Ray-tracing Procedural Displacement Shaders

Wolfgang Heidrich and Hans-Peter Seidel
Computer Graphics Group

University of Erlangen

{heidrich,seidel }@informatik.uni-erlangen.de

Abstract

Displacement maps and procedural displacement
shaders are a widely used approach of specifying geo-
metric detail and increasing the visual complexity of
a scene.

While it is relatively straightforward to handle
displacement shaders in pipeline based rendering
systems such as the Reyes-architecture, it is much
harder to efficiently integrate displacement-mapped
surfaces in ray-tracers. Many commercial ray-tracers
tessellate the surface into a multitude of small trian-
gles. This introduces a series of problems such as
excessive memory consumption and possibly unde-
tected surface detail.

In this paper we describe a novel way of ray-tracing
procedural displacement shaders directly, that is,
without introducing intermediate geometry. Affine
arithmetic is used to compute bounding boxes for
the shader over any range in the parameter domain.
The method is comparable to the direct ray-tracing
of Bézier surfaces and implicit surfaces using Bézier
clipping and interval methods, respectively.

Keywords: ray-tracing, displacement-mapping, pro-
cedural shaders, affine arithmetic

1 Motivation

Procedural displacement shaders [7] are an impor-
tant means of specifying geometric detail and surface
imperfections in synthetic scenes, which increases the
realism of computer generated images. Small surface
features, which would be tedious to model explic-
itly using a geometric modeling system, can often
be described by a few lines of code in a dedicated
shading language, such as the RenderMan Shading
Language [20, 10, 24].

In contrast to simple surface shaders and bump
maps [4], displacement shaders actually change the
geometry of the underlying surface. This allows for
effects like self-occlusion and self-shadowing, and re-
sults in more realistically looking images, in partic-
ular in silhouette regions (see Figure 1). Procedural

displacement shaders are resolution independent and
storage efficient.

Figure 1: A simple displacement shader showing a
wave function with exponential decay. The underly-
ing geometry used for this image is a planar polygon.

Unfortunately, because displacement shaders mod-
ify the geometry, their use in many rendering systems
is limited. Since ray-tracers cannot handle proce-
dural displacements directly, many commercial ray-
tracing systems, such as Alias [1], tessellate geomet-
ric objects with displacement shaders into a mul-
titude of small triangles. Unlike in pipeline-based
renderers, such as the Reyes-architecture [17], these
triangles have to be kept around, and cannot be ren-
dered independently.

This approach, however, defeats two of the reasons
for using procedural displacements in the first place:
resolution independence and storage efficiency. The
storage requirements for representing a large number
of polygons (often hundreds of thousands or more),
as well as the spatial subdivision hierarchy required
for speeding up the intersection tests (often octrees)
can be excessive, even for relatively simple shaders.

But tessellation-based methods also bear other,
more fundamental problems. Because the shader can
only be evaluated at a discrete set of points, the ver-
tices of the output polygons, it is possible to miss
narrow features. This is particularly disturbing if
the displacements of those features are large. Most
existing systems either disallow long and skinny dis-
placements, or require the user to explicitly specify
bounding volumes for them.

As a final problem, numerical errors may oc-
cur in intersection tests with many small polygons.
These can result in cracks between adjacent poly-
gons, which are difficult to avoid in implementations.

Given the potential benefits of displacement
shaders, and the shortcomings of tessellation-based
implementations, the question is whether there is a
way to directly ray-trace procedural displacements.
Such an algorithm should work directly on the proce-
dural description, without generating any intermedi-
ate geometry. This would prevent cracking and pre-
serve resolution independence. The method should
also guarantee intersections, in the sense that if an
intersection exists, it will be found, no matter how
fine the feature is. Since intersections with procedu-
ral displacements cannot be determined analytically,
the algorithm should use a numerical method to iter-
atively compute the closest intersection along a ray.

2 Prior Work

Several related algorithms for finding intersections
with a variety of different geometric objects have
been published. Nishita et al. [16] developed Bézier
clipping to compute ray intersections with (ratio-
nal) Bézier patches. The algorithm first determines
parameter regions that cannot contain intersection
points. The surface is the re-parameterized over the
remaining parameter range. This process is recur-
sively repeated until the intersection point has been
determined with a given precision.

Barr [2, 3] computed ray intersections with de-
formed objects by solving an initial value problem.
This method works for both parametric and implicit
surfaces, but only for relatively simple global defor-
mations such as twists. It does not directly translate
to complex procedural deformations.

