Animating Sand, Mud, and Snow

Robert W. Sumner

James F. O’Brien

Jessica K. Hodgins

College of Computing and Graphics, Visualization, and Usability Center
Georgia Institute of Technology
801 Atlantic Drive
Atlanta, GA 30332-0280

e-mail: [sumner|obrienj|jkh]@cc.gatech.edu

Abstract

Computer animations often lack the subtle environmental
changes that should occur due to the actions of the char-
acters. Squealing car tires usually leave no skid marks,
airplanes rarely leave jet trails in the sky, and most run-
ners leave no footprints. In this paper, we describe a sim-
ulation model of ground surfaces that can be deformed by
the impact of rigid body models of animated characters.
To demonstrate the algorithms, we show footprints made
by a runner in sand, mud, and snow as well as bicycle tire
tracks, a bicycle crash, and a falling runner. The shapes of
the footprints in the three surfaces are quite different, but
the effects were controlled through only five essentially
independent parameters. To assess the realism of the re-
sulting motion, we compare the simulated footprints to
video footage of human footprints in sand.

Keywords: animation, physical simulation, ground inter-
action.

Introduction

To become a communication medium on a par with
movies, computer animations must present a rich view
into an artificial world. Texture maps applied to three-
dimensional models of scenery help to create some of
the required visual complexity. But static scenery is only
part of the answer; subtle motion of many elements of the
scene is also required. Trees and bushes should move in
response to the wind created by a passing car, a runner
should crush the grass underfoot, and clouds should drift
across the sky. While simple scenery and sparse motion
can sometimes be used effectively to focus the attention
of the viewer, missing or inconsistent action may also dis-
tract the viewer from the plot or intended message of the
animation. One of the principles of animation is that the
viewer should never be unintentionally surprised by the
motion or lack of it in a scene[25].

)

To appear in The Proceedings of Graphics Interface *98.

Figure 1: Image of tracks left in the sand by a group of
fast moving, motion blurred, alien bikers.

Movie directors face a related problem because they
must ensure that the viewer is presented with a consistent
view of the world and the characters. An actor’s cloth-
ing should not inexplicably change from scene to scene,
lighting should be consistent across edits, and absent, un-
expected, or anachronistic elements such as missing tire
tracks, extra footprints, or jet trails must be avoided. The
risk of distracting the viewer is so great that one member
of the director’s team, known as a “continuity girl,” “floor
secretary,” or “second assistant director,” is responsible
solely for maintaining consistency[20].

Maintaining consistency is both easier and harder in
computer animation. Because we are creating an artifi-
cial world, we can control the lighting conditions, lay-
out, and other scene parameters and recreate them if we
need to “shoot” a fill-in scene later. Because the world is
artificial, however, we may be tempted to rearrange ob-
jects between scenes for best effect, thereby creating a
series of scenes that could not exist in a consistent world.
Computer-generated animations and special effects add
another facet to the consistency problem because mak-
ing models that move and deform appropriately is a lot of
work. For example, most animated figures do not leave

tracks in the environment as a human actor would and
special effects artists have had to work hard to create
subtle but essential effects such as environment maps of
flickering flames. Because each detail of the scene rep-
resents additional work, computer graphics environments
are often conspicuously clean and sparse. The approach
presented here is a partial solution to this problem; we
create a more interesting environment by allowing the
character’s actions to change a part of the environment.

In this paper, we describe a model of ground surfaces
and explain how these surfaces can be deformed by char-
acters in an animation. The ground material is modeled
as a height field formed by vertical columns. After the
impact of a rigid body model, the ground material is
deformed by allowing compression of the material and
movement of material between the columns. To demon-
strate the algorithms, we show the creation of footprints
in sand, mud, and snow. These surfaces are created by
modifying only five essentially independent parameters
of the simulation. We evaluate the results of the anima-
tion through comparison with video footage of human
runners and through more dramatic patterns created by
bicycle tire tracks (figure 1), a falling bicycle (figure 4),
and a tripping runner (figure 6).

Background

Several researchers have investigated the use of procedu-
ral techniques for generating and animating background
elements in computer-generated scenes. Although we are
primarily interested in techniques that allow the state of
the environment to be altered in response to the motions
of an actor, methods for animating or modeling a part
of the environment independent of the movements of the
actors are also relevant because they can be modified to
simulate interactions.

