
Ray�tracing Procedural Displacement Shaders

Wolfgang Heidrich and Hans�Peter Seidel

Computer Graphics Group

University of Erlangen

fheidrich�seidelg�informatik�uni�erlangen�de

Abstract
Displacement maps and procedural displacement

shaders are a widely used approach of specifying geo�
metric detail and increasing the visual complexity of
a scene�
While it is relatively straightforward to handle

displacement shaders in pipeline based rendering
systems such as the Reyes�architecture� it is much
harder to e�ciently integrate displacement�mapped
surfaces in ray�tracers� Many commercial ray�tracers
tessellate the surface into a multitude of small trian�
gles� This introduces a series of problems such as
excessive memory consumption and possibly unde�
tected surface detail�
In this paper we describe a novel way of ray�tracing

procedural displacement shaders directly� that is�
without introducing intermediate geometry� A�ne
arithmetic is used to compute bounding boxes for
the shader over any range in the parameter domain�
The method is comparable to the direct ray�tracing
of B�ezier surfaces and implicit surfaces using B�ezier
clipping and interval methods� respectively�

Keywords� ray�tracing� displacement�mapping� pro�

cedural shaders� a�ne arithmetic

� Motivation
Procedural displacement shaders ��	 are an impor�
tant means of specifying geometric detail and surface
imperfections in synthetic scenes� which increases the
realism of computer generated images� Small surface
features� which would be tedious to model explic�
itly using a geometric modeling system� can often
be described by a few lines of code in a dedicated
shading language� such as the RenderMan Shading
Language �
�� ���

	�
In contrast to simple surface shaders and bump

maps �
	� displacement shaders actually change the
geometry of the underlying surface� This allows for
e�ects like self�occlusion and self�shadowing� and re�
sults in more realistically looking images� in partic�
ular in silhouette regions �see Figure ��� Procedural

displacement shaders are resolution independent and
storage e�cient�

Figure �� A simple displacement shader showing a
wave function with exponential decay� The underly�
ing geometry used for this image is a planar polygon�

Unfortunately� because displacement shaders mod�
ify the geometry� their use in many rendering systems
is limited� Since ray�tracers cannot handle proce�
dural displacements directly� many commercial ray�
tracing systems� such as Alias ��	� tessellate geomet�
ric objects with displacement shaders into a mul�
titude of small triangles� Unlike in pipeline�based
renderers� such as the Reyes�architecture ���	� these
triangles have to be kept around� and cannot be ren�
dered independently�

This approach� however� defeats two of the reasons
for using procedural displacements in the �rst place�
resolution independence and storage e�ciency� The
storage requirements for representing a large number
of polygons �often hundreds of thousands or more��
as well as the spatial subdivision hierarchy required
for speeding up the intersection tests �often octrees�
can be excessive� even for relatively simple shaders�

But tessellation�based methods also bear other�
more fundamental problems� Because the shader can
only be evaluated at a discrete set of points� the ver�
tices of the output polygons� it is possible to miss
narrow features� This is particularly disturbing if
the displacements of those features are large� Most
existing systems either disallow long and skinny dis�
placements� or require the user to explicitly specify
bounding volumes for them�

As a �nal problem� numerical errors may oc�
cur in intersection tests with many small polygons�
These can result in cracks between adjacent poly�
gons� which are di�cult to avoid in implementations�
Given the potential bene�ts of displacement

shaders� and the shortcomings of tessellation�based
implementations� the question is whether there is a
way to directly ray�trace procedural displacements�
Such an algorithm should work directly on the proce�
dural description� without generating any intermedi�
ate geometry� This would prevent cracking and pre�
serve resolution independence� The method should
also guarantee intersections� in the sense that if an
intersection exists� it will be found� no matter how
�ne the feature is� Since intersections with procedu�
ral displacements cannot be determined analytically�
the algorithm should use a numerical method to iter�
atively compute the closest intersection along a ray�

� Prior Work
Several related algorithms for �nding intersections
with a variety of di�erent geometric objects have
been published� Nishita et al� ���	 developed B�ezier
clipping to compute ray intersections with �ratio�
nal� B�ezier patches� The algorithm �rst determines
parameter regions that cannot contain intersection
points� The surface is the re�parameterized over the
remaining parameter range� This process is recur�
sively repeated until the intersection point has been
determined with a given precision�
Barr �
� �	 computed ray intersections with de�

formed objects by solving an initial value problem�
This method works for both parametric and implicit
surfaces� but only for relatively simple global defor�
mations such as twists� It does not directly translate
to complex procedural deformations�
Later� Kalra and Barr ���	 developed a method

for �nding guaranteed intersections with implicit sur�
faces� Lipschitz bounds �global bounds on the deriva�
tive of the implicit function� are used to spatially
subdivide ��space into cells� each of which contains at
most one intersection of the surface with the ray� The
exact intersection point is then found using the New�
ton method or regula falsi� Unfortunately� the com�
putation of Lipschitz bounds cannot be automated�
and thus the use of this algorithm is limited to cases
where it is acceptable for the user to specify them�
Snyder �

�
�	 and Du� ��	 used interval arith�

metic to recursively enumerate implicit surfaces with
a hierarchical data structure� For each cell� the im�
plicit function is evaluated using interval arithmetic�
This yields bounds for the value of the function in
this cell� If these bounds include the value zero� the

surface potentially passes through the cell� and the
cell is subdivided in an octree fashion� unless it is al�
ready small enough� Unlike Lipschitz bounds� inter�
val bounds can be automatically computed by spe�
ci�c implementations of the basic library functions�

Comba and Stol� ��	 and Figueiredo and Stol� ��	
used a similar algorithm� but replaced interval arith�
metic with a�ne arithmetic� which they developed
for this purpose� They showed that a�ne arithmetic
produces signi�cantly tighter bounds than interval
arithmetic� although at a higher cost�

In ��
	� we used a�ne arithmetic to obtain con�
servative bounds for the value of procedural surface
shaders over a given parameter interval� This can
be used to drive a hierarchical sampling process� for
example in hierarchical radiosity�

In this paper we extend the above ideas to ray�
tracing displacement shaders� We use a�ne arith�
metic to hierarchically enumerate the geometry gen�
erated by procedural shaders� In Section � we de�
scribe the basic algorithm� In Section
 we then
brie�y review a�ne arithmetic� and discuss the is�
sues involved when applying it to procedural shaders�
Sections � and � contain re�nements of the basic al�
gorithm� Finally� in Section �� we present experi�
mental results obtained with our method�

� Direct Ray�tracing of Displacement
Shaders

Our iterative method for intersection tests with dis�
placement shaders is based on the idea of hierarchi�
cally subdividing the parameter domain of the sur�
face� Parameter regions� in which intersections might
occur� are identi�ed� and those regions in which in�
tersections are not possible are discarded� Parameter
ranges containing potential intersections are recur�
sively re�ned� until the intersection has been deter�
mined within a pre�de�ned accuracy� The pseudo�
code in Figure
 summarizes this algorithm�

In order to detect potential intersections in a given
parameter range� we compute a bounding box for the
value of the displacement shader over this range� The
recursion is terminated if the bounding box is small
enough� For primary rays this means that the projec�
tion of the box onto the screen is smaller than some
fraction of a pixel� As we will show in Section ����
the bounding boxes can be obtained with the help of
a�ne arithmetic�

Figure � shows an example of this method� On
the left side� you see the hierarchically subdivided
parameter domain for the intersection of a ray with
the simple shader from Figure �� On the right side�

intersect�ray�shader�u��u��v��v��

f
bBox� computeBBox�shader�u��u��v��v���

if� intersects�ray�bBox� �

if� isSmallEnough�bBox� �

return bBox�

else

f
ll� intersect�ray�shader�

u���u�	u��
��v���v�	v��
���

lr� intersect�ray�shader�

�u�	u��
��u��v���v�	v��
���

ul� intersect�ray�shader�

u���u�	u��
���v�	v��
��v���

ur� intersect�ray�shader�

�u�	u��
��u���v�	v��
��v���

return closest�ll�lr�ul�ur��

g
return NONE�

g

Figure
� The basic intersection algorithm�

Figure �� The hierarchically subdivided parameter
domain� and the resulting bounding boxes for the
intersection of one ray with the wave shader from
Figure ��

you see the displaced surface with the resulting hier�
archy of bounding boxes�

��� Bounding Box Computation
To understand how the bounding boxes can be com�
puted� we �rst describe how displacement shaders
can be conceptually integrated into the rendering
system�
Displacement shaders are procedures that describe

perturbations of points in ��space� For the pur�
poses of this paper� we assume that this process is
strictly separated from other parts of the renderer� in
particular geometry processing and surface shading�
Displacement shaders use a well�de�ned interface to
communicate with other parts of the system� An
example for such an interface is de�ned by the Ren�
derMan Shading Language �
�� ��	� on which we base
our discussion�

The displacement shader communicates with two
other parts of the rendering system� the geometry
processing stage and a surface shading stage� The
data �ow between those parts is depicted in Figure
�

u,v,du,dv implicit
params

implicit
params

Surface
Shader

Displacement
Shader

Geometry
Processing

Figure
� The data �ow between selected parts of
the rendering system�

Given a parametric position �u� v� and sampling
rate �du� dv�� the geometry processing stage com�
putes a set of purely geometric terms for a given
parametric surface� This includes the point in ��
space� as well as the geometric and the shading nor�
mal in this point�
This set of geometric terms is then passed on to the

displacement shader� which is allowed to change the
position of the point� as well as the shading normal�
The most important parameters of a displacement
shader are listed in Table �� The shader does not
have direct access to the underlying geometry of the
surface�

Variable Description

P Position in ��space

N Shading normal in point P

Ng Surface normal in point P

E Eye point

u� v Surface parameters

du� dv Change of surface parameters

Table �� The most important implicit parameters of
displacement shaders� P and N can be modi�ed by
the shader�

The perturbed point and normal� together with
information from other parts of the system� such as
incoming light directions and intensities� are then
passed to the surface shader� There� they are used
to determine the intensity of the point�
The data �ow for the three modules shows the dif�

�culty of ray�tracing procedural displacements� in
order to evaluate the shader� we require a parametric
position �u� v�� This position� however� is not known
before the intersection has been determined� This il�
lustrates the necessity to iterate the �rst two stages
of Figure
 in order to �nd both the intersection� and
the parametric position of it�
Both the parametric function of the surface and

the procedural displacement can usually be eval�
uated only at discrete points in parameter space�
However� in order to compute a bounding box for
a speci�c parameter range� we have to compute con�
servative bounds for the value of the shader over that
range� This can be done using an automated range
analysis method such as a�ne arithmetic�
Using a�ne arithmetic instead of normal �oating

point arithmetic for the evaluation of the respective
parametric formulas for the geometry� we obtain con�
servative bounds for parameters of the displacement
shader� such as the surface point and the normal�
Conservative bounds for the displaced point and nor�
mal can then be computed by evaluating the shader�
again using a�ne� instead of �oating point arith�
metic� The ranges of the x� y� and z components
of the resulting point are at the same time bound�
ing boxes for the geometry after the displacement�
In the following we give a brief overview of a�ne
arithmetic� and describe in more detail how it can
be applied to procedural shaders�

� A�ne Arithmetic
A�ne arithmetic� �rst introduced in ��	� is an exten�
sion of interval arithmetic ��
	� It has been success�
fully applied to several problems for which interval
arithmetic had been used before ����

�
�	� This
includes the adaptive enumeration of implicit sur�
faces ��	�
Like interval arithmetic� a�ne arithmetic can be

used for manipulating imprecise values� and for eval�
uating functions over intervals� It is also possible
to keep track of truncation and round�o� errors� In
contrast to interval arithmetic� a�ne arithmetic also
maintains dependencies between the sources of error�
and thus manages to compute signi�cantly tighter
error bounds�
A�ne arithmetic operates on quantities known as

a�ne forms� given as polynomials of degree one in a
set of noise symbols �i�

�x � x� � x��� � x��� � � � �� xn�n

The coe�cients xi are known real values� while the
values of the noise symbols are unknown� but limited
to the interval U �� ���� �	� Thus� if all noise sym�
bols can independently vary between �� and �� the
range of possible values of an a�ne form �x is

��x	 � �x� � �� x� � �	� � �

nX
i��

jxij�

Computing with a�ne forms is a matter of replac�
ing each elementary operation and library function

f�x� on real numbers with an adequate operation
f����� � � � � �n� �� f��x� on a�ne forms�

If f is itself an a�ne function of its arguments�
normal polynomial arithmetic yields the correspond�
ing operation f�� For example� we get

�x� �y � x� � y� � �x� � y���� � � � �� �xn � yn��n�

�x� � � �x� � �� � x��� � � � �� xn�n�

��x � �x� � �x��� � � � �� �xn�n

for a�ne forms �x� �y and real values ��

If f is not an a�ne operation� the function
f����� � � � � �n� cannot be exactly represented as a lin�
ear polynomial in the �i� In this case� it is nec�
essary to �nd an a�ne function fa���� � � � � �n� �
z��z����� � ��zn�n that approximates f����� � � � � �n�
as well as possible over Un� An additional new noise
symbol �n�� has to be added to represent the error
introduced by this approximation� This yields the
following a�ne form for the operation z � f�x��

�z � fa���� � � � � �n�

� z� � z��� � � � �� zn�n � zn���n��

The coe�cient xn�� of the newly introduced noise
symbol �n�� has to be an upper bound for the error
introduced by the approximation of f� with fa�
The process of generating a�ne approximations fa

for arbitrary functions f is described in detail in ��	�
��	 and ��	� This process is relatively straightforward
for most library functions� Once all library functions
have been implemented using a�ne arithmetic� they
can be used to compute conservative bounds for any
expression that only uses functions from this library�

��� A�ne Arithmetic and Procedural
Shaders

In addition to the functions found in typical math li�
braries� shading languages often provide speci�c ad�
ditional functionality� This includes a set of problem�
speci�c functions� as well as derivatives of arbitrary
expressions� and� of course� control structures like if�
statements and for�loops� In ��
	� we have shown
how the feature set of the RenderMan Shading Lan�
guage can be implemented with a�ne arithmetic� In
the following� we will brie�y review some of these
results�
Derivatives of arbitrary expressions are frequently

used in procedural shaders� In displacement shaders
they can be used to compute the normal vector
in a displaced point� the derivatives of the point
with respect to the parametric directions u and v

yields two tangent vectors of the surface� The de�
sired normal is the crossproduct of the two� In the
RenderMan Shading Language� the built�in function
calculatenormal�� uses this method to generate
normals�
The RenderMan standard �
�	 de�nes derivatives

with the help of divided di�erences� Du�f�u�� ��
�f�u � du� � f�u���du� In this context� du is the
sampling rate in u�direction� which is provided to
the shader as an implicit parameter �see Table ���
Derivatives with respect to arbitrary expressions
are computed using the chain rule� Deriv�f� g� ��
Du�f��Du�g� � Dv�f��Dv�g�� Using a�ne arith�
metic� we can evaluate these formulas� and thereby
obtain conservative bounds for the value of expres�
sions as de�ned by the RenderMan standard� If
bounds for the true mathematical value of derivatives
are desired� we can use automatic di�erentiation �
�	�
In this case� we store the triple ��x� ��x��u� ��x��v� for
each expression x� The partial derivatives for each
operation f�x� is then computed using the chain rule�

f

�
�x�

��x

�u
�
��x

�v

�
�

�
f��x�� f ���x�

��x

�u
� f ���x�

��x

�v

�
�

Like most programming languages� shading lan�
guages also have control statements like for�loops
and if�then�else� These statements are challeng�
ing to deal with� because the correct execution path
is selected at runtime� based on a number of compar�
isons �typically inequalities when dealing with �oat�
ing point values�� Unfortunately� two a�ne forms
can have overlapping ranges� in which case compar�
isons between the two are neither true nor false� It
is then necessary to execute both possible execution
paths� and merge the resulting ranges into a single
a�ne form�
A simple way of determining whether both paths

or only one of them has to be executed� is to replace
all inequalities with a step function� for which an
a�ne approximation can be found easily� For exam�
ple x 	 y becomes step�y � x� where step�x� �� �
for x 	 � and step�x� �� � otherwise� Boolean ex�
pressions can then be replaced by arithmetic expres�
sions� x� 	 y� and x� 	 y� becomes step�x� � y�� �
step�x� � y���

��� A�ne Arithmetic and Displacement
Shaders

Applied to displacement shaders� a�ne arithmetic
allows us to compute a region �P � ��x� �y� �z� that en�
closes the displaced surface for a given parameter
range �u � du�
� v � dv�
�� The ranges of the com�

ponents �x� �y� and �z give us an axis aligned bounding
box for the displacement shader�
Note that� in general� the region �P is smaller

than the complete bounding box� because usually the
a�ne forms �x� �y� and �z will depend on common noise
symbols� This means that the values of the compo�
nents are not independent� More precisely� �P is a
projection of the n�dimensional unit cube�

�P �

�
B�

x�

y�

z�

�
CA�

�
B�

x� � � � xn

y� � � � yn

z� � � � zn

�
CA �

�
BB�

��
���

�n

�
CCA

This dependency is ignored by evaluating the
ranges of the components separately� However� di�
rectly dealing with the projection of n�dimensional
unit cubes is expensive �there are
n vertices�� and
so the axis aligned bounding box is preferable for
intersection tests in ray�tracing applications�

� Handling Discontinuities
In the form presented in Section �� the hierarchical
subdivision is terminated when the projection of the
corresponding bounding box is small enough� This
works in continuous areas of the shader� because the
region represented by �P converges to a single point
as the parameter range is subdivided� In discontinu�
ous areas� however� the region converges to a higher�
dimensional structure� typically a line segment� As
a consequence� the axis�aligned bounding box does
not� in general� converge to zero around discontinu�
ities of the shader�
Thus� it is necessary to detect discontinuities of the

shader during the subdivision process� and to termi�
nate the recursion appropriately� Discontinuities can
be caused either by discontinuous library functions�
like the step	
 function� or by the use of control
statements that cause di�erent execution paths for
adjacent points on the surface� Both cases can be
dealt with by adding a �ag to the implementation
of a�ne forms� The �ag is set whenever a library
function causes a discontinuity� or the results of two
di�erent execution paths are merged into one a�ne
form�
The recursive subdivision is then terminated when

the bounding box is small enough OR the surface is
discontinuous AND the size of the bounding box did
not change signi�cantly during the last subdivision�
Having detected discontinuities� the question is�

whether or not intersections with their bounding
boxes should be reported as surface intersections�
Both alternatives are possible and yield di�erent se�
mantics� If the intersection is not reported� discon�

tinuities will result in holes or disconnected surface
parts� If they are reported� this gives the shader au�
thor a convenient way of specifying vertical surfaces�
The latter approach is consistent with RenderMan�
and has been used for rendering Figure �� The �gure
shows a simple displacement shader� which� applied
to a disk� results in a nail�like surface� Besides the
handling of discontinuities� this �gure also illustrates
that the algorithm is capable of naturally dealing
with rather extreme displacements�

radius

di
sp

la
ce

m
en

t

Figure �� A simple nail shader applied to a small disk
at the base of the nail� This illustrates the ability
of the algorithm to handle discontinuous and rather
extreme displacements�

Note that� if divided di�erences are used to com�
pute derivatives� the normal vectors for the discon�
tinuous parts automatically converge to the desired
result�

� Caching and Memory Considerations

With the above modi�cations to the basic algorithm�
we are able to ray�trace arbitrary procedural shaders�
Unfortunately� the algorithm as presented in Sec�
tion � is relatively slow� since it computes a hierarchy
of bounding boxes for each ray� Obviously� there is a
lot of coherence between adjacent pixels� and the cor�
responding rays produce largely identical hierarchies
of bounding boxes�

Depending on the complexity of the displacement
shader� its evaluation is signi�cantly more expensive
than an intersection test of a ray with an axis aligned
bounding box� It is therefore desirable to trade mem�
ory for computation time by caching some of the
bounding boxes already computed for future use�

We do this by storing the bounding boxes in a
quadtree� Each node of the tree corresponds to a
certain range of the hierarchically subdivided param�
eter domain� In each node we only need to store the
axis aligned bounding box itself �six �oating point
values�� as well as one pointer to each of the four chil�
dren of the node� The parameter range represented
by a quadtree node is implicitly available through
the path from the root to the node� All other pa�
rameters� which are only required for some of the
leaf nodes anyway� can be obtained by evaluating
the shader�

This results in a fairly storage e�cient data struc�
ture� Each node requires
� to �� Bytes� depending
on whether we use single or double precision �oats
and �
 or �
 bit pointers� The total size of the tree
can still be extremely large� especially for large image
resolutions� which require more levels of subdivision�
Thus� it is necessary to remove parts of the tree that
are not likely to be required again soon�

In our implementation of the ray�tracer� which
uses a normal scanline traversal order for the pix�
els� we allocate a certain amount of memory for the
nodes in the tree� If the memory requirements ex�
ceed this limit� we traverse the tree� deleting every
node except the ones used by the previous ray�

If we allow arbitrary pixel traversal orders it is
easy to think of other methods for limiting memory
usage� For example� the screen could be subdivided
into rectangular tiles� each of which is rendered sepa�
rately� or a space �lling curve could be used as in ���	�
An even more promising approach would be the use
of a ray cache as in ���	� However� these alternatives
have not been explored yet�

Another improvement of the algorithm� both in
performance and in memory requirements� can be
achieved by adapting the traversal order of the sub�
trees� In ray�tracing� often only the �rst intersection
of a ray with an object is required� The algorithm
from Section � �nds all intersections� and therefore

Figure �� With the modi�ed traversal order� the al�
gorithm only �nds the closest intersection� This re�
sults in a reduced number of shader evaluations�

has to re�ne the bounding box hierarchy in areas
which are not relevant to �nding the closest intersec�
tion point�
In an improved version of the algorithm� the

branches whose bounding boxes are closest to the
origin of the ray are re�ned �rst� Branches for which
the bounding boxes are further away than already
known intersections do not need to be traversed� Fig�
ure � shows how this method reduces the number of
bounding boxes compared to Figure ��

� Results
We have timed our method with several shaders and
cache sizes� As shaders we used the wave and nail
shaders from above� as well as the �UFO��shader
depicted in Figure �� The cache sizes were
��
��
and
��� KBytes� corresponding to ����� ������ and
������ quadtree nodes with a size of
� Bytes� The
resulting timings are listed in Table
� The resolution
for the wave shader was ��
�
��� for the nail shader

