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Abstract

One way to overcome the limitations imposed by
analytical models of reflection 1s to use discretely
sampled reflectance data directly. Through either
empirical measurement or simulation, a bidirectional
reflectance distribution function (BRDF) is sampled
and stored as a table of numbers. The generality of
these tabulated BRDFs is useful for generating re-
alistic images, but the inevitable inaccuracy associ-
ated with the data gathering process can lead to a
BRDF that is much more general than it needs to
be, or that lacks certain physical properties.

In this paper we propose measures for several
properties of tabulated BRDFs: reciprocity, energy
conservation, isotropy, and separability. Techniques
to transform tabulated BRDFs to match one or more
of these properties are also described. These trans-
formations allow compression of the BRDF data,
elimination of noise, improved computation time
in some rendering tasks, and improved compliance
with physical laws.

Une fagon de pallier les lacunes imposées par
les modeéles de la réflexion analytique est d’utiliser
directement les données de réflexion mesurées
discrétement. Par la mesure empirique ou la simula-
tion, une fonction de distribution de réflexion bidi-
rectionnelle (FDRB) est acquise par échantillonage,
et mise en mémoire comme une table des nombres.
La généralité de ces FDRBs tabulaires est utile pour
générer des images réalistes, mais l'inexactitude
inévitable associée avec la méthode d’aquisition des
données peut produire une FDRB qui est beaucoup
plus générale que nécessaire, ou qui manque cer-
taines propriétés physiques.

Cet article propose des mesures pour quelques
propriétés des FDRBs tabulaires: la réciprocité, la

conservation d’énergie; I'isotropie, et la séparabilité.
Des techniques pour transformer les FDRBs tab-
ulaires pourqu’elles possédent ces propriétés sont
aussi décrites. Ces transformations permettent la
réduction des données de la FDRB, I’élimination du
bruit, moins de temps de calcul pour produire les im-
ages, et une meilleure conformité aux lois physiques.

Keywords:  Local illumination, BRDF, tabulated
BRDF, singular value decomposition

1 Introduction

1.1 Bidirectional Reflectance Distri-
bution Functions

Consider the geometry in Figure 1. Light arriving
at a differential surface area dA through a solid an-
gle dw; from direction uj is reflected in some other
direction ;. The amount of reflected radiance L,
is proportional to the incident irradiance F.

dL, = dE (1)

The constant of proportionality in Equation 1 is
called the bidirectional reflectance distribution func-
tion, or BRDF. It is expressed as

dL, dL,
T dE L;cos;dw; (2)

The BRDF is a function in four variables (a
polar and azimuth angle for each of the inci-
dent and reflected directions). Tt is often written
fr(@i, 05, ¢p,0,) to express this dependency explic-
itly.



Figure 1: Shading Geometry

1.2 Tabulated BRDF's

In practice, the BRDF values are usually obtained
from an analytical local illumination model. Most
models in use are limited in the number of surfaces
they can represent. There have been several recent
attempts to obtain more realistic reflectance data
through either empirical measurement or simulation.
BRDF data obtained from such techniques can be fit
to parameters of an illumination model[10], but can
also be used directly[1, 4, 12]. In this paper we are
concerned with the latter.

Since BRDFs of this type are usually in the form
of a table of numbers, we term them tabulated
BRDFs, or TBRDFs. Without loss of generality, we
will assume in the rest of this paper that our data
is monochromatic. In the case of irregular samples,
each of the ny samples will be characterized by a
b-tuple, the jth sample being:

(¢ija9ija¢7‘ja97‘jaf7‘(¢ija9ija¢7‘ja97‘j)) (3)

In the case of a regular sampling grid, the number
of samples n;_in general is

ng,. = N, Ne,Ng Ne, (4)

where ngy,, ng,, ng,, and ng_ are the number of sam-
ples in the incident azimuth, incident polar, reflected
azimuth, and reflected polar directions, respectively.

When obtaining tabulated BRDFs, measurement
from physical samples is desirable, but is difficult
since gonioreflectometers are expensive, quite slow,
and the data from them is often quite noisy. Ward
addressed the issues of cost and speed[10], but his

technique results in nonuniform samples, complicat-
ing direct use of his data.

Cabral et al introduced the idea of sampling a
BRDF by casting rays into a microgeometry[1]. This
has become a popular technique for obtaining ar-
bitrarily complex BRDFs[4, 12], since it is highly
controllable, repeatable, and relatively fast. The
BRDFs used as examples in this paper were either
computed analytically or were obtained from such a
virtual gonioreflectometer.