The first example of animated ground tracks for com-
puter animation can be found in work done by Lundin[12,
13]. He describes how prints can be created efficiently by
rendering the underside of an object to create a bump map
and then applying the bump map to the ground surface to
create impressions where the objects have contacted the
ground.

The most closely related previous work is that of Li and
Moshell[11]. They developed a model of soil that allows
interactions between the soil and the blades of digging
machinery. Soil spread over a terrain is modeled using a
height field. Soil that is pushed in front of a bulldozer’s
blade is modeled as discrete chunks. Although they dis-
count several factors that contribute to soil behavior in
favor of a more tractable model, their technique is phys-
ically based and they arrive at their simulation formula-
tion after a detailed analysis of soil dynamics. As the

authors note, actual soil dynamics are complex and their
model, therefore, focuses on a specific set of actions that
can be performed on the soil, namely the effect of hor-
izontal forces acting on the soil causing displacements
and soil slippage. The method we present here has obvi-
ous similarities to that of Li and Moshell, but we focus on
modeling a different set of phenomena at different scales.
We also adopt a more appearance-based approach in the
interest of developing a technique that can easily model a
wide variety of ground materials for animation purposes.

Another method for modeling the appearance of
ground surfaces is described by Chanclou, Luciani, and
Habibi[1]. They use a simulation-based ground surface
model that behaves essentially like an elastic sheet. The
sheet deforms plasticly when acted on by other objects.
While their model allows objects to make smooth im-
pressions in the ground surface, they do not describe how
their technique could be used to realistically model real
world ground materials.

Other environmental effects that have been animated
include water, clouds, and gases[5, 23, 7], fire[2, 23],
lightning[18], and leaves blowing in the wind[26].
Among these, water has received the most atten-
tion. Early work by Peachey[17] and by Fournier and
Reeves[8] used procedural models based on specially de-
signed wave functions to model ocean waves as they
travel and break on a beach. Later work by Kass and
Miller[10] developed a more general approach using
shallow water equations to model the behavior of water
under more general of conditions. Their model also mod-
ified the appearance of a sand texture as it became wet.
O’Brien and Hodgins[16] extended the work of Kass and
Miller to allow the behavior of the water simulation to
be affected by the motion of other objects in the environ-
ment and to allow the water to affect the motion of the
other objects. They included examples of objects floating
on the surface and simulated humans diving into pools of
water. More recently Foster and Metaxas[6] used a varia-
tion of the three-dimensional Navier-Stokes equations to
model fluids. In addition to these surface and volumet-
ric approaches, particle-based methods have been used
to model water spray and other loosely packed materi-
als. Supplementing particle models with inter-particle
dynamics allows a wider range of phenomena to be mod-
eled. Examples of these systems include Reeves[19],
Sims[21], Miller and Pearce[15], and Terzopoulos, Platt,
and Fleischer[24].

Simulation of interactions with the environment can
also be used to generate still models. Several researchers
have described techniques for generating complex plant
models from grammars describing how the plant should
develop or grow over time. Méch and Prusinkiewicz[14]

Figure 2: The uniform grid forms a height field that
defines the ground surface. Each grid point within the
height field represents a vertical column of ground mate-
rial with the top of the column centered at the grid point.

developed techniques for allowing developing plants to
affect and be affected by their environment. Dorsey and
her colleagues[3, 4] used simulation to model how an ob-
ject’s surface changes over time as environmental factors
act on it.

Simulation of Sand, Mud, Snow

In this paper, we present a general model of a deformable
ground material. The model consists of a height field sup-
ported by vertical columns of material. Using displace-
ment and compression algorithms, we animate the defor-
mations that are created when rigid geometric objects im-
pact the ground material and create footprints, tire tracks,
or other patterns on the ground. The properties of the
model can be varied to produce the behavior of different
ground materials such as sand, mud, and snow.

Model of Ground Material

Our simulation model discritizes a continuous volume of
ground material by dividing the surface of the volume
into a uniform rectilinear grid that defines a height field
(figure 2). The resolution of the grid must be chosen
appropriately for the size of the desired features in the
ground surface. For example, in figure 1 the resolution
of the grid is 1 cm and the bicycles are approximately
2 meters long with 8 cm wide tires.