Later, Kalra and Barr [13] developed a method
for finding guaranteed intersections with implicit sur-
faces. Lipschitz bounds (global bounds on the deriva-
tive of the implicit function) are used to spatially
subdivide 3-space into cells, each of which contains at
most one intersection of the surface with the ray. The
exact intersection point is then found using the New-
ton method or regula falsi. Unfortunately, the com-
putation of Lipschitz bounds cannot be automated,
and thus the use of this algorithm is limited to cases
where it is acceptable for the user to specify them.

Snyder [22, 23] and Duff [6] used interval arith-
metic to recursively enumerate implicit surfaces with
a hierarchical data structure. For each cell, the im-
plicit function is evaluated using interval arithmetic.
This yields bounds for the value of the function in
this cell. If these bounds include the value zero, the

surface potentially passes through the cell, and the
cell is subdivided in an octree fashion, unless it is al-
ready small enough. Unlike Lipschitz bounds, inter-
val bounds can be automatically computed by spe-
cific implementations of the basic library functions.

Comba and Stolfi [5] and Figueiredo and Stolfi [9]
used a similar algorithm, but replaced interval arith-
metic with affine arithmetic, which they developed
for this purpose. They showed that affine arithmetic
produces significantly tighter bounds than interval
arithmetic, although at a higher cost.

In [12], we used affine arithmetic to obtain con-
servative bounds for the value of procedural surface
shaders over a given parameter interval. This can
be used to drive a hierarchical sampling process, for
example in hierarchical radiosity.

In this paper we extend the above ideas to ray-
tracing displacement shaders. We use affine arith-
metic to hierarchically enumerate the geometry gen-
erated by procedural shaders. In Section 3 we de-
scribe the basic algorithm. In Section 4 we then
briefly review affine arithmetic, and discuss the is-
sues involved when applying it to procedural shaders.
Sections 5 and 6 contain refinements of the basic al-
gorithm. Finally, in Section 7, we present experi-
mental results obtained with our method.

3 Direct

Shaders
Our iterative method for intersection tests with dis-
placement shaders is based on the idea of hierarchi-
cally subdividing the parameter domain of the sur-
face. Parameter regions, in which intersections might
occur, are identified, and those regions in which in-
tersections are not possible are discarded. Parameter
ranges containing potential intersections are recur-
sively refined, until the intersection has been deter-
mined within a pre-defined accuracy. The pseudo-
code in Figure 2 summarizes this algorithm.

In order to detect potential intersections in a given
parameter range, we compute a bounding box for the
value of the displacement shader over this range. The
recursion is terminated if the bounding box is small
enough. For primary rays this means that the projec-
tion of the box onto the screen is smaller than some
fraction of a pixel. As we will show in Section 3.1,
the bounding boxes can be obtained with the help of
affine arithmetic.

Figure 3 shows an example of this method. On
the left side, you see the hierarchically subdivided
parameter domain for the intersection of a ray with
the simple shader from Figure 1. On the right side,

Ray-tracing of Displacement

intersect(ray,shader,ul,u2,vl,v2)
{
bBox= computeBBox(shader,ul,u2,vl,v2);
if(intersects(ray,bBox))
if(isSmallEnough (bBox))
return bBox;
else
{
11= intersect(ray,shader,
ul, (ul+u2)/2,vl, (vi+v2)/2);
lr= intersect(ray,shader,
(ul+u2)/2,u2,vl, (vi+v2)/2);
ul= intersect(ray,shader,
ul, (ul+u2) /2, (vi+v2)/2,v2);
ur= intersect(ray,shader,
(ul+u2)/2,u2, (vi+v2)/2,v2);
return closest(11l,1r,ul,ur);

}

return NONE;

}

Figure 2: The basic intersection algorithm.

%,
H

Figure 3: The hierarchically subdivided parameter
domain, and the resulting bounding boxes for the
intersection of one ray with the wave shader from
Figure 1.

you see the displaced surface with the resulting hier-
archy of bounding boxes.

3.1 Bounding Box Computation

To understand how the bounding boxes can be com-
puted, we first describe how displacement shaders
can be conceptually integrated into the rendering
system.