1.3 Motivation

Since TBRDFs are often obtained experimentally
from real surfaces, they are much more general with
regards to the kinds of surfaces they can represent.
However, they suffer from the disadvantages asso-
ciated with physical measurements, including both
mechanically and experimentally induced errors. It
would be useful to eliminate or reduce the impact of
these errors before the measured BRDFs are used in
rendering tasks.

For this reason, we are interested in examining
properties of a BRDF that indicate how much er-
ror was introduced by the measurement process, so
the BRDF data can be corrected. Since measured
BRDFs are often very large, it would also be use-
ful to examine properties of a BRDF that indicate
how much accuracy would be lost if the BRDF data
were compressed by making simplifying assumptions
about its structure.

2 Measuring
ties

BRDF Proper-

In this section, we present techniques for measur-
ing four properties of tabulated BRDFs. The first
two properties, reciprocity and energy conservation,
express how close the TBRDF is to obeying physi-
cal laws. Lewis termed this physical plausibility[6].
Measured tabulated BRDFs should in theory be
physically plausible by virtue of the way they are
created. However, systematic errors and/or noise
can be introduced by a gonioreflectometer, causing
the resulting TBRDF to be implausible. TBRDFs
obtained with a virtual gonioreflectometer may lack
plausibility because of shortcomings in the underly-
ing reflection model used to reflect light into the mi-
crogeometry. These measures, and the correspond-
ing transformations presented in Section 3, are at-
tempts to measure and eliminate the consequences
of these phenomena.



The last two properties, isotropy and separability,
can be thought of as measures of compressibility,
since the associated transformations in Section 3 re-
sult in considerable space savings.

It should be noted that we are not attempting to
measure how much effect these BRDF properties will
have on generated images, but simply the properties
themselves. This is an important distinction, since
the former is so highly dependent on rendering pa-
rameters. The shape of an object, the lighting, and
the viewing position can all greatly affect how much
certain BRDF properties affect an image. Such an
undertaking would necessitate a separate investiga-
tion.

For consistency, each of the measures has been for-
mulated so that a value of zero implies the BRDF
fully possesses the given property. Each of the mea-
surements can vary from zero to infinity. The values
obtained from these measurements are not depen-
dent on the number of samples, meaning that mea-
surements from two tabulated BRDFs of different
resolutions are comparable.

2.1 Reciprocity

Helmholtz’s reciprocity rule states that if the inci-
dent and reflected directions are reversed, the value
of the BRDT should not change[9]. In the case where
for every incident sample position (¢;, ;) there is a
reflected sample position (¢, 6,) such that ¢; = ¢,
and #; = 6,, then the reciprocity can be measured
by averaging the square of the difference between
all pairs of incident and reflected directions. This is
achieved with the sum

r\®i, gia T 0r)— ’
Z¢’ ZG, Z¢r ZGr fff?dh‘a 9T¢a>¢ia 62) :|

P =
2ny,ne,np.Np,

(5)
Notice that we place an additional 2 in the
denominator to account for the fact that
each pair actually occurs twice in the sum,
Le. fr(¢i,9ia¢r,9r) - fr(¢r,9ra¢i,9i) and
fr(¢r,9ra¢i,0i) - fr(¢i,9ia¢r,9r)~
When the samples are on a regular grid, but the
pairs are not necessarily matched, then to find the
value fr(¢r, 0, ¢;,0;) to match f.(¢i,0:, ¢r,0,) we
need to interpolate between samples. This can be
most easily done using quadrilinear interpolation
within the hypercube formed by the 16 samples sur-
rounding the tuple (¢, 0, ¢;, 6;).
The irregular grid case leaves us with the difficult
problem of interpolating between non-uniform sam-

ples. One technique is to take the j samples that
are closest to the desired sample position (where j
is sufficiently large) and to interpolate them with a
suitable filter kernel. A useful choice in this case
is a quadrivariate Gaussian with a standard devia-
tion on the order of the mean distance of the sample
points from the desired point.

It should be noted that an assumption of reci-
procity is sometimes made when measuring BRDFs
from physical samples in order to reduce the number
of samples required. In this case, P. will necessarily
be zero.

2.2 Energy Conservation

The law of energy conservation says that the total
amount of exitance M must be less than or equal
to the total amount of incident irradiance E. For a
given incident direction wj, the ratio of M to F is
expressed as
% = frs = @) (N -wy) dwy (6)
Qn

For a BRDF f,. to conserve energy, % must be less
than or equal to one for all possible values of ;.