Initial conditions for the height of each grid point can
be created procedurally or imported from a variety of
sources. We implemented initial conditions with noise
generated on an integer lattice and interpolated with cubic
Catmull-Rom splines (a variation of a two-dimensional
Perlin noise function[5]). Terrain data or the output from
a modeling program could also be used for the initial
height field. Alternatively, the initial conditions could be
the output of a previous simulation run. For example, the
pock-marked surface of a public beach at the end of a

busy summer day could be modeled by simulating many
criss-crossing footfalls.

Motion of the Ground Material

The height field represented by the top of the columns is
deformed as rigid geometric objects push into the grid.
For the examples given in this paper, the geometric ob-
jects are a runner’s shoe, a bicycle tire and frame, and a
jointed human figure. The motion of the rigid bodies was
computed using a dynamic simulation of a human run-
ning, bicycling, or falling down on a smooth, hard ground
plane[9]. The resulting motion was given as input to the
simulation of the ground material in the form of trajec-
tories of positions and orientations of the geometric ob-
jects. Because of this generic specification of the motion,
the input motion need not be dynamically simulated but
could be keyframe or motion capture data.

The simulation approximates the motion of the
columns of ground material by compressing or displacing
the material under the rigid geometric objects. At each
time step, a test is performed to determine whether any
of the rigid objects have intersected the height field. The
height of the affected columns is reduced until they no
longer penetrate the surface of the rigid object. The mate-
rial that was displaced is either compressed or forced out-
ward to surrounding columns. A series of erosion steps
are then performed to reduce the magnitude of the slopes
between neighboring columns. Finally, particles can be
generated from the contacting surface of the rigid object
to mimic the spray of material that is often seen following
an impact. We now discuss each step of the algorithm in
more detail: collision, displacement, erosion, and particle
generation.

Collision. The collision algorithm determines whether
a rigid object has collided with the ground surface. For
each column, a ray is cast from the bottom of the col-
umn through the vertex at the top. If the ray intersects
a rigid object before it hits the vertex, then the rigid ob-
ject has penetrated the surface and the top of the column
is moved down to the intersection point. A flag is set to
indicate that the column was moved, and the change in
height is stored. The computational costs of the ray in-
tersection tests are reduced by partitioning the polygons
of the rigid body models using an axis-aligned bounding
box hierarchy[22].

Using a vertex coloring algorithm, the simulation also
computes a contour map with the distance from each col-
umn that has collided with the object to the closest col-
umn that has not collided (figure 3). This information is
used when the material displaced by the collision is dis-
tributed. As an initialization step, columns not in contact
with the object are assigned the value zero. During sub-

1 et
Az 2]z2]2]2]z2]\
Az|3]3]3]3]3]2]1
ABO00BE
HEAEEBEAEP4
)/12133322214
1 2|3]3]2]2 (1
1/{332 1
Al2]3]3]z
1l23]3|/]1
WNEHEEE
1 N1

Figure 3: The contour map represents the distance from
each column in contact with the foot to a column that is
not in contact. For this illustration, we used columns that
are four-way connected. However, in the examples in this
paper we used eight-way connectivity because we found
that the higher connectivity yielded smoother results.

sequent iterations, unlabeled columns adjacent to labeled
columns are assigned a value equal to the value of the
lowest adjacent column plus one.

Displacement. Ground material from the columns that
are in contact with the object is either compressed or
distributed to surrounding columns that are not in con-
tact with the object. The compression ratio « is cho-
sen by the user and is one of the parameters available
for controlling the visual appearance of the ground mate-
rial. The material to be distributed, Ah, is computed by
Ah = am, where m is the total amount of displaced ma-
terial. The material that is not compressed is equally dis-
tributed among the neighbors with lower contour values,
so that the ground material is redistributed to the closest
ring of columns not in contact with the rigid object. The
heights of the columns in this ring are increased to reflect
the newly deposited material.

Erosion. Because the displacement algorithm deposits
material only in the first ring of columns not in contact
with the object, the heights of these columns may be in-
creased in an unrealistic fashion. An “erosion” algorithm
is used to identify columns that form steep slopes with
their neighbors and move material down the slope to form
amore realistic mound. Several parameters allow the user
to control the shape of the mound and model different
ground materials.

