	 a
short summary of the uses of probability distribu�
tions and random sampling in computer graphics will
be presented� In addition� previous approaches to the
modelling� manipulation� and generation of samples
from arbitrary multidimensional probability distri�
butions will be reviewed�

The k�D tree data structure will be motivated and
presented in Sections ��� The main new algorithm
presented is uni�cation � the generation of a random
sample from a conditioned probability distribution�
This algorithm will be presented in conjunction with
the warping interpretation of the k�D tree approach
which permits a priori strati�cation� Finally� we will
present a connection between higher�order spline rep�
resentations and marginal distributions�

� Background

In this section� we �rst review applications of ran�
domization and attempts to model and estimate
probability distributions� The focus will be on ap�
plications that involve Monte Carlo integration and
attempt to improve its convergence by generating
speci�c sampling patterns�

��� Monte Carlo Integration

In the basic Monte Carlo integration technique� ran�
dom samples of a function f are taken and averaged�
Monte Carlo integration can be applied to rendering
��� �� 	� ��� as the global illumination problem can
be cast as a single integral equation ����� Antialias�
ing and motion blur are other important rendering
problems that require integration �	� �
��

The variance of the result in the basic Monte Carlo
approach decreases with O���N�� which is very slow
relative to other numerical integration techniques�
the standard deviation of the error decreases only by
O���

p
N�� Convergence can be improved by strat�

i�cation� importance sampling� and weighted esti�
mators ����all techniques that modify the sampling
pattern and�or the estimator�

����� Strati�cation

Strati�cation distributes samples evenly across the
domain of integration using binning� in an attempt
to avoid �clumping� of samples� Secondary strati��
cation of marginal sample distributions and decorre�
lation of the samples can also improve convergence
�����

In order to perform strati�cation� some knowledge
of how past samples were placed is required� either
explicitly �in the form of stored samples� or implic�
itly� e�g� parametric estimation of the sample density�
or a priori selection of bins� Strati�cation has limited
usefulness in more than two dimensions ��� ���� At
best� it can improve the convergence of the variance
to O�N��� in smooth regions of the integrand�

However� in antialiasing applications strati�ed
sampling patterns also shape the correlation func�
tion of the aliasing noise� shifting its energy to higher
frequencies and thus making it less noticeable to the
human visual system �
�� This fact� together with the
improvement of convergence� has inspired several al�
gorithms for generating sampling patterns with de�
sirable spatial characteristics ��	� �� �
� ���� The
theory of discrepancy analysis can be used to iden�
tify sampling patterns that are optimal relative to
speci�c analytic image models ��� ����

����� Importance Sampling

Importance sampling uses an estimate of the magni�
tude and�or variance of the integrand to guide sam�
pling to more interesting parts of the integrand�

An importance function de�nes the probability
distribution of the sampling pattern� The true
mean can be correctly estimated from importance�
distributed sampling by dividing the samples of the
integrand by the value of the importance function at
each sample point� It has been shown that using an
importance function which is a dominating factor of
the integrand best improves convergence�

There are many analytic techniques for generating
non�uniform samples ��  � ��� distributed according
to speci�c probability distributions� However� if the
importance function is not known in advance� or is
too di�cult to integrate� invert� and�or bound ana�
lytically� a general technique based on approximation
is useful�
An approximation to an importance function does

not have to be very accurate or smooth to improve
convergence� as long as the approximation can be
bounded and the actual value of the approximate
distribution can be accurately computed� However�



it is more convenient if the importance function is

in fact a good approximation to some factor of the
integrand� as it is then unnecessary to divide out the
importance function and multiply by a more accurate
value for that factor�

Algorithms have been developed that permit the
generation of strati�ed sampling patterns that can be
re�ned ���� ��� and�or be simultaneously distributed
according to an importance function ���� This gen�
eralized form of strati�cation tries to improve con�
vergence by choosing a sequence of samples whose
histogram converges more rapidly to the target dis�
tribution than arbitrary samples drawn from the tar�
get distribution�

Finally� if samples are generated non�uniformly�
they must be combined somehow without introduc�
ing bias� One technique that also improves conver�
gence for n �  is weighted averaging� which uses
the n�dimensional volume of the points closest to
a particular sample to weight that sample� It has
been shown that if the samples are generated inde�
pendently and the volumes of the corresponding d�
dimensional Voronoi cells are used as weights� then
the convergence of the variance will be O���N��d��
which is a great improvement in �D� good in �D� mi�
nor in 	D� and equal to or worse than crude Monte
Carlo in higher dimensions� It is unclear just how
strati�cation� importance sampling� and weighted re�
construction interact� however� the derivation in �� �
depends explicitly on the properties of completely
independent samples�

��� Representation of

Probability Distributions

In the discussion of Monte Carlo sampling techniques
above� two prior works present representations of
n�dimensional probability distributions from which
non�uniform sampling patterns can be generated�
the k�D tree data structure in ���� and the tensor
product B�spline model in �����

The k�D tree data structure in ���� was presented
in the context of hierarchical strati�cation and an�
tialiasing� A k�D tree is a binary tree whose internal
nodes subdivide space one dimension at a time� us�
ing axis�aligned splitting planes� This is illustrated
in Figure � for the case of a two�dimensional domain�

Sequential strati�cation starts with a single cell
and inserts a random sample into it� When another
sample is needed� the cell is split� The old sample
ends up in one half of the split cell� so the new sample

Figure �� A k�D tree adaptively subdivides space into
cells by splitting along one dimension at a time� The
representation in memory uses a binary tree data
structure�

is drawn from the other� empty subcell� This process
is repeated recursively� using a probalistic selection
strategy that results in a breadth��rst subdivision of
the tree and uniform or adaptive distribution of sam�
ples� Once all samples have been drawn� the integral
can be estimated by forming a piecewise constant ap�
proximation to the sampled function using the value
of the sample in each cell� This amounts to weighting
each sample by the size of the cell in which it lies�
This technique requires the storage of samples� but

could be used to incrementally drive a sampling pat�
tern to a desired importance distribution� while keep�
ing samples from becoming too clumped together�
It also automatically provides a weighted averaging
scheme� called hierarchical integration� for recombin�
ing samples and improving convergence for n � �
The k�D tree idea was re�ned in ����� where the

idea of using a per�node sample counter rather than
stored samples to control strati�cation was intro�
duced� This approach can still drive a sampling pat�
tern quickly towards a desired global probability dis�
tribution� but requires less storage�
In ���� tensor�product splines are proposed for the

representation of probability distributions� If the dis�
tribution is represented by

P �x� �
X
i

PiBi�x�

where the Bi are spline basis functions� then an un�
biased estimator of the probability distribution that
generated a sequence of samples xi is given by

Pi �
�

N

X
j

Bi�xj��

Generation of samples distributed according to a B�
spline basis function can be done using the urn inter�



pretation of B�splines� which for a uniform B�spline
basis function amounts to the sum of n uniform ran�
dom variables� Generating a sample from the com�
plete spline representation interprets P �x� as a mix�
ture� choose some i based on the discrete probabili�
ties Pi� then distribute the sample according to Bi�
This sample generation technique is not based on
warping� and so it is not possible to stratify samples
a priori� although it would be wise to at least drive
the actual selection of the i�s to match the discrete
distribution given by the Pi�s�
In Section � we will show how the k�D tree and

B�spline approaches are related via projection� and
will give the estimation technique above a simple ge�
ometric interpretation�

��� Other Applications

Two other applications of multidimensional sampling
patterns are worth mentioning in light of the algo�
rithm and data structure presented in this paper�
glyph distribution for volume visualization ���� and
dithering�
We give an example of the �rst application at the

end of this paper� Any algorithm which can gen�
erate strati�ed samples distributed according to an
importance function can be used for dithering� al�
though producing dithering patterns for real print�
ers requires attention to clustering� a problem not
addressed by the data structure given here�

� Functional k�D Trees

The probability tree data structure is built around a
k�D tree representation of a real�valued importance
function� This representation has the desirable prop�
erties of simplicity� space and time e�ciency� freedom
from dependence on a �xed number of dimensions�
and hierarchical adaptability� We obtain this result
by sacri�cing smoothness� a piecewise constant ap�
proximation is used�
A k�D tree subdivides a rectangular k�dimensional

domain into k�dimensional rectangular cells at its
leaves� By specifying a constant approximation to
a function over each cell� we can approximate the
function over the entire domain� To adaptively sub�
divide� an upper bound on the approximation error
is needed� further subdivision can be performed if
the error of the piecewise constant approximation ex�
ceeds a threshold�
The restriction of the k�D tree representation to a

bounded� rectangular domain can be removed by in�

troducing an appropriate nonlinear coordinate space
mapping� The Jacobian of this mapping can be built
into the probability distribution as needed� As long
as the mapping is a homeomorphism� the built�in
�exibility a�orded by the hierarchical representation
can adapt to the distortion�

There are several variations on this theme� The
splitting plane can always be in the center of the cell
being split� or can be movable� The dimensions being
split can cycle in a strict order� or the dimension
being split can be speci�ed in each internal node�

Here we consider only the simplest case� the split�
ting plane is always in the center of the cell being
split� and the dimensions being split cycle in strict or�
der� In addition� we assume that the approximation
to the function in our leaf cells is simply a constant�
so the overall approximation is piecewise constant�

There are obvious disadvantages to these simpli�
�cations� The volume of a cell can only decrease
by a factor of two at each level of the tree� and
so adapting the hierarchy to a function with a lot
of detail in a concentrated area will require many
levels in the tree�the approximation can only con�
verge linearly� In addition� one can easily construct
functions for which the dimension rotation rule will
construct unnecessary subdivisions� for example f �
x� y �� sin��x�� On the other hand� the subdivision
produced will be adaptive�

Constant approximation also has the very impor�
tant advantage that since the basis functions don�t
overlap� we don�t have to search an exponential num�
ber of leaves to �nd all the coe�cients a�ecting a
point�

A k�D tree approximation can easily be con�
structed bottom�up from a regular grid of samples
of the function� given a maximum depth all the leaf
cells are the same size� In addition� the storage per
node in the tree is very small� In fact� at a mini�
mum we simply have to distinguish an internal node
from a leaf� To handle probability and a constant
functional approximation� we will have to add a sin�
gle �oating�point or �xed�point number to each node
and leaf�

Consider brie�y how a speci�c leaf cell containing
the spatial position x � �x�� x�� � � � � xk� in a k�D tree
is found� As we descend the tree� the central dividing
plane of each node is compared with each coordinate
in turn� If xi is less than the position of the splitting
plane for dimension i� then x must lie in the lower
cell of a node that splits that dimension� otherwise�
x lies in the upper cell� In other words� the leaf cell
containing x is found by a rotating binary search�



� Non�uniform Generation

One approach to generating samples drawn from a
non�uniform probability distribution uses the inverse
of the cumulative distribution function� Alterna�
tively� we can use a hierarchical approximation to a
probability distribution� with analytic inversion over
a simple approximation as the base case� Both of
these approaches can be generalized to an arbitrary
number of dimensions�

��� Cumulative Distributions

To generate samples distributed according to an ar�
bitrary probability density function f�x�� the inverse
F���y� of the cumulative distribution function F �x�
can be used� with F �x� de�ned using

F �x� �

Z x

��

f��� d��

If y is a random variable over ��� ��� then x � F���y�
will be distributed according to f�x��
Since f�x� is non�negative� F �x� is always mono�

tonic� and the inverse exists� Actually� since f�x�
could be locally zero� F �x� might not be strictly
monotonic� That happens not to matter� we can
easily resolve the ambiguity in the evaluation of the
inverse because samples are never generated over re�
gions with probability zero�

0
x

1 F

f

y

Figure �� The inverse of the cumulative distribution
function can be used to generate samples distributed
according to a given probability density� Here the
probability density is piecewise constant� so the cu�
mulative distribution is piecewise linear�

Assuming we have a representation of y � F �x��
since F is monotonic given y we can �nd x using
binary search as in Figure ��
To generalize to a higher number of dimensions� we

need to generate a univariate marginal cumulative

distribution function by integrating out all but one
parameter� Once we have inverted one dimension�
we invert the resulting conditional cumulative distri�
bution over the remaining dimensions� It does not
matter in which order we eliminate variables � � ��
We can generalize this structure� the processes

of marginalization and conditioning can be inter�
changed� and performed over regions rather than en�
tire dimensions� leading to a hierarchical cumulative

distribution which can be represented in a k�D tree�

��� Hierarchical Representation

Construction of a probability tree approximation to
a probability distribution de�ned over a rectangular
region R proceeds recursively as follows�

�� Base case� If an adequate approximation of the
given probability density f over R is possible�
create the approximation and return it as a leaf
node�

�� Otherwise� create an internal node that splits
dimension �i ! �� mod k� if the last dimension
split was i�

	� Using the splitting plane� subdivide the domain
R into two non�overlapping subdomains P� and
P��

� Compute the marginal probabilities pj for each
subregion Pj by integrating the given probabil�
ity density f over Pj �

 � Store the value p���p� ! p�� at the node� This
is the probability that a random sample point
will appear in region P�� given that it appears
in region R� or p� � Pr�x � P�jx � R��


� Recursively generate representations of the con�
ditional probability densities f�xjx � Pj� for
each subregion�

Once the tree is generated� to generate a ran�
dom sample �rst choose k uniform random numbers
yi � ��� ��� then descend the tree starting from the
root� At a node splitting dimension i� descend the
upper subtree if yi 	 p�� and the lower subtree oth�
erwise� At each step� renormalize yi to the total
relative probability of the subtree� At a leaf� ana�
lytically invert the local approximation to the prob�
ability density� If the approximation is constant� the
inversion is simply a linear interpolation�
A formalization of the descent algorithm is given

in Figure � This descent algorithm can be inter�
preted as a multidimensional� rotating binary search
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Figure 	� A hierarchical representation of a proba�
bility distribution integrates over subregions�

that inverts the �hierarchical� cumulative distribu�
tion function� The search region is contracted one
dimension at a time by conditioning the probabil�
ity distribution to smaller and smaller regions� At
the leaves� we again invert the analytic form of the
approximation to the probability distribution�

� Uni�cation

The uni�cation algorithm presented in Figure  takes
a k�D tree representation of a probability distribu�
tion over k dimensions and interlaces a rotating bi�
nary search for position with a rotating binary search
to invert the probability distribution�

Suppose some number n of the variables are �xed�
i�e� have given values� The k�n others are free� and
we would like to generate random values for them
according to the conditional probability distribution
given by the �xed variables� For each of the free vari�
ables� uniform random numbers between � and � are
generated to seed the algorithm� Then the uni�ca�
tion algorithm descends the tree� For �xed dimen�
sions� the choice of child cell is made by comparing
the �xed coordinate with the position of the splitting
plane�doing a rotating binary search on spatial po�
sition� For the free dimensions� the choice of child cell
is made by comparing the value of the correspond�
ing random seed number with the threshold stored
in the cell�doing a rotating binary search to invert
the hierarchical cumulative distribution function� At
a leaf node� we invert the free variables analytically�

We also return the joint probability density at the
generated point� since that value is stored at the leaf�

REAL

Generate �INT k� REAL y�k�� VAR x�k��

REAL lower�k�� upper�k��

i �	 
�

WHILE NOT node INSTANCEOF Leaf DO

�� Update cell bounds

middle �	 �lower�i� � upper�i����
�

�� Choose upper or lower branch and

�� renormalize

IF node�f � y�i� THEN

lower�i� �	 middle�

y�i� �	 �y�i� � node�f�����
 � node�f��

node �	 node�upperTree�

ELSE

upper�i� �	 middle�

y�i� �	 y�i� � node�f�

node �	 node�lowerTree�

ENDIF�

�� Rotate to next dimension

i �	 �i��� mod k�

ENDWHILE�

�� Invert normalized free variables

FOR i�	
 TO k DO

x�i� �	 y�i���upper�i��lower�i���lower�i��

ENDFOR�

�� Leaf cell contains function value

RETURN node�f�

Figure � Pseudocode that generates a sample from
a hierarchical representation of a probability distri�
bution�

Note that this value is not a sample of the conditional
density� In order to compute the actual conditional
density we would need to �rst generate a sample of
the marginal density by walking the appropriate sub�
set of the tree and summing all cells that intersect
the k� n dimensional subspace de�ned by the given
combination of �xed and free parameters� Dividing
the joint density by the value of the marginal den�
sity would give the value of the conditional density�
Once we knew the marginal density for a given set of
�xed parameters we could reuse it for all conditional
samples�

It is not immediately apparent that interlacing
these two binary searches in this way is valid� How�
ever� given the way we have constructed the proba�
bility tree� each subtree represents a probability dis�
tribution conditioned over just its subdomain�

As a base case of an inductive proof of the validity
of this algorithm� we know the analytic inversion at a
leaf is valid� Assuming the inversion of each subtree
is valid� at a node splitting a free dimension we deter�



REAL

Unify �INT k� REAL y�k�� VAR x�k��

BOOL fixed�k��

REAL lower�k�� upper�k��

i �	 
�

WHILE NOT node INSTANCEOF Leaf DO

middle �	 �lower�i� � upper�i����
�

IF fixed�i� THEN

IF middle � x�i� THEN

lower�i� �	 middle�

node �	 node�upperTree�

ELSE

upper�i� �	 middle�

node �	 node�lowerTree�

ENDIF�

ELSE

IF node�f � y�i� THEN

lower�i� �	 middle�

y�i� �	 �y�i� � node�f�����
 � node�f��

node �	 node�upperTree�

ELSE

upper�i� �	 middle�

y�i� �	 y�i� � node�f�

node �	 node�lowerTree�

ENDIF�

ENDIF�

i �	 �i��� mod k�

ENDWHILE�

FOR i �	 
 TO k DO

IF fixed�i� THEN

x�i� �	 y�i���upper�i��lower�i���lower�i��

ENDIF�

ENDFOR�

RETURN node�f�

Figure  � Pseudocode for the uni�cation algorithm�

mine if the generated sample point lies in the upper
or lower subregion� and pick the appropriate con�
ditioned probability distribution using the marginal
cumulative distribution� At a node splitting a �xed
dimension� similar reasoning applies� we condition
the probabilities of the subtrees on the knowledge
we have about the �xed parameter� Given the non�
overlapping nature of the subregions� one subregion
will have conditional probability � and the other will
have conditional probability ��

Note that each step of the uni�cation algorithm in�
volves only a comparison� perhaps some trivial com�
putation to update the position of the splitting plane�
and possibly a renormalization� We show renormal�
ization on the �y� in fact� renormalization can be
built into the values stored at each node� Therefore�
the algorithm is relatively fast� depending only on

the depth of the tree� With precomputed normaliza�
tion the algorithm is also symmetrical� it being no
more expensive to make a decision with respect to a
free variable than with respect to a �xed one�

The probability thresholds de�ne a dual tree with
movable splitting planes� we could imagine an equiv�
alent representation of a probability tree where every
cell at a given depth had the same probability� with
the spatial position of the splitting plane adjusted
rather than the probability threshold�
The simple rotating�dimension approach to gener�

ating k�D tree representations of distributions may
create unnecessarily deep trees� and this will impact
both the running time and the storage cost� It is
possible to extend this algorithm to trees with m�
way splits at each internal node� with splitting di�
mensions stored at nodes� and with movable planes�
An interesting question when the last two options
are combined is the generation of optimal represen�
tations of probability distributions�

� Strati�ed Sampling

The k�D probability tree as described is a warping
function from ��� ��k to the domain of the probabil�
ity distribution� Strati�ed importance sampled pat�
terns can be generated by warping a uniform strati�
�ed sampling pattern�
In Figure 
 we show an k�D tree approximation

to a function� and both a strati�ed and unstrati�ed
importance function sampling patterns distributed
over it� along with histograms of these sampling pat�
terns� The relative error tolerance is relatively large
in these examples ������ to show the structure of
the approximation� The uniform strati�ed sampling
pattern was generated by jittering on a regular grid�
with full subcell coverage�

A visualization of the warp induced by our k�D
tree data structure is shown in Figure �� Observe
what happens to the shaded square in this diagram�
the warp is not continuous� it can shear cells� break�
ing them up into subcells� At each level of the tree�
each subdomain is stretched linearly to map a spe�
ci�c proportion of the input domain to one side or
another of the splitting plane�

� Higher�Order Representations

As pointed out in �� � ���� B�spline basis functions
are just projections of appropriate convex polytopes
from higher dimensions� In particular� B�spline basis



            

Figure 
� Strati�ed sampling with a probability tree�
a� the test function� b� the probability tree with