Displacement shaders are procedures that describe
perturbations of points in 3-space. For the pur-
poses of this paper, we assume that this process is
strictly separated from other parts of the renderer, in
particular geometry processing and surface shading.
Displacement shaders use a well-defined interface to
communicate with other parts of the system. An
example for such an interface is defined by the Ren-
derMan Shading Language [20, 10], on which we base
our discussion.

The displacement shader communicates with two
other parts of the rendering system, the geometry
processing stage and a surface shading stage. The
data flow between those parts is depicted in Figure 4.

wv.dudy implicit implicit
[aram:

S arams
Geometry P Displacement P Surface
Processing Shader Shader

Figure 4: The data flow between selected parts of
the rendering system.

Given a parametric position (u,v) and sampling
rate (du,dv), the geometry processing stage com-
putes a set of purely geometric terms for a given
parametric surface. This includes the point in 3-
space, as well as the geometric and the shading nor-
mal in this point.

This set of geometric terms is then passed on to the
displacement shader, which is allowed to change the
position of the point, as well as the shading normal.
The most important parameters of a displacement
shader are listed in Table 1. The shader does not
have direct access to the underlying geometry of the
surface.

Variable | Description

P Position in 3-space

N Shading normal in point P
Ng Surface normal in point P

E Eye point

u, v Surface parameters

du, dv Change of surface parameters

Table 1: The most important implicit parameters of
displacement shaders. P and N can be modified by
the shader.

The perturbed point and normal, together with
information from other parts of the system, such as
incoming light directions and intensities, are then
passed to the surface shader. There, they are used
to determine the intensity of the point.

The data flow for the three modules shows the dif-
ficulty of ray-tracing procedural displacements: in
order to evaluate the shader, we require a parametric
position (u,v). This position, however, is not known
before the intersection has been determined. This il-
lustrates the necessity to iterate the first two stages
of Figure 4 in order to find both the intersection, and
the parametric position of it.

Both the parametric function of the surface and

the procedural displacement can usually be eval-
uated only at discrete points in parameter space.
However, in order to compute a bounding box for
a specific parameter range, we have to compute con-
servative bounds for the value of the shader over that
range. This can be done using an automated range
analysis method such as affine arithmetic.

Using affine arithmetic instead of normal floating
point arithmetic for the evaluation of the respective
parametric formulas for the geometry, we obtain con-
servative bounds for parameters of the displacement
shader, such as the surface point and the normal.
Conservative bounds for the displaced point and nor-
mal can then be computed by evaluating the shader,
again using affine- instead of floating point arith-
metic. The ranges of the z, y, and z components
of the resulting point are at the same time bound-
ing boxes for the geometry after the displacement.
In the following we give a brief overview of affine
arithmetic, and describe in more detail how it can
be applied to procedural shaders.

4 Affine Arithmetic

Affine arithmetic, first introduced in [5], is an exten-
sion of interval arithmetic [14]. It has been success-
fully applied to several problems for which interval
arithmetic had been used before [15, 22, 23]. This
includes the adaptive enumeration of implicit sur-
faces [9].

Like interval arithmetic, affine arithmetic can be
used for manipulating imprecise values, and for eval-
uating functions over intervals. It is also possible
to keep track of truncation and round-off errors. In
contrast to interval arithmetic, affine arithmetic also
maintains dependencies between the sources of error,
and thus manages to compute significantly tighter
error bounds.

Affine arithmetic operates on quantities known as
affine forms, given as polynomials of degree one in a
set of noise symbols €;.

i':1'0+1’161 + To€x + -+ TpeEn

The coefficients x; are known real values, while the
values of the noise symbols are unknown, but limited
to the interval U := [—1,1]. Thus, if all noise sym-
bols can independently vary between —1 and 1, the
range of possible values of an affine form z is

(3] =[wo — & mo+ &), €= |uil-
i=1

Computing with affine forms is a matter of replac-
ing each elementary operation and library function

f(z) on real numbers with an adequate operation
f*(e1y...,€n) := f(&) on affine forms.

If f is itself an affine function of its arguments,
normal polynomial arithmetic yields the correspond-
ing operation f*. For example, we get

THyg=x0+yo+ (x1 +yi1)er + -+ (xn + yn)en,
THa=(ro+a)+zi€e1+ -+ Tpep,

al = axg + ari€] + - - + ar,€E,

for affine forms z, 7 and real values a.