The erosion algorithm examines the slope between
each pair of adjacent columns in the grid (assuming eight-
way connectivity). For a column ¢j and a neighboring

column &/, the slope, s, is
s = tan_l(hij — hkl)/d (l)

where h;; is the height of column ij and d is the dis-
tance between the two columns. If the slope is greater
than a threshold 6,,,,¢, then ground material is moved from
the higher column down the slope to the lower column.
Ground material is moved by computing the average dif-
ference in height, Ah,, for the n neighboring columns
with too great a downhill slope:

Ah, = M)

n

The average difference in height is multiplied by a frac-
tional constant, o, and the resulting quantity is equally
distributed among the downhill neighbors. The algorithm
repeats until all slopes are below a threshold, 64,,. In the
special case that a neighboring column is in contact with
the geometric object, a different threshold, 6;,,, is used to
provide independent control of the inner slope around the
geometric object.

Particle Generation. We use a particle system to model
portions of the ground material that are thrown into the
air by the motion of the geometric objects. The user con-
trols the adhesiveness between the object and the material
as well as the rate at which the particles fall from the ob-
ject. Each triangle of the object that is in contact with the
ground picks up a volume of the ground material during
contact. The volume of material is determined by the area
of the triangle multiplied by an adhesion constant for the
material. When the triangle is no longer in contact with
the ground, it drops the attached material as particles ac-
cording to an exponential decay rate.

Ay = U(e(7t+tc+At)/h _ e(7t+tc)/h) (3)

where v is the initial volume attached to the triangle, £ is
the current time, ¢, is the time at which the triangle left
the ground, At is the time step size, and £ is a half life
parameter that controls how quickly the material falls off.
The number of particles released on a given time step is
determined by n = Aw¢, where 1/¢ is the volume of
each particle.

The initial positions, pg, for a particle is randomly dis-
tributed over the surface of the triangle according to:

Po = baxa + bbxb + bcxc (4)

where x,, X, and x. are the coordinates of the vertices
of the triangle and b,, by, and b, are the barycentric coor-
dinates of pg given by

be = 1.0—/pa)
by = pp(1.0—-10,) (6)
be = 1.0— (ba+by))

where p, and p; are independent random variables evenly
distributed between [0..1]. This computation results in a
uniform distribution over the triangle.

The initial velocity of a particle is computed from the
velocity of the rigid object:

Po=V+wXPpo (3)

where v and w are the linear and angular velocity of the
object. To give a more realistic and appealing look to the
particle motion, the initial velocities are randomly per-
turbed.

The final component of the particle creation algorithm
accounts for the greater probability that material will fall
off fast moving objects. A particle is only created if
(|Pol/s)” > p, where s is the minimal speed at which all
potential particles will be dropped, v controls the vari-
ation of the probability of particle creation with speed,
and p is a random variable evenly distributed in the range
[0..1].

If particles are only generated at the beginning of a
time step then the resulting particle distribution will have
a discrete, sheet-like appearance. We avoid this undesir-
able effect by randomly distributing each particle’s cre-
ation time within the time step interval. The information
used to calculate the initial position and velocity is inter-
polated within the interval to obtain information appro-
priate for the particle’s creation time.

Once generated, the particles fall under the influence
of gravity. When a particle hits the surface of a column,
its volume is added to the column.

Implementation and Optimization

Simulations of terrain generally span a large area. For
example, we would like to be able to simulate a runner
jogging on a beach, a skier gliding down a snow-covered
slope, and a stampede of animals crossing a sandy val-
ley. A naive implementation of the entire terrain would
be intractable because of the memory and computation
requirements. The next two sections describe optimiza-
tions that allow us to achieve reasonable performance by
storing and simulating only the active portions of the sur-
face and by parallelizing the computation.