Notice that an integral over the hemisphere is
equivalent to a double integral over the polar and
azimuth angles. Recall that the integral in Equa-
tion 6 1s in terms of the reflected solid angle dw,,
which is not uniform as 6, varies. Noting that
dw, = df.d¢,sinf, and that (N -w;) = cosf,, we
can express the integral as

% :/ / £ (6105, 6r, 0,) sin 0, cos 0, dO, db,
o0y
(7)

When the samples are uniform in the 8 and ¢ di-
rections, we can easily approximate the integral with
a sum. For consistency, we subtract one from the re-
sulting integral so that energy conserving behavior
will be expressed as zero. This yields

fT(¢ia9ia¢7"97‘)'

sin @, cos 8, - -1)

A¢r A,
(8)

where A¢, and A#, are the radian distance between
samples in the reflected ¢ and ¢ directions respec-
tively.

Since we are interested in energy conservation of
the entire BRDF, we take the average of all " values,
giving us our final measure.

b _ ZaTal(0nh) o

Ne, N,

T'(¢;,0;) = max(0, Z Z
or By




Notice that there is no need to assume that the sam-
ples are uniform in the #; and ¢; directions.

When the samples are irregular in all directions,
we need another way to approximate the integral.
A good method in this case is to triangulate in
2D the set of samples for a given incident direc-
tion ;. For each of these triangles, Equation 6 is
the “differential-to-finite form factor” of the trian-
gle with respect to the infinitesimal surface element
dA. This can be computed using classic methods
such as the Nusselt analog. The integral T'(¢;, 6;) is
then obtained by summing the terms from all the
triangles.

2.3 Isotropy

In general, BRDFs as described in Equation 2 are
anisotropic, meaning that the reflected radiance
varies as the surface i1s rotated about the normal
N. In contrast, an isotropic BRDF remains con-
stant under such a rotation, and can be expressed
as

fr(¢ia6ia¢7‘a97‘) :fyl:so(gia¢7‘_¢ia67‘) (10)

This simplification can reduce storage and compu-
tational costs considerably. In the case of regular
samples, this reduces the total number of samples
in Equation 4 to

ng = ng,ng.ne, (11)

To measure the isotropy of a tabulated BRDF in
the simple case where ng, = ng, , we start by com-
puting the average BRDF value for the set of angles
where the difference between ¢; and ¢, 1s the same.
We use the shorthand ¢4 = ¢, — ¢; to denote this
difference.

r iagia i+ agr

We are interested in the average deviation from the
mean p;, expressed as

2

fT(¢i’€ia¢i + ¢+a67“)_
2o, 1501, 64.0,)

N4,

O-i(gia ¢+a 97‘) =

(13)
This is equivalent to taking the standard deviation
of all BRDF values for a given (6;, ¢4, 0,).

To obtain our final measure of isotropy, we sim-
ply average the o; values over all possible values of

(0:, 94, 0,)

= Ze’ Z¢+ Zer O-i(gia ¢+, 97«)

ng; Mg, 19,

P; (14)

In the irregular grid case, it is necessary to choose
a set of ¢4 values, and for each sample value com-
pute fr(¢i,0:,¢; + ¢4,0,) using the interpolation
methods described in Section 2.1. The resulting sets
of BRDF values can be used in the computation of
i in Equation 12.

2.4 Separability

To say that a BRDF is separable, we mean that it
can be represented as a product of two functions,
one for the incident light and one for the reflected

light.

Fr(i, 0,60, 0,.) = FI7 (00, 0:) x £ (6r,0,)  (15)

This removes the cross-dependence between the in-
cident and reflected directions, thereby requiring
much less storage space.

ng = ng,ne, +ng,ng, (16)

An additional benefit is that radiosity computations,
like those described by Cohen and Wallace[2], can be
done efficiently with non-Lambertian surfaces[T7].

For the discussion of separability, we will assume
that for every pair (¢;,6;) there is a pair (¢,,0,)
with the same direction. If this is not the case, such
as in some experimental measurements, we have to
generate the missing pairs using interpolation, as de-
scribed in Section 2.1. Of course if we assume that
reciprocity holds, then the required values can be
generated trivially.

