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Abstract

One way to overcome the limitations imposed by
analytical models of re�ection is to use discretely
sampled re�ectance data directly� Through either
empiricalmeasurement or simulation� a bidirectional
re�ectance distribution function �BRDF� is sampled
and stored as a table of numbers� The generality of
these tabulated BRDFs is useful for generating re�
alistic images� but the inevitable inaccuracy associ�
ated with the data gathering process can lead to a
BRDF that is much more general than it needs to
be� or that lacks certain physical properties�
In this paper we propose measures for several

properties of tabulated BRDFs� reciprocity� energy
conservation� isotropy� and separability� Techniques
to transform tabulated BRDFs to match one or more
of these properties are also described� These trans�
formations allow compression of the BRDF data�
elimination of noise� improved computation time
in some rendering tasks� and improved compliance
with physical laws�
Une fa	con de pallier les lacunes impos
ees par

les mod�eles de la r
e�exion analytique est d�utiliser
directement les donn
ees de r
e�exion mesur
ees
discr�etement� Par la mesure empirique ou la simula�
tion� une fonction de distribution de r
e�exion bidi�
rectionnelle �FDRB� est acquise par 
echantillonage�
et mise en m
emoire comme une table des nombres�
La g
en
eralit
e de ces FDRBs tabulaires est utile pour
g
en
erer des images r
ealistes� mais l�inexactitude
in
evitable associ
ee avec la m
ethode d�aquisition des
donn
ees peut produire une FDRB qui est beaucoup
plus g
en
erale que n
ecessaire� ou qui manque cer�
taines propri
et
es physiques�
Cet article propose des mesures pour quelques

propri
et
es des FDRBs tabulaires� la r
eciprocit
e� la

conservation d�
energie� l�isotropie� et la s
eparabilit
e�
Des techniques pour transformer les FDRBs tab�
ulaires pourqu�elles poss�edent ces propri
et
es sont
aussi d
ecrites� Ces transformations permettent la
r
eduction des donn
ees de la FDRB� l�
elimination du
bruit� moins de temps de calcul pour produire les im�
ages� et une meilleure conformit
e aux lois physiques�
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� Introduction

��� Bidirectional Re�ectance Distri�
bution Functions

Consider the geometry in Figure � Light arriving
at a di�erential surface area dA through a solid an�
gle d�i from direction ��i is re�ected in some other
direction ��r� The amount of re�ected radiance Lr

is proportional to the incident irradiance E�

dLr � dE ��

The constant of proportionality in Equation  is
called the bidirectional re�ectance distribution func�
tion� or BRDF� It is expressed as

fr���i � ��r� �
dLr

dE
�

dLr

Li cos �id�i
���

The BRDF is a function in four variables �a
polar and azimuth angle for each of the inci�
dent and re�ected directions�� It is often written
fr��i� �i� �r� �r� to express this dependency explic�
itly�
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Figure � Shading Geometry

��� Tabulated BRDFs

In practice� the BRDF values are usually obtained
from an analytical local illumination model� Most
models in use are limited in the number of surfaces
they can represent� There have been several recent
attempts to obtain more realistic re�ectance data
through either empiricalmeasurement or simulation�
BRDF data obtained from such techniques can be �t
to parameters of an illumination model���� but can
also be used directly�� �� ��� In this paper we are
concerned with the latter�

Since BRDFs of this type are usually in the form
of a table of numbers� we term them tabulated
BRDFs� or TBRDFs� Without loss of generality� we
will assume in the rest of this paper that our data
is monochromatic� In the case of irregular samples�
each of the nfr samples will be characterized by a
��tuple� the jth sample being�

��ij � �ij � �rj � �rj � fr��ij � �ij � �rj � �rj �� ���

In the case of a regular sampling grid� the number
of samples nfr in general is

nfr � n�in�in�rn�r ���

where n�i � n�i � n�r � and n�r are the number of sam�
ples in the incident azimuth� incident polar� re�ected
azimuth� and re�ected polar directions� respectively�

When obtaining tabulated BRDFs� measurement
from physical samples is desirable� but is di�cult
since goniore�ectometers are expensive� quite slow�
and the data from them is often quite noisy� Ward
addressed the issues of cost and speed���� but his

technique results in nonuniform samples� complicat�
ing direct use of his data�
Cabral et al introduced the idea of sampling a