�����
� and for the UFO shader
���
��� For the
UFO shader� we always computed all intersections�
whereas for the other two� we only computed the
closest one�

Figure �� The �UFO� displacement shader applied
to a sphere� The surface shader is the RenderMan
wood shader�

Shader
�KB
��KB
MB unlimited

Wave �

�� ���� ���� ���

Nail ����� ���
 �
�� �
��

Ufo �
��
 ���� �
�� �
�

Table
� Timings �in seconds� for several shaders
and cache sizes on a SGI O
 with ���MHz R�����
processor�

The numbers show that� even for our simple
caching scheme and the moderate cache size of
��
KB� the performance penalty is below �� percent
compared to unlimited cache space� As with any
caching scheme� the performance drops dramatically
for small cache sizes� that cannot hold the working
set of the application� In our case this corresponds to
the number of nodes required for a complete scanline�

The loss of performance is particularly dramatic for
the nail shader� in which the bounding boxes for the
discontinuous portion can be reused over a large area
of the image� If the cache is too small� these boxes
have to be recomputed over and over again� A more
sophisticated caching scheme would certainly help in
this case�

��� A�ne Arithmetic and Interval Arith�
metic

In this paper we use a�ne arithmetic to obtain con�
servative bounds for shader values over a parameter
range� In principle� we could also use any other range
analysis method for this purpose� It is� however�
important that the method generates tight� conser�
vative bounds� because this reduces the number of
bounding boxes to be generated� and therefore im�
proves both performance and memory requirements�
In this sense� interval arithmetic performs worse

than a�ne arithmetic for this application� It pro�
duces much wider bounds than a�ne arithmetic
when applied to procedural shaders� Figure � shows
a comparison of the subdivisions generated for the
UFO shader by a single ray� For interval arithmetic�
�
�� bounding boxes had to be generated� for a�ne
arithmetic this number was only ��
� The more so�
phisticated shaders are used� the worse interval arith�
metic performs� These measurements are consistent
with the results presented in ��	� ��	� and ��	� as well
as our own results for surface shaders ��
	�

Figure �� A comparison of a�ne arithmetic �left� and
interval arithmetic �right�� A�ne arithmetic pro�
duced ��
 bounding boxes� interval arithmetic �
���
A magni�ed portion is showed on the bottom�

 Conclusions and Future Research
In this paper we have presented a new iterative
method for computing intersections of rays with pro�
cedural displacement shaders� The method directly
operates on the procedural description of the shader�

without introducing any approximate geometry� As
a consequence� the method is resolution independent
and storage e�cient� and is guaranteed to �nd ev�
ery intersection of the ray with the surface� Com�
putation time can be traded for memory in order to
improve performance�
We already mentioned that more sophisticated

caching schemes like the one in ���	 are likely to fur�
ther improve performance� This is something to be
explored in the future�
Another interesting area of research is the paral�

lelization of the this method for loosely coupled dis�
tributed systems and rendering farms� The proce�
dural shaders that have to be distributed across the
network are extremely small� From this data� every
host is able to compute its own cache for bounding
boxes� instead of having to share large amounts of
tessellated geometry with other hosts�
Last but not least� the design of a renderer that

is completely based on range analysis methods such
as a�ne arithmetic is a promising area of future re�
search� The combination of work mentioned in Sec�
tion
� together with the work presented in this pa�
per� allows for guaranteed intersection tests with al�
most any kind of commonly used geometric descrip�
tion�

References
��� Alias	Wavefront� OpenAlias Manual� �

��

��� Alan H� Barr� Global and local deformations of solid
primitives� In Computer Graphics �SIGGRAPH ���
Proceedings�� pages ��
��� August �
���

��� Alan H� Barr� Ray tracing deformed surfaces� In
Computer Graphics �SIGGRAPH ��� Proceedings��
pages ���
�
�� August �
���

��� James F� Blinn� Simulation of wrinkled surfaces� In
Computer Graphics �SIGGRAPH ��� Proceedings��
pages ���
�
�� August �
���

��� Jo�ao L� D� Comba and Jorge Stol�� A�ne arithmetic
and its applications to computer graphics� In Anais
do VII Sibgrapi� pages

��� �

�� Available from
http�		www�dcc�unicamp�br	�stol��

��� Tom Du�� Interval arithmetic and recursive subdi�
vision for implicit functions and constructive solid
geometry� In Computer Graphics �SIGGRAPH �	

Proceedings�� pages ���
���� July �

��

��� David Ebert� Kent Musgrave� Darwyn Peachey� Ken
Perlin� and Steve Worley� Texturing and Modeling�
A Procedural Approach� Academic Press� October
�

��

��� Luiz Henrique Figueiredo� Surface intersection using
a�ne arithmetic� In Graphics Interface �	�� pages
���
���� �

��

�
� Luiz Henrique Figueiredo and Jorge Stol�� Adaptive
enumeration of implicit surfaces with a�ne arith�
metic� Computer Graphics Forum� ���������
�
��
�

��

���� Pat Hanrahan and Jim Lawson� A language for
shading and lighting calculations� In Computer
Graphics �SIGGRAPH �	� Proceedings�� pages ��

�
�� August �

��

���� Wolfgang Heidrich� A compilation of a�ne approx�
imations for math library functions� Technical Re�
port TR��

���� University of Erlangen Computer
Graphics Group� �

��

���� Wolfgang Heidrich� Philipp Slusallek� and Hans�
Peter Seidel� Sampling procedural shaders using
a�ne arithmetic� ACM Transactions on Graphics�
�

��

���� Devendra Kalra and Alan H� Barr� Guaranteed ray
intersections with implicit surfaces� In Computer
Graphics �SIGGRAPH ��	 Proceedings�� pages �
�

���� July �
�
�

���� Ramon E� Moore� Interval Analysis� Prentice Hall�
Englewood Cli�s� New Jersey� �
���

���� F� Kenton Musgrave� Craig E� Kolb� and Robert S�
Mace� The synthesis and rendering of eroded fractal
terrains� In Computer Graphics �SIGGRAPH ��	
Proceedings�� pages ��
��� July �
�
�

���� Tomoyuki Nishita� Thomas W� Sederberg� and
Masanori Kakimoto� Ray tracing trimmed ratio�
nal surface patches� In Computer Graphics �SIG

GRAPH �	� Proceedings�� pages ���
���� August
�

��

���� Ken Perlin� An image synthesizer� In Computer
Graphics �SIGGRAPH ��� Proceedings�� pages ���

�
�� July �
���

���� Matt Pharr and Pat Hanrahan� Geometry caching
for ray�tracing displacement maps� In Eurographics
Rendering Workshop �		�� pages ��
��� June �

��

��
� Matt Pharr� Craig Kolb� Reid Gerhbein� and Pat
Hanrahan� Rendering complex scenes with memory�
coherent ray tracing� In Computer Graphics �SIG

GRAPH �	� Proceedings�� pages ���
���� aug �

��

���� Pixar� The RenderMan Interface� Pixar� San Rafael�
CA� Sep �
�
�

���� Louis B� Rall� Automatic Di�erentiation� Tech

niques and Applications� Number ��� in Lecture
notes in computer science� Springer� �
���

���� John M� Snyder� Generative Modeling for Computer
graphics and CAD� Symbolic Shape Design Using In

terval Analysis� Academic Press� �

��

���� John M� Snyder� Interval analysis for computer
graphics� In Computer Graphics �SIGGRAPH �	

Proceedings�� pages ���
���� July �

��

���� Steve Upstill� The RenderMan Companion� Addison
Wesley� �

��

Figure �� A more complex scene with multiple objects� The underlying geometry of each object is a sphere�

