Visibility Streaming for Network-based Walkthroughs

Daniel Cohen-Or and Eyal Zadicario

Computer Science Department
Tel-Aviv University, Ramat-Aviv 69978, Israel

Abstract

In network-based walkthroughs the server transmits on-
line only the primitives which are potentially visible from
the client’s current viewpoint (visibility streaming). To
reduce the bandwidth requirements it is necessary to min-
imize the set of view-dependent potentially visible prim-
itives using occlusion culling techniques. However, even
a slight change in the viewpoint might require the compu-
tation and transmission of many new primitives and thus
latency is inevitable.

In this paper we present an algorithm for determining
a conservative superset of an e-neighborhood of a given
viewpoint. Having such an e-superset, the client is free to
render the model independently of the server as long as
he moves within that e-neighborhood.

Résumé

Dans un parcours via le re’seau, le serveur ne transmet
que les primitives qui sont potentiellement visibles a’ par-
tir du point de vue courant du client. Afin de re’duire
les contraintes sur la bande passante il est ne’ce’ssaire
de minimiser 1’ensemble des primitives dont la visibilite’
de’pend du point de vue. Ceci est re’alise’ par des tech-
niques d’e’limination par occlusion. Toutefois, méme de
faibles variations du point de vue peuvent impliquer le
calcul et la transmission de nombreuses nouvelles primi-
tives et donc des temps de latences sont ine’vitables.

Dans ce papier nous pre’sentons un algorithme qui
de’termine un sur-ensemble stable d’un e-voisinage d’un
point de vue donne’. Avec un tel e-sur-ensemble le client
peut visualiser le mode‘le inde’pendemment du serveur
aussi longtemps qu’il se de’place a I’inte’rieur de ce e-
voisinage.

Keywords: Visibility, Walkthrough, Streaming, Occlu-
sion, Culling, Client/Server.

Introduction

Interactive network-systems based on client/server com-
putation are introducing new challenges to computer
graphics. In remote walkthroughs, the virtual environ-
ment, consisting of millions of primitives, is stored in a
remote server and the clients are usually low-end com-
puters. With the increasing popularity of the Web, the

network bandwidth and transmission latency have be-
come critical bottlenecks for interactive rate remote walk-
throughs. Although the rendering power of graphics
workstations has recently significantly increased, com-
mon low-end computers cannot render a large number of
geometric primitives in real-time.

To alleviate these two bottlenecks, the server and the
client should collaborate during the walkthrough. The
client constantly updates the server about his location and
viewing parameters and the server transmits only view-
dependent data which is necessary to the client for a
proper rendering (see [12, 13]). There are different meth-
ods to reduce the complexity of the model representation
with respect to the viewpoint based on view-dependent
object simplification and visibility culling [4].

Visibility culling aims at determining the set of invisi-
ble primitives from a given viewpoint, to avoid their fur-
ther processing. View-frustum culling culls away a sub-
set of the invisible primitives not lying in the current
view frustum. However, there might still be too many
primitives within the view frustum, many of which might
be obscured by other primitives. By taking occlusions
into consideration, it is possible to determine a visible set
(either exact or overestimated). These occlusion culling
techniques were developed to accelerate the rendering of
large geometric models [6, 8, 17, 18] by reducing the
number of polygons fed into the graphics hardware.

In spite of the apparent potential of such culling tech-
niques, there is a drawback which prevents their direct
adaptation for a network-based system. To maintain a
correct visible set, the server will need to constantly up-
date the client’s visible set according to the moving client
viewpoint [7]. Even a slight change in the viewpoint
might require the computation and transmission of many
new primitives and thus some latency is inevitable.

Hence, given a viewpoint and a model, what is ac-
tually needed is a superset of the visible set which in-
cludes at least all the visible primitives seen from an
e-neighborhood of the viewpoint. Having such an e-
superset, the client is free to render the model indepen-
dently of the server as long as he moves within that e-
neighborhood. The solution required must be conserva-
tive in the sense that it includes all the visible primitives

Segment

Occluder
Frustum

Figure 1: The two viewpoints in the shadow frustum de-
fined by the occluder and the occludee.

from that e-neighborhood, though it might be overesti-
mated. The overhead of the overestimated primitives,
however, must be small enough for an effective culling.
Nevertheless, the server still needs to update the client’s
visible superset, but not necessarily in real-time, thus
avoiding transmission latency. This relaxes the client-
server loop, since the client can render the model au-
tonomously for some frames and the server is free to
serve other clients.