Algorithm Complexity. Because the ground model is
a two-dimensional rectilinear grid, the most straightfor-
ward implementation is a two-dimensional array of nodes
containing the height and other information about the col-
umn. If an animation required a grid of 7 rows and j
columns, ¢ X j nodes would be needed, and computation
time and memory would grow linearly with the number of
grid points. Thus, a patch of ground 10 m x 10 m with a
grid resolution of 1 cm yields a 1000 x 1000 grid with one
million nodes. If each node requires 10 bytes of memory,

the entire grid requires 10 Mbytes of storage. Even this
relatively small patch of ground requires significant sys-
tem resources. However, most of the ground nodes are
static throughout the simulation, allowing a much more
efficient algorithm that creates and simulates only the ac-
tive nodes.

The active area of the ground surface is determined by
projecting an enlarged bounding box for the rigid objects
onto the surface as shown in figure 4. The nodes within
the projection are marked as active, and the collision de-
tection, displacement, and erosion algorithms are applied,
not to the entire grid, but only to these active grid points.
Additionally, nodes are not allocated for the entire ground
surface, rather they are created on demand as they be-
come active. The ¢, 7 position of a particular node is used
as the index into a hash table allowing the algorithms to
be implemented as if a simple array of nodes were being
used.

Because only the active grid points are processed, the
computation time is now a function of the size of the rigid
objects in the scene rather than the total grid size. Mem-
ory requirements are also significantly reduced, although
the state of all modified nodes must be stored even after
they are no longer active.

Parallel Implementation. Despite the optimization pro-
vided by simulating only active nodes, the computation
time grows linearly with the projected area of the rigid
objects. Adding a second character will approximately
double the active area, but the computation time for mul-
tiple characters can be reduced by using parallel pro-
cessing when the characters are contacting independent
patches of ground.

In our parallel implementation, a parent process main-
tains the state of the grid and spawns a child process
for every character in the animation. Each child process
maintains a local copy of the grid and the multiple copies
of the grid are synchronized through a two stage commu-
nication protocol at the end of each time step. First, each
child reports the changes in its copy of the grid to the par-
ent process. The parent process then updates the master
copy of the grid and reports all changes to the children.
This parallel implementation assumes that the projected
bounding boxes of the rigid objects for different charac-
ters do not overlap. A more sophisticated implementation
could handle this case by assigning characters with over-
lapping bounding boxes to the same processor.

We have implemented this design on a 16 proces-
sor SGI Power Challenge using UNIX sockets to han-
dle communication. Because the parallel implementation
does not rely on shared memory, we can also use multiple
single processor machines, although the network delays
between multiple machines are more significant than the

Figure 4: The left figure shows the ground area that has been created in the hash table. The currently active area
is highlighted in red. The right figure shows the same scene rendered over the initial ground surface. There are
approximately 37,000 columns in the active area and 90,000 stored in the hash table, while the number of columns in
the entire virtual grid is greater than 2 million.

Figure 5: Images from video footage of a human runner stepping in sand and a simulated runner stepping in sand,
mud, and snow. The human runner images are separated by 0.133 s; the simulated images are separated by 0.1 s.

Video

Mud Sand

Snow

—
—

Figure 6: Images of runner tripping over an obstacle and falling onto the sand. The final image shows the pattern she
made in the sand.

communication time on a single multiprocessor machine.

Animation Parameters

One goal of this research is to create a tool that allows
animators to easily generate a significant fraction of the
variety seen in ground materials. Five parameters of the
simulation can be changed by the user in order to achieve
different effects: liquidity, roughness, inside slope, out-
side slope, and compression. The first four are used by
the erosion algorithm, and the fifth is used by the dis-
placement algorithm.

Liquidity, 65¢,p, determines how watery the material
appears by modifying how many times the erosion func-
tion is called per time step. With less erosion per time
step, the surface appears to flow outward from the inter-
secting object; with more erosion, the surface moves to
its final state more quickly.

Roughness, o, controls the irregularity of the ground
deformations by changing the amount of material that is
moved from one column to another during erosion. Small
values yield a smooth mound of material while larger val-
ues give a rough, irregular surface.

The inside and outside slope parameters, 6;,, and 6,,;,
modify the shape of a mound of ground material by
changing the slope adjacent to intersecting geometry and
the slope on the outer part of the mound. Small values
lead to more erosion and a more gradual slope; large val-
ues yield less erosion and a steeper slope.

The compression parameter, «, offers a way to model
substances of different densities determining how much
displaced material is distributed outward from an object
that has intersected the grid. A value of one causes all ma-
terial to be displaced; a value less than one allows some
of the material to be compressed.