If f is not an affine operation, the function
f*(e1,...,€,) cannot be exactly represented as a lin-
ear polynomial in the €;. In this case, it is nec-
essary to find an affine function f%(eq,...,€,) =
zo+z1€1 +- - -+ 2n€, that approximates f* (e, ..., €,)
as well as possible over U™. An additional new noise
symbol €41 has to be added to represent the error
introduced by this approximation. This yields the
following affine form for the operation z = f(z):

zZ= fa(€1,...,€n)

= 2o+ z1€1 + -+ Zp€n + Znt1€n+1

The coefficient x,11 of the newly introduced noise
symbol €,11 has to be an upper bound for the error
introduced by the approximation of f* with f®.
The process of generating affine approximations f¢
for arbitrary functions f is described in detail in [5],
[8] and [9]. This process is relatively straightforward
for most library functions. Once all library functions
have been implemented using affine arithmetic, they
can be used to compute conservative bounds for any
expression that only uses functions from this library.

4.1 Affine

Shaders
In addition to the functions found in typical math li-
braries, shading languages often provide specific ad-
ditional functionality. This includes a set of problem-
specific functions, as well as derivatives of arbitrary
expressions, and, of course, control structures like if-
statements and for-loops. In [12], we have shown
how the feature set of the RenderMan Shading Lan-
guage can be implemented with affine arithmetic. In
the following, we will briefly review some of these
results.

Derivatives of arbitrary expressions are frequently
used in procedural shaders. In displacement shaders
they can be used to compute the normal vector
in a displaced point: the derivatives of the point
with respect to the parametric directions v and v

Arithmetic and Procedural

yields two tangent vectors of the surface. The de-
sired normal is the crossproduct of the two. In the
RenderMan Shading Language, the built-in function
calculatenormal() uses this method to generate
normals.

The RenderMan standard [20] defines derivatives
with the help of divided differences: Du(f(u)) :=
(f(u + du) — f(u))/du. In this context, du is the
sampling rate in u-direction, which is provided to
the shader as an implicit parameter (see Table 1).
Derivatives with respect to arbitrary expressions
are computed using the chain rule: Deriv(f,g) :=
Du(f)/Du(g) + Dv(f)/Dv(g). Using affine arith-
metic, we can evaluate these formulas, and thereby
obtain conservative bounds for the value of expres-
sions as defined by the RenderMan standard. If
bounds for the true mathematical value of derivatives
are desired, we can use automatic differentiation [21].
In this case, we store the triple (&, 0%/0u, 0 /0v) for
each expression x. The partial derivatives for each
operation f(z) is then computed using the chain rule:

. 0% 0% N 0T, 0%
(050 50) = (rar @i r@5).

Like most programming languages, shading lan-
guages also have control statements like for-loops
and if-then-else. These statements are challeng-
ing to deal with, because the correct execution path
is selected at runtime, based on a number of compar-
isons (typically inequalities when dealing with float-
ing point values). Unfortunately, two affine forms
can have overlapping ranges, in which case compar-
isons between the two are neither true nor false. It
is then necessary to execute both possible execution
paths, and merge the resulting ranges into a single
affine form.

A simple way of determining whether both paths
or only one of them has to be executed, is to replace
all inequalities with a step function, for which an
affine approximation can be found easily. For exam-
ple z < y becomes step(y —) where step(z) := 0
for z < 0 and step(z) := 1 otherwise. Boolean ex-
pressions can then be replaced by arithmetic expres-
sions: 1 < y; and z2 < y2 becomes step(z1 —y1) -
step(z2 — y2).

4.2 Affine Arithmetic
Shaders

Applied to displacement shaders, affine arithmetic

allows us to compute a region P= (z,9,2) that en-

closes the displaced surface for a given parameter

range (u £ du/2,v £+ dv/2). The ranges of the com-

and Displacement

ponents Z, ¥, and Z give us an axis aligned bounding
box for the displacement shader.

Note that, in general, the region P is smaller
than the complete bounding box, because usually the
affine forms z, ¢, and Z will depend on common noise
symbols. This means that the values of the compo-
nents are not independent. More precisely, Pis a
projection of the n-dimensional unit cube:

Zo T1 Tn €1
P=1 9w [+ vn1 = n
20 21 Zn €n

This dependency is ignored by evaluating the
ranges of the components separately. However, di-
rectly dealing with the projection of n-dimensional
unit cubes is expensive (there are 2™ vertices), and
so the axis aligned bounding box is preferable for
intersection tests in ray-tracing applications.