BRDF by casting rays into a microgeometry��� This
has become a popular technique for obtaining ar�
bitrarily complex BRDFs��� ��� since it is highly
controllable� repeatable� and relatively fast� The
BRDFs used as examples in this paper were either
computed analytically or were obtained from such a
virtual goniore�ectometer�

��� Motivation

Since TBRDFs are often obtained experimentally
from real surfaces� they are much more general with
regards to the kinds of surfaces they can represent�
However� they su�er from the disadvantages asso�
ciated with physical measurements� including both
mechanically and experimentally induced errors� It
would be useful to eliminate or reduce the impact of
these errors before the measured BRDFs are used in
rendering tasks�
For this reason� we are interested in examining

properties of a BRDF that indicate how much er�
ror was introduced by the measurement process� so
the BRDF data can be corrected� Since measured
BRDFs are often very large� it would also be use�
ful to examine properties of a BRDF that indicate
how much accuracy would be lost if the BRDF data
were compressed by making simplifying assumptions
about its structure�

� Measuring BRDF Proper�

ties

In this section� we present techniques for measur�
ing four properties of tabulated BRDFs� The �rst
two properties� reciprocity and energy conservation�
express how close the TBRDF is to obeying physi�
cal laws� Lewis termed this physical plausibility����
Measured tabulated BRDFs should in theory be
physically plausible by virtue of the way they are
created� However� systematic errors and�or noise
can be introduced by a goniore�ectometer� causing
the resulting TBRDF to be implausible� TBRDFs
obtained with a virtual goniore�ectometer may lack
plausibility because of shortcomings in the underly�
ing re�ection model used to re�ect light into the mi�
crogeometry� These measures� and the correspond�
ing transformations presented in Section �� are at�
tempts to measure and eliminate the consequences
of these phenomena�



The last two properties� isotropy and separability�
can be thought of as measures of compressibility�
since the associated transformations in Section � re�
sult in considerable space savings�

It should be noted that we are not attempting to
measure howmuch e�ect these BRDF properties will
have on generated images� but simply the properties
themselves� This is an important distinction� since
the former is so highly dependent on rendering pa�
rameters� The shape of an object� the lighting� and
the viewing position can all greatly a�ect how much
certain BRDF properties a�ect an image� Such an
undertaking would necessitate a separate investiga�
tion�

For consistency� each of the measures has been for�
mulated so that a value of zero implies the BRDF
fully possesses the given property� Each of the mea�
surements can vary from zero to in�nity� The values
obtained from these measurements are not depen�
dent on the number of samples� meaning that mea�
surements from two tabulated BRDFs of di�erent
resolutions are comparable�

��� Reciprocity

Helmholtz�s reciprocity rule states that if the inci�
dent and re�ected directions are reversed� the value
of the BRDF should not change���� In the case where
for every incident sample position ��i� �i� there is a
re�ected sample position ��r� �r� such that �i � �r
and �i � �r � then the reciprocity can be measured
by averaging the square of the di�erence between
all pairs of incident and re�ected directions� This is
achieved with the sum

Pr �

vuuut
P

�i

P
�i

P
�r

P
�r

�
fr��i� �i� �r� �r��
fr��r� �r � �i� �i�

��

�n�in�in�rn�r
���

Notice that we place an additional � in the
denominator to account for the fact that
each pair actually occurs twice in the sum�
i�e� fr��i� �i� �r� �r� � fr��r� �r � �i� �i� and
fr��r� �r� �i� �i�� fr��i� �i� �r� �r��
When the samples are on a regular grid� but the

pairs are not necessarily matched� then to �nd the
value fr��r� �r� �i� �i� to match fr��i� �i� �r� �r� we
need to interpolate between samples� This can be
most easily done using quadrilinear interpolation
within the hypercube formed by the � samples sur�
rounding the tuple ��r� �r � �i� �i��

The irregular grid case leaves us with the di�cult
problem of interpolating between non�uniform sam�

ples� One technique is to take the j samples that
are closest to the desired sample position �where j
is su�ciently large� and to interpolate them with a
suitable �lter kernel� A useful choice in this case
is a quadrivariate Gaussian with a standard devia�
tion on the order of the mean distance of the sample
points from the desired point�
It should be noted that an assumption of reci�

procity is sometimes made when measuring BRDFs
from physical samples in order to reduce the number
of samples required� In this case� Pr will necessarily
be zero�

��� Energy Conservation

The law of energy conservation says that the total
amount of exitance M must be less than or equal
to the total amount of incident irradiance E� For a
given incident direction ��i� the ratio of M to E is
expressed as