In this paper we present a fast algorithm for determin-
ing a conservative superset of an e-neighborhood of a
given viewpoint. Unlike [6, 7, 20, 8] we compute a con-
servative visibility superset which is valid for more than a
single frame. The algorithm combines the visibility infor-
mation from a few viewpoints to define the conservative
superset which is valid for any viewpoint within the con-
vex combination of the viewpoints. This can be regarded
as a coarse “convex interpolation” of the visibility.

Previous work

Visibility culling algorithms attempt to avoid rendering
objects that cannot be visible in the image. This approach
was first investigated by Clark [4], who used an object
hierarchy to rapidly cull entire groups of objects that lie
outside the viewing frustum. This technique is most ef-
fective when only a small part of the virtual world falls
within the view frustum at any single frame. Slater and
Chrysanthou [15] used a view volume representing the
view frustum and frame-to-frame coherence to quickly
cull away primitives totally outside the volume. In a com-
plex environment enough geometry remains inside the
view frustum to overload the graphics pipeline, and ad-
ditional acceleration techniques are required.

Airey et al. [1] and Teller [17] described methods for
interactive walkthroughs of complex buildings that com-
pute the potentially visible set of surfaces for each room
in a building. These methods take advantage of the inher-
ent property of in-door scenes which partition the space
into “cells” and “portals”. Then cell-to-cell and cell-to-

object visibility can be precomputed. Only the potentially
visible set of surfaces for the room currently containing
the viewpoint needs to be rendered at each frame. Such
methods are very effective for building interiors, but are
not suited for other types of virtual worlds.

Hudson et al. [8] proposed an occlusion culling algo-
rithm based on the shadow frusta of a list of potential oc-
cluders determined in a preprocess stage. Each frustum
serves as a mask used to cull away any primitive com-
pletely enclosed within it. The remaining set of primi-
tives is a superset of the set of visible primitives. That
set is valid only for the current position of the viewpoint.
Coorg and Teller [6, 7] used a similar technique with a
different visibility test for occlusion culling. It is based
on a set of separating and supporting planes between the
occluder’s and the occludee’s endpoints with respect to
the current viewpoint. In every frame it checks whether
the viewpoint crosses one of the planes and incrementally
updates the set of potentially visible primitives.

To avoid latency, Funkhouser [10, 9] shows how the
potentially visible primitives can be pre-fetched to main-
tain a conservative cache that never fails. Although this
work is motivated by the need to avoid disk-to-memory
delays, it can be applied to avoid server-to-client delays
for network-based applications. However, his method is
based on the “cells and portals” techniques which are ef-
fective for in-door walkthroughs only.

Other related work deals with shadow algorithms [3].
Regarding the viewpoint and its e-neighborhood as an
area light source, occlusion culling algorithms search for
the primitives which are in the umbra. However, shadow
algorithms are usually analytical and much too expensive
to simply cull away the primitives in the umbra. Another
class of occlusion culling techniques is based on a hier-
archical structure [16, 11, 20], which culls away hidden
octree nodes and their underlying subtrees. These meth-
ods are, however, equivalent to culling the primitives in
the umbra of a point light source, and are used to acceler-
ate the rendering process of a single frame.

The culling algorithm that we introduce in this paper
is geared towards out-door walkthroughs where no cells
and portals can be easily defined, but still, the occlusion
is rather dense. For example, a walkthrough in the streets
of a city or small village [14]. Our technique is based
on a fairly simple ray shooting technique and thus can be
optimized by well-known techniques to yield a rapid and
effective occlusion culling mechanism.

Outline of the approach

In the following we first present a 2D solution for the e-
visibility problem, and then show its extension to 3D. A
scene consists of a set of convex objects and a viewpoint

in a plane, where each object consists of a set of seg-
ments. Given a viewpoint, the visibility of each segment
is determined, where the convex objects are the potential
occluders. A segment is hidden by a single occluder if
both of its endpoints are occluded from the viewpoint by
that same occluder. Given two viewpoints e; and ez (see
Figure 1), then if from both viewpoints a segment is oc-
cluded by a single convex occluder, the entire segment is
also hidden from any point lying along the line connect-
ing e; and ey. This is extended to three (or more) view-
points in the plane, yielding that a segment occluded by
a single convex object from three (or more) viewpoints,
is necessarily hidden from any point in the convex hull of
the three (or more) viewpoints.