 � ���� c� a strati�ed importance weighted sam�
pling pattern and histogram� d� a non�strati�ed im�
portance weighted sampling pattern�

functions can be represented as projections of sim�
plices or hypercubes� and many of the familiar prop�
erties of B�splines�partition of unity� subdivision�
recurrence�can be derived from geometric consider�
ations�
This observation can be used to connect the B�

spline representation in ���� with the k�D tree rep�
resentation� Consider Figure �� In this diagram�
a piecewise linear probability distribution is gener�
ated by projecting a piecewise constant probability
distribution along a skew axis� Each box in the con�
stant approximation projects down onto a single B�
spline basis function� The �ray� R pierces several
cells of the k�D tree� If this ray were a sample and
we needed to determine how to distribute its contri�
bution among the cells in order to estimate a prob�
ability density� one approach would be to take the
size of the intersection of the ray with each cell� But
this size is just the value of the basis function Bi at
the position of the ray� so we obtain the following
estimator�

Pi �
�

N

X
j

Bi�xj��

In general� the �ray� will not be one�dimensional�
but the principle remains the same� The particu�

Uniform Jitter Warped Jitter

Figure �� Strati�ed sampling is accomplished by
piecewise linear warping of a uniform strati�ed sam�
pling pattern�

lar projection shown gives rise to uniform B�splines�
but projections for tensor product splines� simplex
splines� B"ezier splines� and box splines can also be
de�ned�
This diagram immediately raises these new pos�

siblilities� but also points out several �aws in both
the k�D tree and spline representations of probability
distributions� First of all� note how sample genera�
tion works� a sample is distributed across a cell� but
then the extra dimension is thrown away when the
sample is projected� It will be very hard to strat�
ify samples in the �marginal distribution� without
an auxiliary data structure� strati�cation within the
k�D tree will help� but will not be ideal� Secondly�
note that the k�D tree data structure is redundant�
two of the cells that intersect the ray shown project
onto exactly the same support� This redundancy can
be removed by using a DAG rather than a tree� but
that complicates subdivision� as now a search�and�
merge step is required� Therefore� the k�D tree is
probably not the best representation of a spline�
although note how simple the representation of hi�
erarchical spline basis functions are� Finally� note
that evaluating the value of a density is more com�
plex with a spline representation�the contributions
of several basis functions need to be summed�

	 Glyph Distribution

As shown in ����� three�dimensional strati�ed
importance�weighted sampling patterns can be use�
ful for volume visualization� Glyphs�small� easily
rendered shapes�are generated at random points ac�
cording to a function that identi�es the interesting
parts of the volume� The shape� orientation� size�
and�or colour of the glyph may then be modi�ed



R

Figure �� A higher�order hierarchical spline proba�
bility density approximation can be viewed as the
o	�axis projection of a piecewise constant approxi�
mation�

according to the values of the three�dimensional vec�
tor or scalar function being visualized� Strati�cation
minimizes the number of collisions between glyphs�
Both volume densities and isosurfaces of scalar func�
tions can be visualized by picking the importance
function appropriately�

In Figures �� ��� and �� we show the result of
using our probability tree to represent a scalar vol�
ume �HIPIP� from the Chapel Hill test data set� and
generate glyph distributions� We orient the glyphs
according to the gradient of the scalar volume den�
sity� estimated according to the 	� 	 operator given
in ��
��
            

Figure �� A scalar volume density is visualized by
using the scalar value to control the density and ori�
entation of glyphs�

Using the hierarchical Poisson disk algorithm in
��� to generate sampling patterns as in ���� has
an advantage here� denser sampling patterns reuse
old glyph positions� providing a smoother transition
when the number of glyphs changes� The current al�
gorithm does not have this property� unfortunately�
but has the compensation that �glyph slices� can

            

Figure ��� A isosurface is visualized by using a de�
rived importance function 
here a Gaussian about
the threshold value��
            

Figure ��� A glyph slice can be extracted by �xing
one dimension and using uni�cation to distribute the
glyphs in the remaining dimensions�

be extracted by �xing one coordinate before uni�ca�
tion� as in Figure ��� Also� no precomputed tables
are required�other than the probability tree repre�
sentation of the importance function� A probability
tree representation of a scalar volume could also be
used for direct volume rendering� after ����

�
 Conclusions

A simple data structure has been presented that
can represent a multidimensional probability distri�
bution� and can generate samples drawn from that
probability distribution or from various conditional
distributions based on the original distribution� An
interpretation as a warp permits space�e�cient strat�
i�ed sampling�
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