Additionally, when particles are used, the rate of cre-
ation of particles is controlled primarily by a parameter
representing the adhesion between the ground material
and the object. We included particles in the animations of
sand but did not include them in the animations of mud or
snow. Other more dynamic motions such as skiing might
generate significant spray but running in snow appears to
generate clumps of snow rather than particles.

Results and Discussion
Figure 5 shows images of a human runner stepping in
sand and a simulated runner stepping in sand, mud, and
snow. The parameters used for the simulations of the
three ground materials are given in table 1. The foot-
prints left by the real and simulated runners in sand are
quite similar.

Figures 4 and 6 show more complicated patterns cre-
ated in the sand by a falling bicycle and a tripping runner.

Variable Sand | Mud | Snow
liquidity (Ostop) 0.8 1.1 1.57
roughness (o) 0.2 0.2 0.2
inside slope (6;) 0.8 1.57 1.57
outside slope (fpyut) | 0.436 1.1 1.57
compression () 0.3 041 | 00

Table 1: Table of parameters for the three ground mate-
rials.

Figure 7: Images of actual tire tracks in snow and human
footprints in snow and in mud.

For each of these simulations, we used a grid resolution
of 1 cm by 1 cm yielding a virtual grid size of 2048 x 1024
for the bicycle and 4096 x 512 for the runner.

The simulation described in this paper allows us to
capture with relative ease many of the behaviors of sub-
stances such as sand, mud, and snow. Only about fif-
teen iterations were required to hand tune the parameters
for the desired effect with each material. The computa-
tion time is not burdensome: a 3-second simulation of the
running figure interacting with a 1 cm by 1 cm resolution
ground material required less than 2 minutes of computa-
tion time on a single MIPS R10000 processor.

Many effects are missed by this model. For exam-
ple, wet sand and crusty mud often crack and form large
clumps, but our model can only generate smooth surfaces
and particles. Actual ground material is not uniform but
contains both small grains of sand or dirt as well as larger
objects such as rocks, leaves, and sea shells. More gen-
erally, many factors go into creating the appearance of
a given patch of ground: water and wind erosion, plant
growth, and the footprints of many people and animals.
Some of these more subtle effects are illustrated by the
human footprints in snow and mud shown in figure 7.

One significant approximation in this simulation sys-
tem is that the motion of the rigid objects is not affected
by the deformations of the surface. For the sequences
presented here, each of the rigid body simulations inter-
acted with a flat, smooth ground plane. A more accurate
and realistic simulation system would allow the bike and
runner to experience the undulations in the initial terrain
as well as the changes in friction caused by the deform-
ing surfaces. For example, a bike is slowed down sig-
nificantly when rolling on sand and a runner’s foot slips
slightly with each step on soft ground.

The motions of sand, mud, and snow that we gener-
ated are distinctly different from each other because of
changes to the simulation parameters. Although much
of the difference is due to the deformations determined
by our simulations, part of the visual difference results
from different surface properties used for rendering. To
generate the images in this paper, we had not only to se-
lect appropriate parameters for the simulation but also to
select parameters for rendering. A more complete inves-
tigation of techniques for selecting rendering parameters
and texture maps might prove useful.

We regard this simulation as appearance-based rather
than engineering-based because most of the parameters
bear only a scant resemblance to the physical parameters
of the material being modeled. The liquidity parameter,
for example, varies between 0.0 and 7 /2 rather than rep-
resenting the quantity of water in a given amount of sand.
It is our hope that this representation for the parameters
allows for intuitive adjustment of the resulting animation
without requiring a deep understanding of the simulation
algorithms or soil mechanics. The evaluation is also qual-
itative or appearance-based in that we compare simulated
and video images of the footprints rather than matching
initial and final conditions quantitatively.

References
[1] B. Chanclou, A. Luciani, and A. Habibi. Physi-
cal models of loose soils dynamically marked by a

moving object. In Computer Animation *96, pages
27-35,1996.

[2] N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura.
Two—dimensional visual simulation of flames,
smoke and the spread of fire. The Journal of Vi-
sualization and Computer Animation, 5(1):37-54,
January—March 1994.