Regarding the hidden segment as an illuminator, then
its endpoints together with the occluder silhouettes define
a shadow frustum. If the occluders are convex (convex in
3D or just connected in 2D), then the shadow frustum is
convex. Thus, if a set of viewpoints are all in a convex
shadow frustum, so is any convex combination of them.
The convex hull defined by the set of viewpoints is the
e-neighborhood for which we construct the visibility su-
perset.

Based on the above observation, segments which are
occluded by a single convex object are culled. Note that
this does not cull away all the invisible segments since
some segments are occluded by more than one object.
This is true even for a single viewpoint [6]. However, we
assume that the viewpoints are close enough and the vis-
ibility is temporally coherent. Indeed, as we shall show
later this culling technique is effective for many out-door
scenes encountered in practice.

Consider a given segment 7 with endpoints denoted
by p1 and p2, and a given viewpoint e;. Let p; — ey and
p2 — ey denote the line-of-sight between e; and p; and p,,
respectively. Let S, p, and Se, p, be the lists of objects
intersected by the endpoint line-of-sight, respectively. If
the intersection of both lists is not empty,

‘5’5171’1 N ‘5’81,1’2 7& wa

then 7 is hidden from e;. This is the conservative vis-
ibility test from a single viewpoint. Given three view-
points e1, ez and es, if the intersection of the six lists is
not empty,

‘5’8171’1 N ‘5’81,1’2 N SEz,P1 N SEz,Pz N SES,IH N SEs,Pz 7& wa

then 7 is hidden from any point within the triangle
e1,ez,es. This is a conservative e-visibility test from
an e-neighborhood defined by e1, ez and es. The visibil-
ity superset is constructed by testing each segment in the
scene against three viewpoints defined on-line according
to the walkthrough. Each segment detected as e-invisible

is culled away from the potential visible set. Note that to
increase the temporal visibility coherence, the occludees
are individual segments, while the occluders are objects
consisting of many segments.

The extension to 3D is straightforward. The e-
neighborhood is a tetrahedron defined by four vertices.
The occluders are convex objects, and the occludees are
triangular polygons (but not necessarily). Here again, the
shadow frusta (umbra) created by casting light from a tri-
angle and that emanates from a convex shape, is convex,
and if a set of points are in the convex shadow frusta
so does their convex hull. That is, if the four corners
of the tetrahedron are in the umbra so too is any point
within the tetrahedron. This requires casting 12 rays;
three rays from each of the four vertices towards the three
vertices of the triangle. Each ray detects the set of objects
that intersect the line-of-sight connecting the tetrahedron-
corner and the triangle-vertex. If the intersection of the 12
sets is not empty then there is at least a single occluder
which occludes the triangle from any viewpoint within
the tetrahedron.

Ray Shooting

The expensive calculation is the intersection of a line-
of-sight with the potential occluding objects. Assuming
that the scene consists of m convex objects (the occlud-
ers), and n triangles (the occludees), n >> m, then a
naive algorithm requires 12 X n X m intersection oper-
ations for each tetrahedron-neighborhood. Note, that m
is much smaller than n. However, the main advantage of
our technique is that it is based on a simple mechanism
of ray shooting, and the culling process can be signifi-
cantly accelerated by well-known techniques developed
for ray-tracing.

Hierarchical space-subdivision schemes like octrees,
BSP-trees, or Kd-trees, partition the space into cells with
a reduced complexity. Although the cell complexity is
theoretically unbounded, except for extremely degener-
ated cases, a cell can contain no more than, say, three
objects. Using a space-subdivision reduces the number
of intersections per ray. A single ray does not need to
intersect all the m objects, but by incrementally travers-
ing through the cells along the ray, only a fraction of the
objects needs to be intersected. Roughly speaking, the
number of intersections is in the order of 4/m, which is
supported by our experimental results. Note that unlike
ray tracing where the traversal is stopped at the first hit,
here we need to continue the traversal and detect all the
intersections along the ray.

The hierarchical structure also offers a top-down
traversal of the space. Instead of testing the visibility
of individual triangles, it is possible to test the visibil-
ity of the space-subdivision cells and to quickly cull all

the triangles contained in the occluded cells. This idea
is appealing at first, but practically whenever the size of
the occludee is larger than of the occluder, the algorithm
does not cull many objects [19].