5 Handling Discontinuities

In the form presented in Section 3, the hierarchical
subdivision is terminated when the projection of the
corresponding bounding box is small enough. This
works in continuous areas of the shader, because the
region represented by P converges to a single point
as the parameter range is subdivided. In discontinu-
ous areas, however, the region converges to a higher-
dimensional structure, typically a line segment. As
a consequence, the axis-aligned bounding box does
not, in general, converge to zero around discontinu-
ities of the shader.

Thus, it is necessary to detect discontinuities of the
shader during the subdivision process, and to termi-
nate the recursion appropriately. Discontinuities can
be caused either by discontinuous library functions,
like the step() function, or by the use of control
statements that cause different execution paths for
adjacent points on the surface. Both cases can be
dealt with by adding a flag to the implementation
of affine forms. The flag is set whenever a library
function causes a discontinuity, or the results of two
different execution paths are merged into one affine
form.

The recursive subdivision is then terminated when
the bounding box is small enough OR the surface is
discontinuous AND the size of the bounding box did
not change significantly during the last subdivision.

Having detected discontinuities, the question is,
whether or not intersections with their bounding
boxes should be reported as surface intersections.
Both alternatives are possible and yield different se-
mantics. If the intersection is not reported, discon-

tinuities will result in holes or disconnected surface
parts. If they are reported, this gives the shader au-
thor a convenient way of specifying vertical surfaces.
The latter approach is consistent with RenderMan,
and has been used for rendering Figure 5. The figure
shows a simple displacement shader, which, applied
to a disk, results in a nail-like surface. Besides the
handling of discontinuities, this figure also illustrates
that the algorithm is capable of naturally dealing
with rather extreme displacements.

displacement

-
radius

Figure 5: A simple nail shader applied to a small disk

at the base of the nail. This illustrates the ability

of the algorithm to handle discontinuous and rather

extreme displacements.

Note that, if divided differences are used to com-
pute derivatives, the normal vectors for the discon-
tinuous parts automatically converge to the desired
result.

6 Caching and Memory Considerations
With the above modifications to the basic algorithm,
we are able to ray-trace arbitrary procedural shaders.
Unfortunately, the algorithm as presented in Sec-
tion 3 is relatively slow, since it computes a hierarchy
of bounding boxes for each ray. Obviously, there is a
lot of coherence between adjacent pixels, and the cor-
responding rays produce largely identical hierarchies
of bounding boxes.

Depending on the complexity of the displacement
shader, its evaluation is significantly more expensive
than an intersection test of a ray with an axis aligned
bounding box. It is therefore desirable to trade mem-
ory for computation time by caching some of the
bounding boxes already computed for future use.

We do this by storing the bounding boxes in a
quadtree. Each node of the tree corresponds to a
certain range of the hierarchically subdivided param-
eter domain. In each node we only need to store the
axis aligned bounding box itself (six floating point
values), as well as one pointer to each of the four chil-
dren of the node. The parameter range represented
by a quadtree node is implicitly available through
the path from the root to the node. All other pa-
rameters, which are only required for some of the
leaf nodes anyway, can be obtained by evaluating
the shader.

This results in a fairly storage efficient data struc-
ture. Each node requires 40 to 80 Bytes, depending
on whether we use single or double precision floats
and 32 or 64 bit pointers. The total size of the tree
can still be extremely large, especially for large image
resolutions, which require more levels of subdivision.
Thus, it is necessary to remove parts of the tree that
are not likely to be required again soon.

In our implementation of the ray-tracer, which
uses a normal scanline traversal order for the pix-
els, we allocate a certain amount of memory for the
nodes in the tree. If the memory requirements ex-
ceed this limit, we traverse the tree, deleting every
node except the ones used by the previous ray.

If we allow arbitrary pixel traversal orders it is
easy to think of other methods for limiting memory
usage. For example, the screen could be subdivided
into rectangular tiles, each of which is rendered sepa-
rately, or a space filling curve could be used as in [18].
An even more promising approach would be the use
of a ray cache as in [19]. However, these alternatives
have not been explored yet.

Another improvement of the algorithm, both in
performance and in memory requirements, can be
achieved by adapting the traversal order of the sub-
trees. In ray-tracing, often only the first intersection
of a ray with an object is required. The algorithm
from Section 3 finds all intersections, and therefore

Figure 6: With the modified traversal order, the al-
gorithm only finds the closest intersection. This re-
sults in a reduced number of shader evaluations.

has to refine the bounding box hierarchy in areas
which are not relevant to finding the closest intersec-
tion point.