M

E
�

Z
�N

fr���i � ��r� �N � ��r� d�r ���

For a BRDF fr to conserve energy� M
E

must be less
than or equal to one for all possible values of ��i�
Notice that an integral over the hemisphere is

equivalent to a double integral over the polar and
azimuth angles� Recall that the integral in Equa�
tion � is in terms of the re�ected solid angle d�r�
which is not uniform as �r varies� Noting that
d�r � d�rd�r sin �r and that �N � ��r� � cos �r � we
can express the integral as

M

E
�

Z
�r

Z
�r

fr��i� �i� �r� �r� sin �r cos �r d�r d�r

���
When the samples are uniform in the � and � di�

rections� we can easily approximate the integral with
a sum� For consistency� we subtract one from the re�
sulting integral so that energy conserving behavior
will be expressed as zero� This yields

���i� �i� � max���
X
�r

X
�r

�
� fr��i� �i� �r� �r��

sin �r cos �r �
��r��r

�
���

���
where ��r and ��r are the radian distance between
samples in the re�ected � and � directions respec�
tively�
Since we are interested in energy conservation of

the entire BRDF� we take the average of all � values�
giving us our �nal measure�

Pec �

P
�i

P
�i
���i� �i�

n�in�i
���



Notice that there is no need to assume that the sam�
ples are uniform in the �i and �i directions�
When the samples are irregular in all directions�

we need another way to approximate the integral�
A good method in this case is to triangulate in
�D the set of samples for a given incident direc�
tion ��i� For each of these triangles� Equation � is
the  di�erential�to��nite form factor! of the trian�
gle with respect to the in�nitesimal surface element
dA� This can be computed using classic methods
such as the Nusselt analog� The integral ���i� �i� is
then obtained by summing the terms from all the
triangles�

��� Isotropy

In general� BRDFs as described in Equation � are
anisotropic� meaning that the re�ected radiance
varies as the surface is rotated about the normal
N � In contrast� an isotropic BRDF remains con�
stant under such a rotation� and can be expressed
as

fr��i� �i� �r� �r� � f isor ��i� �r � �i� �r� ���

This simpli�cation can reduce storage and compu�
tational costs considerably� In the case of regular
samples� this reduces the total number of samples
in Equation � to

nfr � n�in�rn�r ��

To measure the isotropy of a tabulated BRDF in
the simple case where n�i � n�r � we start by com�
puting the average BRDF value for the set of angles
where the di�erence between �i and �r is the same�
We use the shorthand �� � �r � �i to denote this
di�erence�

�i��i� ��� �r� �

P
�i
fr��i� �i� �i " ��� �r�

n�i
���

We are interested in the average deviation from the
mean �i� expressed as

�i��i� ��� �r� �

vuuut
P

�i

�
fr��i� �i� �i " ��� �r��

�i��i� ��� �r�

��

n�i
���

This is equivalent to taking the standard deviation
of all BRDF values for a given ��i� ��� �r��
To obtain our �nal measure of isotropy� we sim�

ply average the �i values over all possible values of

��i� ��� �r�

Pi �

P
�i

P
��

P
�r
�i��i� ��� �r�

n�in�rn�r
���

In the irregular grid case� it is necessary to choose
a set of �� values� and for each sample value com�
pute fr��i� �i� �i " ��� �r� using the interpolation
methods described in Section ��� The resulting sets
of BRDF values can be used in the computation of
�i in Equation ��

��� Separability

To say that a BRDF is separable� we mean that it
can be represented as a product of two functions�
one for the incident light and one for the re�ected
light�

fr��i� �i� �r� �r� � f inr ��i� �i�� foutr ��r � �r� ���

This removes the cross�dependence between the in�
cident and re�ected directions� thereby requiring
much less storage space�

nfr � n�in�i " n�rn�r ���

An additional bene�t is that radiosity computations�
like those described by Cohen and Wallace���� can be
done e�ciently with non�Lambertian surfaces����
For the discussion of separability� we will assume

that for every pair ��i� �i� there is a pair ��r� �r�
with the same direction� If this is not the case� such
as in some experimental measurements� we have to
generate the missing pairs using interpolation� as de�
scribed in Section ��� Of course if we assume that
reciprocity holds� then the required values can be
generated trivially�
Consider a Q�Q matrix A where the rows corre�

spond to a lexicographic ordering of the pair ��i� �i��
and the columns correspond to a lexicographic or�
dering of the pair ��r� �r��� If we then �ll the matrix
A with the BRDF values� we can think of the two
separated functions f inr and foutr as two vectors u
and v whose outer product results in A� To �nd u

and v� we must factor A� The singular value de�
composition �SVD� numerical technique is ideal for
this� as it allows us to derive a measure of how close
to factorable A is� as well as actually determine the
most probable values for u and v �Section ������

�Note that in the case of a reciprocal TBRDF� the matrix
A will be symmetric�

�For more details on the SVD� the reader is directed to
the book by Watkins�����



The singular value decomposition separates A into
three matrices�

A � UDV T ���

In the above equation� U � V T and D are all Q� Q

matrices� D is a diagonal matrix containing the sin�
gular values of A �in descending order�� The number
of non�zeros in D speci�es the rank of A� For us� the
rank is important because it indirectly indicates how
close A is to being separable� If A has a rank of one�
meaning that D is zero except for d��� then there
is an exact solution for u and v� and the BRDF is
separable� To measure how close to separable the
function is� we de�ne another Q� Q matrix D����

D��� �

�
����
d�� � � � � �
� � � � � �
���

���
� � �

���
� � � �

�
			� ���

We then substitute D��� forD and re�multiply to ob�
tain A���� the matrix of rank one based on A� Notice
that the sparse nature of D��� allows this multipli�
cation to be performed quickly�

A��� � UD���V T ���

The magnitude of the di�erence between A��� and
A gives us a measure of separability� We measure
this magnitude similar to the Frobenius norm of the
di�erence matrix� except that we divide each square
by the total number of elements in the matrix� This
removes the dependence of Ps on the number of sam�
ples�

Ps �

vuutX
p

X
q

�A
���
pq �Apq ��

n�in�in�rn�r
����

In the SVD� A is expressed as a weighted sum of
outer products of the columns of U and the rows
of V T � with the singular values acting as weights�
Equation �� only deals with expressing A as the
product of the �rst such column and row� Fournier
showed in ��� that expressing a BRDF as a sum of
separable function products is desirable� the advan�
tage of improved radiosity computation is not lost�
and a larger subset of all BRDFs can be separated�
If a BRDF can be expressed as a sum of k sepa�
rated functions� we say that it is k�separable� The
k�separated BRDF is reconstructed as�

fr��i� �i� �r� �r� �
kX

j��

�f in�j�r � fout�j�r � ���

To measure k�separability� we �nd the closest ma�
trix of rank k to A� This is done by removing all
but the k largest singular values from D�

D�k� �

�
�����������

d�� � � � � � � � �
� d�� � � � � � � �

� �
�� � � � � � � �

� � � � � dkk � � � � �
� � � � � � � � � � �
���

���
���

���
� � �

���
� � � � � � � � � � �

�
										�

����

We then re�multiply to get the rank k matrix A�k��

A�k� � UD�k�V T ����

This allows us to measure the k�separability P
�k�
s �

P �k�
s �

vuutX
p

X
q

�A
�k�
pq �Apq ��

n�in�in�rn�r
����

� BRDF Transformations

We may wish to change a tabulated BRDF to match
one or more of the four properties covered in the pre�
vious section� Doing so with the properties of reci�
procity and energy conservation makes the BRDF
physically plausible� Doing so with the properties
of isotropy and separability compresses the BRDF
by changing the data to �t these two simplifying as�
sumptions�

We may also wish to change the BRDF to be
closer to a certain property� placing it intuitively in
between the original BRDF and one matching the
property� For this purpose� we de�ne a constant 	�
which indicates how close to a given property the
BRDF should be� In each section� we will �rst show
how to transform a BRDF to match the property
�	 � �� and then generalize the technique to allow
for more gradual transformations �� 
 	 
 ��

If the values of the TBRDF are obtained exper�
imentally� then they may come with an error esti�
mate� In this case all of the linear combinations used
below should be changed to weighted sums� where
the normalized weights are inversely proportional to
the estimate of the errors at each data point�



��� Reciprocity

Tomake a tabulated BRDF reciprocal� we simply set
each value to the average of itself and its reciprocal�

frr ��i� �i� �r� �r� �
fr��i� �i� �r� �r� " fr��r� �r� �i� �i�

�
����

To make the BRDF more reciprocal� we linearly
interpolate between a given sample and the average
between that sample and its reciprocal� This gives
us

f �

r��i� �i� �r� �r � 	� �

�� 	�fr��i� �i� �r� �r� "

	frr ��i� �i� �r� �r� ����

As mentioned above� these values can be weighted
according to their error estimates� This is especially
important in the case of irregular samples� since in
general one value will be measured and the other will
be the result of interpolation� giving it a di�erent
con�dence interval� Estimating the con�dence inter�
val for the interpolated values is a non�trivial prob�
lem without an underlying re�ection model� since a
model would have to be available to determine the
con�dence interval at an arbitrary sample position�

��� Energy Conservation

If a tabulated BRDF does not conserve energy� it
is because the total energy re�ected is greater than
the total energy received� It therefore seems natural
to reduce every BRDF value associated with a given
incident direction by a scalar su�cient to ensure en�
ergy conservation� For a given incident direction�
this can be thought of as uniformly reducing the
 size! of the BRDF�

Recall the de�nition of ���i� �i� in Equation ��
We wish to divide each BRDF value by a constant
factor x that will make ���i� �i� be exactly zero�

X
�r

X
�r

�
fr��i� �i� �r� �r�

x
sin �r cos �r ��r��r �� � �

����


x

X
�r

X
�r

�fr��i� �i� �r� �r� sin �r cos �r ��r��r� � 

����


x
�

P
�r

P
�r
�fr��i� �i� �r� �r� sin �r cos �r ��r��r �

����

x � ���i� �i� "  ����

Therefore for a given incident direction� our factor
is simply ���i� �i� " � resulting in the de�nition for
an energy conserving BRDF�

fecr ��i� �i� �r� �r� �
fr��i� �i� �r� �r�

���i� �i� " 
���

To transform a tabulated BRDF to be closer to
conserving energy� we simply multiply ���i� �i� by
	�

f �

r��i� �i� �r� �r� 	� �
fr��i� �i� �r� �r�

	���i� �i� " 
����

It could be argued that this technique is some�
what arti�cial� It only changes those incident direc�
tions that violate energy conservation by clamping
the data to the maximum that is theoretically plau�
sible� There are two main problems with this� First�
the scaling operations that are performed are not
uniform since the scalar is di�erent for each incident
direction� Second� scaling the data to make M

E
have

a value of exactly one may obey physical laws� but
the case could be made that it is not realistic� No
surfaces in the real world exhibit such ideal behav�
ior� Even the most perfect re�ectors ever observed
still have values of M

E
less than one�����

The �rst concern can be addressed by choosing
one scalar value for the entire BRDF� This scalar
would be chosen based on the maximumof all values
of ���i� �i�� changing Equation � to

fecr ��i� �i� �r� �r� �
fr��i� �i� �r� �r�

max��i��i�����i� �i�� " 
����

The second concern can be dealt with by clamping
M
E

to some value � such that � 
 � 
� � This
changes the de�nition of ���i� �i� in Equation � to

���i� �i� � max���
X
�r

X
�r

�
� fr��i� �i� �r� �r��

sin �r cos �r �
��r��r

�
��� �
����

The energy conserving BRDF is then computed by
changing Equation � to

fecr ��i� �i� �r� �r� �
� � fr��i� �i� �r� �r�

���i� �i� " �
����

��� Isotropy

Transforming a tabulated BRDF to be isotropic is
very simple� The average BRDF value �i fromEqua�
tion � is used for all values with the same di�erence
between �r and �i� This yields

f isor ��i� ��� �r� � �i��i� ��� �r� ����



To make a tabulated BRDF more isotropic� the
value is linearly interpolated between fr and �i�
This results in

f �

r��i� �i� �r� �r � 	� �

�� 	�fr��i� �i� �r� �r� "

	�i��i� �r � �i� �r� ����

��� Separability

Recall from Section ��� that separating the BRDF
is equivalent to factoring a matrix A into the outer
product of two vectors u and v� When all but the
largest of the singular values in D are zeroed� it be�
comes evident that the only numbers a�ecting A���

are the �rst column of U and the �rst row of V T �
Therefore� u is taken to be the �rst column of U �
and v the �rst row of V T � This gives a de�nition for
f inr and foutr

��

f inr ��i� �i� � d��up ����

foutr ��r� �r� � vq ����

Finding the kth separable component simply in�
volves using the kth column of U � u�k� and the kth
row of V T � v�k��

f in�k�r ��i� �i� � dkku
�k�
p ����

fout�k�r ��r � �r� � v�k�q ���

This is identical to Fournier�s technique of separat�
ing a BRDF into a sum of k separable models����
If a value of 	 
  is chosen in order to make a