[3] J. Dorsey and P. Hanrahan. Modeling and rendering
of metallic patinas. In SIGGRAPH ’96 Conference
Proceedings, pages 387-396. ACM SIGGRAPH,
1996.

[4] J. Dorsey, H. K. Pedersen, and P. Hanrahan. Flow
and changes in appearance. In SIGGRAPH ’96 Con-
ference Proceedings, pages 411-420. ACM SIG-
GRAPH, 1996.

[5] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and
Worley. Texturing and Modeling: A Procedural Ap-
proach. Academic Press, October 1994.

[6] N. Foster and D. Metaxas. Realistic animation of
liquids. In Proceedings of Graphics Interface 96,
pages 204-212,1996.

[7] N. Foster and D. Metaxas. Modeling the motion of
a hot, turbulent gas. In SIGGRAPH ’97 Conference
Proceedings, pages 181-189. ACM SIGGRAPH,
1997.

[8] A. Fournier and W. T. Reeves. A simple model of
ocean waves. In SIGGRAPH 86 Conference Pro-
ceedings, pages 75-84. ACM SIGGRAPH, 1986.

[9] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and
James F. O’Brien. Animating human athletics.
In SIGGRAPH ’95 Conference Proceedings, pages
71-78. ACM SIGGRAPH, 1995.

[10] M.Kass and G. Miller. Rapid, stable fluid dynamics
for computer graphics. In SIGGRAPH "90 Confer-
ence Proceedings,pages 49-57. ACM SIGGRAPH,
1990.

[11] X. Li and J. M. Moshell. Modeling soil: Realtime
dynamic models for soil slippage and manipulation.
In SIGGRAPH ’93 Conference Proceedings, pages
361-368. ACM SIGGRAPH, 1993.

[12] D. Lundin. Motion simulation. In Nicograph '84,
November 1984.

[13] D. Lundin. Works’ ant. In SIGGRAPH Video Re-
view, volume 100. ACM SIGGRAPH, 1994. Spe-
cial Issue: Fifteen Years of Computer Graphics
1979-1994.

[14] R. Méch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH 96 Conference Proceedings, pages 397—
410. ACM SIGGRAPH, 1996.

[15] G. Miller and A. Pearce. Globular dynamics: A
connected particle system for animating viscous
fluids. Computers and Graphics, 13(3):305-309,
1989.

[16] J. F. O’Brien and J. K. Hodgins. Dynamic simu-
lation of splashing fluids. In Computer Animation
'95, pages 198-205, 1995.

[17] D. R. Peachey. Modeling waves and surf. In SIG-
GRAPH ’86 Conference Proceedings, pages 65-74.
ACM SIGGRAPH, 1986.

[18] T. Reed and B. Wyvill. Visual simulation of light-
ning. In SIGGRAPH 94 Conference Proceedings,
pages 359-364. ACM SIGGRAPH, 1994.

[19] W. T. Reeves. Particle systems — a technique for
modeling a class of fuzzy objects. ACM Transac-
tions on Graphics,2:91-108, April 1983.

[20] K.Reisz and G. Millar. The Technique of Film Edit-
ing. Focal Press, 1989.

[21] K. Sims. Particle animation and rendering using
data parallel computation. In SIGGRAPH ’90 Con-
ference Proceedings, pages 405—413. ACM SIG-
GRAPH, 1990.

[22] J. M. Snyder. An interactive tool for placing curved
surfaces without interpenetration. In SIGGRAPH
’95 Conference Proceedings, pages 209-218. ACM
SIGGRAPH, 1995.

[23] J. Stam and E. Fiume. Depicting fire and other
gaseous phenomena using diffusion processes. In
SIGGRAPH 95 Conference Proceedings, pages
129-136. ACM SIGGRAPH, 1995.

[24] D. Terzopoulos, J. Platt, and K. Fleischer. Heat-
ing and melting deformable models (from goop to
glop). In Proceedings of Graphics Interface '89,
pages 219-226, 1989.

[25] F. Thomas and O. Johnston. Disney Animation: The
Lllusion of Life. Abbeville Press, New York, 1984.

[26] J. Wejchert and D. Haumann. Animation aerody-
namics. In SIGGRAPH ’91 Conference Proceed-
ings, pages 19-22. ACM SIGGRAPH, 1991.