In an improved version of the algorithm, the
branches whose bounding boxes are closest to the
origin of the ray are refined first. Branches for which
the bounding boxes are further away than already
known intersections do not need to be traversed. Fig-
ure 6 shows how this method reduces the number of
bounding boxes compared to Figure 3.

7 Results

We have timed our method with several shaders and
cache sizes. As shaders we used the wave and nail
shaders from above, as well as the “UFO”-shader
depicted in Figure 7. The cache sizes were 40, 400
and 4000 KBytes, corresponding to 1000, 10000, and
100000 quadtree nodes with a size of 40 Bytes. The
resulting timings are listed in Table 2. The resolution
for the wave shader was 512 x 256, for the nail shader
256 x 512, and for the UFO shader 256 x 256. For the
UFO shader, we always computed all intersections,
whereas for the other two, we only computed the
closest one.

Figure 7: The “UFQO” displacement shader applied
to a sphere. The surface shader is the RenderMan
wood shader.

| Shader | 40KB | 400KB | 4MB | unlimited

Wave 122.3 71.1 | 66.7 66.2
Nail 380.7 33.2 | 326 32.6
Ufo 121.4 89.5 | 82.5 82.2

Table 2: Timings (in seconds) for several shaders
and cache sizes on a SGI O2 with 175MHz R10000
Processor.

The numbers show that, even for our simple
caching scheme and the moderate cache size of 400
KB, the performance penalty is below 10 percent
compared to unlimited cache space. As with any
caching scheme, the performance drops dramatically
for small cache sizes, that cannot hold the working
set of the application. In our case this corresponds to
the number of nodes required for a complete scanline.

The loss of performance is particularly dramatic for
the nail shader, in which the bounding boxes for the
discontinuous portion can be reused over a large area
of the image. If the cache is too small, these boxes
have to be recomputed over and over again. A more
sophisticated caching scheme would certainly help in
this case.

7.1 Affine Arithmetic and Interval Arith-
metic
In this paper we use affine arithmetic to obtain con-
servative bounds for shader values over a parameter
range. In principle, we could also use any other range
analysis method for this purpose. It is, however,
important that the method generates tight, conser-
vative bounds, because this reduces the number of
bounding boxes to be generated, and therefore im-
proves both performance and memory requirements.
In this sense, interval arithmetic performs worse
than affine arithmetic for this application. It pro-
duces much wider bounds than affine arithmetic
when applied to procedural shaders. Figure 8 shows
a comparison of the subdivisions generated for the
UFO shader by a single ray. For interval arithmetic,
1450 bounding boxes had to be generated, for affine
arithmetic this number was only 174. The more so-
phisticated shaders are used, the worse interval arith-
metic performs. These measurements are consistent
with the results presented in [5], [9], and [8], as well
as our own results for surface shaders [12].

[HH |
H

Figure 8: A comparison of affine arithmetic (left) and
interval arithmetic (right). Affine arithmetic pro-
duced 174 bounding boxes, interval arithmetic 1450.
A magnified portion is showed on the bottom.

8 Conclusions and Future Research

In this paper we have presented a new iterative
method for computing intersections of rays with pro-
cedural displacement shaders. The method directly
operates on the procedural description of the shader,

without introducing any approximate geometry. As
a consequence, the method is resolution independent
and storage efficient, and is guaranteed to find ev-
ery intersection of the ray with the surface. Com-
putation time can be traded for memory in order to
improve performance.

We already mentioned that more sophisticated
caching schemes like the one in [19] are likely to fur-
ther improve performance. This is something to be
explored in the future.

Another interesting area of research is the paral-
lelization of the this method for loosely coupled dis-
tributed systems and rendering farms. The proce-
dural shaders that have to be distributed across the
network are extremely small. From this data, every
host is able to compute its own cache for bounding
boxes, instead of having to share large amounts of
tessellated geometry with other hosts.

Last but not least, the design of a renderer that
is completely based on range analysis methods such
as affine arithmetic is a promising area of future re-
search. The combination of work mentioned in Sec-
tion 2, together with the work presented in this pa-
per, allows for guaranteed intersection tests with al-
most any kind of commonly used geometric descrip-
tion.