BRDF closer to k�separable� it is obvious that fr
cannot be separated into f inr and foutr � but the par�
tially transformed BRDF is expressed as

f �

r��i� �i� �r� �r� 	� � �� 	�Apq " 	A�k�
pq ����

� Experiments and Results

Figure � shows an example of performing a reci�
procity transform on a Phong BRDF where Pr �
������� Lewis showed in ��� that Phong shaders
are never reciprocal� Performing the transformation
resulted in a noticeable change in the BRDF data�
However� di�erences in Pr do not seem to a�ect ren�
dered images a great deal�

Figure � demonstrates transforming a BRDF to
conserve energy� At the left is a plot of a Phong

�In Equations �� through 	
� p � �in�i � �i and q �
�rn�r � �r �

BRDF where Pec � ������ ��i � ����� and to the
right of that is the energy conserving version� The
reduction in size is more subtle than in the two right�
most plots� where the incident polar angle is larger
��i � ����� This is exactly what is expected since
Phong�s energy conserving behavior becomes worse
at large incident polar angles� Again� the visual
di�erence in rendered images is usually negligible�
However� the underlying di�erence between the two
BRDFs is very important� especially if the BRDFs
are used in global illumination computations�
Figure � shows an example of transforming a

BRDF to be isotropic� This anisotropic BRDF
that simulates brushed metal was generated by run�
ning a microgeometry of parallel cylinders through a
virtual goniore�ectometer	� The resulting isotropy
measurement was Pi � ��������� On the left
teapot� notice the specular highlight running along
the base� This corresponds to the scratches in
the brushed metal surface� On the right teapot�
the BRDF has been transformed to be completely
isotropic �	 � ���� Notice the di�erence in the
specular highlight� Figure � shows plots of sev�
eral scratched metal BRDFs� The one on the left
is the original BRDF used in Figure �� The one on
the right is the isotropic version used in Figure ��
The middle one is halfway between the other two
�	 � �����
Figure � demonstrates separating a BRDF� The

microgeometry on the left was used to obtain a vel�
vet BRDF� which was used to render the three chairs
shown� The left chair was rendered with the origi�
nal BRDF� The BRDF was then separated and used
to render the middle chair� The right chair was
rendered with a version made up of a sum of �ve
separated components� Notice that this version is
virtually indistinguishable from the original� yet the
BRDF only requires ���# of the storage space$ Fig�

ure � shows the value of P
�k�
s for the velvet BRDF

as k increases� Curves for other BRDFs exhibited
very similar behavior�

� Conclusion and Future Re�

search

In this paper we have proposed techniques for mea�
suring four properties of BRDFs� reciprocity� energy
conservation� isotropy� and separability� As well�
we have presented methods for transforming BRDF

�The use of parallel cylinders to simulate brushed metal
was inspired by the work of Poulin and Fournier����



0.03

0.04

0.05

0.06

0.07

0.08

0.09

5 10 15 20 25 30

k-
se

pa
ra

bi
lit

y

k

Velvet BRDF

Figure �� Measure of k�separability of the velvet
BRDF for  � k � ���

data to possess these properties�

There are several useful features of these tech�
niques� First� the BRDF data can be compressed
by exploiting the properties of isotropy and sepa�
rability� Second� noise introduced into the data by
a goniore�ectometer� or errors caused by the short�
comings of a virtual goniore�ectometer� can be elim�
inated by ensuring that the BRDF be reciprocal
and conserve energy� Third� physical plausibility
of a BRDF can be guaranteed in situations where
these properties are a prerequisite to rendering� Fi�
nally� transforming a BRDF to be separable allows
radiosity computations to be performed e�ciently
for non�Lambertian surfaces� allowing more complex
surfaces to be rendered using this popular technique�

More experimentation is necessary to fully inves�
tigate this approach� most notably on the type of
data supplied by Ward����
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Figure �� Two plots of a Phong BRDF ��i � ��� �i � ����� before and after a reciprocity transformation

Figure �� Four plots of a Phong BRDF� The leftmost two show the BRDF for the incident direction of
�i � ��� �i � ���� before and after an energy conservation transformation� The rightmost two show the
same BRDF for the incident direction of �i � ��� �i � ���� before and after the same transformation�

Figure �� Two teapots rendered with an anisotropic BRDF representing brushed metal and the transformed
isotropic version

Figure �� Plots of three brushed metal BRDFs ��i � ��� �i � ���� transformed to be isotropic with di�erent
	 values

Figure �� Velvet microgeometry and three velvet chairs