Better results are achieved by enclosing each occludee
in a bounding box and testing first the visibility of the
bounding boxes. The number of bounding boxes, denoted
by N, is much smaller than of the triangles (N << n),
and is closer to the number of occluders (). Empirical
statistics are reported in Section .

Another significant acceleration can reduce the con-
stant number of 12 rays per tetrahedron. Since the inter-
section of the 12 sets is required, then except for the first
ray, for the other 11 rays it is enough to test their visibility
only against the occluders reported by the first ray. That
is, first a ray is shot which incrementally creates a set O
of all the potential occluders of a given primitive with re-
spect to the tetrahedron. The next ray does not need to
traverse the space, but just to incrementally test its inter-
section with the objects in O. This leaves in O only the
set of objects intersected by all the rays cast so far. Thus,
the size of O is quickly reduced, so that most of the rays
actually test their intersection with a very small number
of objects without traversing the space. This suggests that
it pays off to have a high resolution partition since the
overhead of the traversal is covered by just one ray per
tetrahedron. As in [7, 8] it is also possible to use only
“large occluders” defined by a solid-angle function. This
strategy assumes that a small list of effective occluders is
sufficient to cull away most of the redundant primitives.

The above also suggests that it would not cost more to
use cubes instead of tetrahedra. Theoretically, a naive im-
plementation would have required shooting 24 rays from
the cube’s eight corners towards the three vertices of the
triangle. However, in the above incremental computation
of the intersections the addition of more rays is not sig-
nificantly more expensive. On the other hand, it is much
easier to deal with cubes, especially regarding the loca-
tion of the current viewpoint. Moreover, it is enough to
use only the subset of the rays since rays which do not
lie on the convex hull defined by the vertices of the e-cell
and the vertices of the candidate are redundant [19].

For some applications it is also possible to build the
e-visibility cells in a coarse-to-fine fashion. The coarse
culling creates large cells. Then, the fine culling refines
these large cells into subcells with less effort, since most
of the primitives have already been removed.

It is possible to exploit the z-buffer hardware as a fast
visibility primitive operation by which the visible occlud-
ers can be rapidly detected. Considering only the visible
occluders yields a more conservative visibility test. Given
a primitive and four viewpoints, if all the lines-of-sight

agree on the closest occluder, then the primitive is hidden
from the convex hull defined by the four viewpoints. This
super-conservative visibility test culls only a subset of the
primitives culled by the conservative visibility test. How-
ever, whenever the e-neighborhood is small enough, the
overestimation of the super-conservative visibility test is
small. Yet, this coarser mechanism can be employed in
the coarser levels of a hierarchical computation of the e-
visibility cells, since the finer resolutions will be refined
anyhow.

Results

We have implemented the algorithm for the conservative
e-visibility described in the previous section on an SGI
R4400 machine. The main parameter by which we can
measure the performance of the visibility algorithm is the
effectiveness of the culling. Since the results are scene
dependent, we have generated different scenes consist-
ing of a number of simple objects distributed randomly.
The results are based on two typical urban models con-
sisting of buildings distributed evenly and randomly in
a plane (as in Figure 2). The “cityl” model consists of
21280 polygons which create a city of 2128 buildings of
two types. Most buildings are simple boxes and about
25% are made of three boxes of random height placed
one above the another.

Since in large dense models most of the polygons are
hidden, we have tested another typical model with a more
sparse distribution of buildings in the city (“city2”). Both
models have the same number of polygons.

The e-neighborhood used in the experiments is a box
at ground level which has been located randomly in the
above static scenes (see Figure 3). Note that in the above
figures the models are rendered from the outside to get
a better view of the model and the culling effect. How-
ever, in the experiments, the e-neighborhoods were lo-
cated inside the models, where the viewer is surrounded
by the objects as in the walkthrough. The size of the e-
neighborhood we tested was one fourth the size of the
typical object in the models.

The occlusion results depend on the location of the e-
neighborhood in the model. Table 1 shows the average
occlusion results of the tested models. Besides the actual
occlusion results, given in rows 1-4, we show in row 5 the
number of boxes that were occluded by the first potential
occluder tested. As expected, we get more occlusions in
the dense model. This can be seen both in the bounding
box occlusion stage and in the polygon occlusion. The
results show that in most cases the first potential occluder
encountered is the actual occluder of the bounding box.
This gives basic support for using the z-buffer hardware
for occlusion culling.

Figure 2: An overview of the city model.