Consider a @ x ) matrix A where the rows corre-
spond to a lexicographic ordering of the pair (¢;, ;),
and the columns correspond to a lexicographic or-
dering of the pair (¢,, 8, ). If we then fill the matrix
A with the BRDF values, we can think of the two
separated functions fi* and f%' as two vectors u
and v whose outer product results in A. To find u
and v, we must factor A. The singular value de-
composition (SVD) numerical technique is ideal for
this, as 1t allows us to derive a measure of how close
to factorable A is, as well as actually determine the
most probable values for u and v (Section 3.4)2.

I'Note that in the case of a reciprocal TBRDF, the matrix
A will be symmetric.

2For more details on the SVD, the reader is directed to
the book by Watkins[11].



The singular value decomposition separates A into
three matrices.

A=UDVT (17)

In the above equation, U/, VT and D are all Q x Q
matrices. D is a diagonal matrix containing the sin-
gular values of A (in descending order). The number
of non-zeros in D specifies the rank of A. For us, the
rank 1s important because 1t indirectly indicates how
close A is to being separable. If A has a rank of one,
meaning that D is zero except for dip, then there
is an exact solution for u and v, and the BRDF is
separable. To measure how close to separable the
function is, we define another Q x @Q matrix D).

dy 0 - 0
0 0 0

DM = L (18)
0 0 0 0

We then substitute D) for D and re-multiply to ob-
tain A1) the matrix of rank one based on A. Notice
that the sparse nature of D) allows this multipli-
cation to be performed quickly.

AW = ypWyT (19)

The magnitude of the difference between A() and
A gives us a measure of separability. We measure
this magnitude similar to the Frobenius norm of the
difference matrix, except that we divide each square
by the total number of elements in the matrix. This
removes the dependence of Ps on the number of sam-
ples.

— A
Ps — Pq pq 20
ZZ%W om0

In the SVD, A 1s expressed as a weighted sum of
outer products of the columns of U and the rows
of VT with the singular values acting as weights.
Equation 20 only deals with expressing A as the
product of the first such column and row. Fournier
showed in [3] that expressing a BRDF as a sum of
separable function products is desirable: the advan-
tage of improved radiosity computation is not lost,
and a larger subset of all BRDFs can be separated.
If a BRDF can be expressed as a sum of k£ sepa-
rated functions, we say that it is k-separable. The
k-separated BRDF is reconstructed as:

k
fr(¢ia9ia¢7‘a r Z OUt ])] (21)

j=1

To measure k-separability, we find the closest ma-
trix of rank £ to A. This is done by removing all
but the k largest singular values from D.

dip 0 0 0 0 0
0 dys 0 0 0 0
0 0 0 0 0
DF = 0 0 dix O 0| (22)
0 0 0 0 0
L0 0 0 0 0 ]

We then re-multiply to get the rank & matrix A%,
A% = g pRyT (23)

(k)

This allows us to measure the k-separability Ps

A —
Ps(k) — Z Z n(;:;lw (24)

nmne

3 BRDF Transformations

We may wish to change a tabulated BRDF to match
one or more of the four properties covered in the pre-
vious section. Doing so with the properties of reci-
procity and energy conservation makes the BRDF
physically plausible. Doing so with the properties
of isotropy and separability compresses the BRDF
by changing the data to fit these two simplifying as-
sumptions.

We may also wish to change the BRDF to be
closer to a certain property, placing it intuitively in
between the original BRDF and one matching the
property. For this purpose, we define a constant d,
which indicates how close to a given property the
BRDF should be. In each section, we will first show
how to transform a BRDF to match the property
(0 = 1), and then generalize the technique to allow
for more gradual transformations (0 < ¢ < 1).

If the values of the TBRDF are obtained exper-
imentally, then they may come with an error esti-
mate. In this case all of the linear combinations used
below should be changed to weighted sums, where
the normalized weights are inversely proportional to
the estimate of the errors at each data point.



3.1 Reciprocity

To make a tabulated BRDF reciprocal, we simply set
each value to the average of itself and its reciprocal.

r i’gi’ 7‘;97' r TagTa iagi
F7 (60,05, 6, 0,) = L2 (0020060 00) + 1 (00,60, 64,01)

2
(25)
To make the BRDF more reciprocal, we linearly
interpolate between a given sample and the average
between that sample and its reciprocal. This gives
us

fyl'(¢la gia ¢7‘a 97.,(5) =
(1 - 6)f7“(¢la gia ¢ra gr) +
6f:‘(¢ia9ia¢7‘a97‘) (26)
As mentioned above, these values can be weighted
according to their error estimates. This is especially
important in the case of irregular samples, since in
general one value will be measured and the other will
be the result of interpolation, giving it a different
confidence interval. Estimating the confidence inter-
val for the interpolated values is a non-trivial prob-
lem without an underlying reflection model, since a
model would have to be available to determine the
confidence interval at an arbitrary sample position.