References
[1] Alias/Wavefront. OpenAlias Manual, 1996.

[2] Alan H. Barr. Global and local deformations of solid
primitives. In Computer Graphics (SIGGRAPH '8/
Proceedings), pages 21-30, August 1984.

[3] Alan H. Barr. Ray tracing deformed surfaces. In
Computer Graphics (SIGGRAPH ’86 Proceedings),
pages 287-296, August 1986.

[4] James F. Blinn. Simulation of wrinkled surfaces. In
Computer Graphics (SIGGRAPH ’78 Proceedings),
pages 286-292, August 1978.

[5] Joao L. D. Comba and Jorge Stolfi. Affine arithmetic
and its applications to computer graphics. In Anais
do VII Sibgrapi, pages 9-18, 1993. Available from
http://www.dcc.unicamp.br/ stolfi.

[6] Tom Duff. Interval arithmetic and recursive subdi-
vision for implicit functions and constructive solid
geometry. In Computer Graphics (SIGGRAPH ’92
Proceedings), pages 131-138, July 1992.

[7] David Ebert, Kent Musgrave, Darwyn Peachey, Ken
Perlin, and Steve Worley. Tezturing and Modeling:
A Procedural Approach. Academic Press, October
1994.

[8] Luiz Henrique Figueiredo. Surface intersection using
affine arithmetic. In Graphics Interface ’96, pages
168-175, 1996.

[9] Luiz Henrique Figueiredo and Jorge Stolfi. Adaptive
enumeration of implicit surfaces with affine arith-
metic. Computer Graphics Forum, 15(5):287-296,
1996.

[10] Pat Hanrahan and Jim Lawson. A language for
shading and lighting calculations. In Computer
Graphics (SIGGRAPH ’90 Proceedings), pages 289—
298, August 1990.

[11] Wolfgang Heidrich. A compilation of affine approx-
imations for math library functions. Technical Re-
port TR-1997-3, University of Erlangen Computer
Graphics Group, 1997.

[12] Wolfgang Heidrich, Philipp Slusallek, and Hans-
Peter Seidel. Sampling procedural shaders using
affine arithmetic. ACM Transactions on Graphics,
1998.

[13] Devendra Kalra and Alan H. Barr. Guaranteed ray
intersections with implicit surfaces. In Computer
Graphics (SIGGRAPH ’89 Proceedings), pages 297—
306, July 1989.

[14] Ramon E. Moore. Interval Analysis. Prentice Hall,
Englewood Cliffs, New Jersey, 1966.

[15] F. Kenton Musgrave, Craig E. Kolb, and Robert S.
Mace. The synthesis and rendering of eroded fractal
terrains. In Computer Graphics (SIGGRAPH 89
Proceedings), pages 41-50, July 1989.

[16] Tomoyuki Nishita, Thomas W. Sederberg, and
Masanori Kakimoto. Ray tracing trimmed ratio-
nal surface patches. In Computer Graphics (SIG-
GRAPH ’90 Proceedings), pages 337-345, August
1990.

[17] Ken Perlin. An image synthesizer. In Computer
Graphics (SIGGRAPH ’85 Proceedings), pages 287—
296, July 1985.

[18] Matt Pharr and Pat Hanrahan. Geometry caching
for ray-tracing displacement maps. In Eurographics
Rendering Workshop 1996, pages 31-40, June 1996.

[19] Matt Pharr, Craig Kolb, Reid Gerhbein, and Pat
Hanrahan. Rendering complex scenes with memory-
coherent ray tracing. In Computer Graphics (SIG-
GRAPH 97 Proceedings), pages 101-108, aug 1997.

[20] Pixar. The RenderMan Interface. Pixar, San Rafael,
CA, Sep 1989.

[21] Louis B. Rall. Automatic Differentiation, Tech-
niques and Applications. Number 120 in Lecture
notes in computer science. Springer, 1981.

[22] John M. Snyder. Generative Modeling for Computer
graphics and CAD: Symbolic Shape Design Using In-
terval Analysis. Academic Press, 1992.

[23] John M. Snyder. Interval analysis for computer
graphics. In Computer Graphics (SIGGRAPH ’92
Proceedings), pages 121-130, July 1992.

[24] Steve Upstill. The RenderMan Companion. Addison
Wesley, 1990.

Figure 9: A more complex scene with multiple objects. The underlying geometry of each object is a sphere.