Table 1: Polygon and Box Culling.

model city 1 | city2
total polygons 21280 | 21280
occluded polygons 20062 | 18713
total bounding boxes | 2128 | 2128
occluded boxes 1954 1755
first occluders 1427 1225

We tested these models with several optimization tech-
niques described above. The first column in Table 2
shows the results of the most naive and basic technique
with no accelerating optimizations. The second column
shows the effectiveness of using bounding box occlusion
prior to polygon occlusion. In this case only the polygons
which were not included in occluded boxes are tested.
The third column includes the fact that occluded ob-
jects are redundant occluders. The fourth column shows
the results of eliminating redundant rays. These are the
rays which are not on the convex hull created by the e-
neighborhood and the tested box. The last column com-
bines all these techniques showing the results of a fully
optimized algorithm. The results are shown in two parts.
The first part gives the results of the box occlusion stage.
The second part shows the results for culling polygons
which were not occluded in the first stage.

The first row shows the average total time required for
the e-visibility test. The second row gives the time used
for box occlusion routines, and the sixth row the time
used for polygon occlusion. Rows 3-5 give a breakdown
of the box occlusion time and rows 7 and 8 the corre-
sponding values for the polygon occlusion. In the second

part of the table, rows 7 and 8 show the actual number of
intersections performed in each stage of the calculation.

It can be seen that bounding box occlusion signifi-
cantly reduces the time used for calculating the visibil-
ity set. Excluding occluded objects as potential occluders
yields only a minor improvement, but does not require
any additional computations. The redundant ray opti-
mization requires initial calculations to exclude the re-
dundant rays, but still was found effective since the total
time used for box occlusion is reduced by 20%-25%. As
can be seen from Table 2, using all the optimizations re-
duces the total time by 76%. The majority of the time in
each stage of the visibility set calculation is spent in the
ray traversal and in the intersection routines. Intersection
times are reduced by minimizing the intersection calls as
can be seen in row 5 in table 2. The ray traversal time
may be significantly accelerated by using the optimized
technique of grid traversal [5].

Discussion

The e-visibility can be combined with any other culling
or levels-of-detail techniques. In particular view frustum
culling seems vital. The occlusion visibility can be cal-
culated assuming a 360 degree field of view, and the frus-
tum culling can be added as a post process running either
at the server or the client. Executing the frustum culling
at the server is not necessarily the best option as it first
seems. Executing the frustum culling at the client yields
a stable superset, since it is invariant to the viewer (cam-
era) orientation. On the other hand, the superset, and con-
sequently the initial transmission, is larger. Although the
size of the initial transmission is not that large, it can still
be transmitted progressively (lazy evaluation) during the
very first frames of the walkthrough.

Table 2: Results using various optimizations (times are given in milliseconds).

no bounding | redundant | redundant fully
optimization box occluders rays optimized

total time 30170 8900 8850 7040 7030
box occlusion time - 7450 7340 5540 5550
ray traversal time - 3460 3530 3460 3420
ray exclusion time - - - 640 630
box intersection time - 2350 2310 880 850
polygon occlusion time 29820 1410 1400 1410 1390
ray traversal time 24070 940 970 990 850
polygon intersection time 4000 380 290 280 400
ray/box intersections - 135278 135089 45570 42414
ray/polygon intersections 517800 38648 38648 38648 38648

As mentioned above, our method requires the occlud-
ers to be convex as in [6, 7, 8]. However, in practice,
most objects are not convex, but one can decompose a
general polyhedral into convex parts [2]. The decompo-
sition should not be exact; however, the aggregation of
the convex parts must be included in the original object.
A simple approximated decomposition can be achieved
by an octree, where only the coarse levels are used as the
occluders. Another possible convex decomposition is to
use the individual triangles as the convex occluders. But
these occluders might be too small to be effective. Cur-
rently, we assume that the occluders are built as part of
the model. We are now investigating several techniques
by which an object can be represented by a union of con-
vex shapes. The goal is to automatically find the union of
a small number of convex bodies, which on one hand can
be intersected easily, and on the other, their union is as
large as possible, but still included in the interior of the
original object.

Yet another possible way to deal with non-convex ob-
jects is to implicitly test the intersection of the tetrahe-
dra (defined by the convex hull of the viewpoints) and
the “shadow” volume defined by the occludee and the oc-
cluder silhouettes (as in [8]). This test is more expensive
but may be effective for very large and complex occlud-
ers.