3.2 Energy Conservation

If a tabulated BRDF does not conserve energy, it
is because the total energy reflected is greater than
the total energy received. It therefore seems natural
to reduce every BRDF value associated with a given
incident direction by a scalar sufficient to ensure en-
ergy conservation. For a given incident direction,
this can be thought of as uniformly reducing the
“size” of the BRDF.

Recall the definition of T'(¢;,6;) in Equation 8.
We wish to divide each BRDF value by a constant
factor x that will make T'(¢;, ;) be exactly zero.

Z Z[Msm 0, cos 0, Ad,Ab]—1 =0
X
ér 6y

(27)
é Z Z[fr(¢za 0;, ¢y, 0r)sin b, cos b, Agp.Ab,] =1
or Or

(28)

L _ 1
' Zm >0, (i, 0:, 67, 0,) sin 0, cos 0, Ap, AD,]
(29)
x=T(¢i, 0;) +1 (30)

Therefore for a given incident direction, our factor
is simply T'(¢:,0;) + 1, resulting in the definition for
an energy conserving BRDF.

fT(¢ia9ia¢Ta67‘)

°¢ i’ 92’ /’" 6/" e —
246 i Or) = T

To transform a tabulated BRDF to be closer to

conserving energy, we simply multiply T'(¢;,6;) by
J.

(31)

r iagia 7‘a97‘
f;‘(¢ia9ia¢7‘a97"6) = %

It could be argued that this technique is some-
what artificial. It only changes those incident direc-
tions that violate energy conservation by clamping
the data to the maximum that is theoretically plau-
sible. There are two main problems with this. First,
the scaling operations that are performed are not
uniform since the scalar is different for each incident
direction. Second, scaling the data to make % have
a value of exactly one may obey physical laws, but
the case could be made that it is not realistic. No
surfaces in the real world exhibit such ideal behav-
ior. Even the most perfect reflectors ever observed
still have values of 2L less than one.[5].

The first concern can be addressed by choosing
one scalar value for the entire BRDF. This scalar
would be chosen based on the maximum of all values
of T'(¢i,0;), changing Equation 31 to

fr(¢ia gia ¢7" 67‘)
maxwhel) [F(¢ia 92)] +1

The second concern can be dealt with by clamping
to some value 7 such that 0 < 7 <= 1. This
anges the definition of T'(¢;, 6;) in Equation 8 to

fT(¢ia6ia¢ra9r)'
T'(¢;,0;) = max(0, Z Z sin @, cos .-
o 0 Ad, Ab,

(32)

ffc(¢)i’9i’¢)r’97.) = (33)

M
E
ch

—7)

(34)
The energy conserving BRDF is then computed by
changing Equation 31 to

T 'fT(¢ia9ia¢7"97')
U(¢:,0:) + 7

J7(¢i,0i, 60, 0,) = (35)

3.3 Isotropy

Transforming a tabulated BRDF to be isotropic is
very simple. The average BRDF value y; from Equa-
tion 12 is used for all values with the same difference
between ¢, and ¢;. This yields

£, 64,00) = pilb;, 64.6,) (36)



To make a tabulated BRDF more isotropic, the
value is linearly interpolated between f, and p;.
This results in

fyl'(¢ia9ia¢7‘a97"6) =
(1 - 6)f7‘(¢ia9ia¢7‘a97‘) +
i (0i, o — 6, 0r) (37)

3.4 Separability

Recall from Section 2.4 that separating the BRDF
is equivalent to factoring a matrix A into the outer
product of two vectors u and v. When all but the
largest of the singular values in D are zeroed, it be-
comes evident that the only numbers affecting A(")
are the first column of U and the first row of V7.
Therefore, u is taken to be the first column of U,
and v the first row of V7. This gives a definition for
f;n and fotB.

JiM(64,0:) = duyuy (38)

£ (6r,0r) = vq (39)

Finding the kth separable component simply in-
volves using the kth column of U/, u(*) and the kth
row of VT v(¥),

£ (6:,0;) = dyull) (40)
£y, 6,) = o) (41)

This 1s identical to Fournier’s technique of separat-
ing a BRDF into a sum of k separable models[3].