Based on the presented method, we are currently im-
plementing a client-server walkthrough system for the in-
ternet. On the server side, a C program precomputes the
visibility for each cell. For the run-time part, both the
client and the server are written in JAVA using TCP/IP
protocol. The client is an applet loaded into the Netscape
Navigator browser. For rendering we are currently con-
sidering using WorldView VRML 2.0 plugin of Inter-

vista, which includes an External Authoring Interface
(EAI) for dynamic update of the scene.

Acknowledgments

This work was supported in part by a grant from the
Israeli Ministry of Science and the French Ministry of
Research and Technology (AFIRST). The authors would
like to thank Dan Halperin for his encouragement and
helpful comments, and Shuly Lev-Yehody for assisting
them with the implementation.

References
[1] JM. Airey, J.H. Rohlf, and Jr. F.P. Brooks. Towards
image realism with interactive update rates in com-
plex. In 1990 Symposium on Interactive 3D Graph-
ics, volume 24(2), pages 41-50, 1990.

B. Chazelle, D. Dobkin, N. Shouraboura, and
A. Tal. Strategies for polyhedral surface decompo-
sition: An experimental study. Computational Ge-
ometry: Theory and Applications, 7(4-5):327-342,
1997.

[3] Y. Chrysanthou. Shadow Computationfor 3D Inter-
active and Animation. PhD thesis, Department of
Computer Science, College University of London,
January 1996.

J.H. Clark. Hierarchical geometric models for visi-
ble surface algorithms. Communication of the ACM,
19(10):547-554,1976.

D. Cohen and A. Shaked. Photo-realistic imaging
of digital terrains. In Proceedings of Eurographics,
volume 12(3), pages 363-373, September 1993.

The entire city

The potentially visible polygons
Figure 3: Two birds-eye views of the city.

[6] S.Coorgand S. Teller. Temporally coherent conser-
vative visibility. In Proceedings of 12th ACM Sym-
posium on Computational Geometry, 1996.

[7] S. Coorg and S. Teller. Real-time occlusion culling
for models with large occluders. In Proceedings of
1997 Symposium on Interactive Graphics, 1997.

[8] T.Hudson et al. Accelerated occlusion culling using
shadow volumes. In Proceedings of 13th ACM Sym-
posium on Computational Geometry, Nice, France,
June 4-6 1997.

[9] T.A. Funkhouser. Database management for inter-
active display of large architectural models. Graph-
ics Interface, pages 1-8, May 1996.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T.A. Funkhouser. Ring: A client-server system
for multi-user virtual environments. In Computer
Graphics (1995 SIGGRAPH Symposium on Inter-
active 3D Graphics), pages 85-92, April, 1995.

N. Greene, M. Kass, and G. Miller. Hierarchical
z-buffer visibility. In Proceedings of ACM, pages
231-238. Siggraph, 1993.

Y. Mann and D. Cohen-Or. Selective pixel transmis-
sion for navigating in remote virtual environments.
Computer Graphics Forum, 16(3):201-206,1997.

D. Schmalstieg and M. Gervautz. Demand-driven
geometry transmission for distributed virtual envi-
ronment. In Computer Graphics Forum, volume
15(3), pages 421-432,1996.

F. Sillion, G. Drettakis, and B. Bodelet. Efficient
impostor manipulation for real-time visualization of

urban scenery. In Proceedings of Eurographics,
September 1997.

M. Slater and Y. Chrysanthou. View volume culling
using a probabilistic caching scheme. In ACM
VRST’97, Lausanne, 1997.

O. Sudarsky and C. Gotsman. Output-sensitive vis-
ibility algorithms for dynamic scenes with applica-
tions to virtual reality. Computer Graphics Forum,
15(3):249-258,1996.

S. Teller and C.H. Sequin. Visibility preprocess-
ing for interactive walkthrough. In Proceedings of
ACM, pages 61-69. Siggraph, 1991.

R. Yagel and W. Ray. Visibility computations for ef-
ficient walkthrough of complex environments. Pres-
ence, 5(1):1-6,1996.

E. Zadicario. Conservative visibility streaming of
densely occluded scenes. Master’s thesis, Tel-Aviv
University, School of Mathematical Sciences, 1998.

H. Zhang, D. Manocha, T. Hudson, and K. Hoff.
Visibility culling using hierarchical occlusion maps.
In Proceedings of ACM. Siggraph, 1997.