If a value of § < 1 is chosen in order to make a
BRDF closer to k-separable, it is obvious that f,
cannot be separated into f" and f°*!, but the par-
tially transformed BRDF is expressed as

£, 05,00, 00,0) = (1= 8) Apg + A% (42)

4 Experiments and Results

Figure 3 shows an example of performing a reci-
procity transform on a Phong BRDF where P, =
0.117646. Lewis showed in [6] that Phong shaders
are never reciprocal. Performing the transformation
resulted in a noticeable change in the BRDF data.
However, differences in P, do not seem to affect ren-
dered images a great deal.

Figure 4 demonstrates transforming a BRDF to
conserve energy. At the left is a plot of a Phong

3In Equations 38 through 42, p = ¢ding, + 0; and ¢ =
(brner + Or.

BRDF where P.. = 0.160301 (6; = 50°), and to the
right of that is the energy conserving version. The
reduction in size is more subtle than in the two right-
most plots, where the incident polar angle is larger
(f; = 90°). This is exactly what is expected since
Phong’s energy conserving behavior becomes worse
at large incident polar angles. Again, the visual
difference in rendered images is usually negligible.
However, the underlying difference between the two
BRDFs is very important, especially if the BRDFs
are used in global illumination computations.

Figure 5 shows an example of transforming a
BRDF to be isotropic. This anisotropic BRDF
that simulates brushed metal was generated by run-
ning a microgeometry of parallel cylinders through a
virtual gonioreflectometer®. The resulting isotropy
measurement was P; = 0.0319745. On the left
teapot, notice the specular highlight running along
the base. This corresponds to the scratches in
the brushed metal surface. On the right teapot,
the BRDF has been transformed to be completely
isotropic (0 = 1.0). Notice the difference in the
specular highlight. Figure 6 shows plots of sev-
eral scratched metal BRDFs. The one on the left
is the original BRDF used in Figure 5. The one on
the right is the isotropic version used in Figure 5.
The middle one is halfway between the other two
(0 = 0.5).

Figure 7 demonstrates separating a BRDF. The
microgeometry on the left was used to obtain a vel-
vet BRDF, which was used to render the three chairs
shown. The left chair was rendered with the origi-
nal BRDF. The BRDF was then separated and used
to render the middle chair. The right chair was
rendered with a version made up of a sum of five
separated components. Notice that this version is
virtually indistinguishable from the original, yet the
BRDF only requires 4.4% of the storage space! Fig-
ure 2 shows the value of Ps(k) for the velvet BRDF
as k increases. Curves for other BRDFs exhibited
very similar behavior.

5 Conclusion and Future Re-
search

In this paper we have proposed techniques for mea-
suring four properties of BRDFs: reciprocity, energy
conservation, isotropy, and separability. As well,
we have presented methods for transforming BRDF

4The use of parallel cylinders to simulate brushed metal
was inspired by the work of Poulin and Fournier[§].



T
Velvet BRDF —

k-separability

Figure 2: Measure of k-separability of the velvet
BRDF for 1 < k& < 30.

data to possess these properties.

There are several useful features of these tech-
niques. First, the BRDF data can be compressed
by exploiting the properties of isotropy and sepa-
rability. Second, noise introduced into the data by
a gonioreflectometer, or errors caused by the short-
comings of a virtual gonioreflectometer, can be elim-
inated by ensuring that the BRDF be reciprocal
and conserve energy. Third, physical plausibility
of a BRDF can be guaranteed in situations where
these properties are a prerequisite to rendering. Fi-
nally, transforming a BRDF to be separable allows
radiosity computations to be performed efficiently
for non-Lambertian surfaces, allowing more complex
surfaces to be rendered using this popular technique.

More experimentation is necessary to fully inves-
tigate this approach, most notably on the type of
data supplied by Ward[10].
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Figure 3: Two plots of a Phong BRDF (¢; = 0°,0; = 50°), before and after a reciprocity transformation

P

Figure 4: Four plots of a Phong BRDF. The leftmost two show the BRDF for the incident direction of
@i = 0°,68; = 50°, before and after an energy conservation transformation. The rightmost two show the
same BRDF for the incident direction of ¢; = 0°,6; = 90°, before and after the same transformation.
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Figure 5: Two teapots rendered with an anisotropic BRDF representing brushed metal and the transformed
isotropic version
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Figure 6: Plots of three brushed metal BRDFs (¢; = 0°, §; = 20°) transformed to be isotropic with different
d values
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Figure 7: Velvet microgeometry and three velvet chairs

\\ \




