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Abstract

A major problem of the existing curvilinear grid
Line Integral Convolution (LIC) algorithm is that
the resulting LIC textures may be distorted after
being mapped onto the parametric surfaces, since
a curvilinear grid usually consists of cells of differ-
ent sizes. This paper proposes a way for solving the
problem through using multi-granularity noise as the
input image for LIC. A stochastic sampling tech-
nique called Poisson ellipse sampling is employed to
resample the computational space of a curvilinear
grid into a set of randomly distributed points. From
this set of points, we are able to reconstruct a noise
image with its local noise granularity being adapted
to the physical space cell size of the grid.

Keywords: scientific visualization, vector field visu-
alization, texture synthesis, texture mapping.

Introduction

Line Integral Convolution (LIC) [2, 3] has been
attracting large attention as a powerful texture-
based vector field visualization technique. Texture
based approaches are particularly useful in visualiz-
ing large and complex vector fields, where traditional
techniques such as arrow plotting and particle advec-
tion may either result in cluttering images or fail to
capture some important features of flows due to in-
adequate sampling of vector fields. The first attempt
to employ texture synthesis technique for vector field
visualization was made by van Wijk [7]. He proposed
a way to generate various textures (called spot noise)
through convolving an input white noise image with
randomly distributed 2D filter kernels (called spot).

By choosing the shape of filter kernels to be ellipti-
cal and aligning the major axes of the ellipses with
the directions of vectors, textures effectively depict-
ing the global appearance of flows can be obtained.
Instead of 2D filter kernels, LIC convolves a white
noise image with one dimensional filter kernels de-
fined along the local streamlines of a vector field, so
that highly curved complex flows can also be effec-
tively visualized.

The originally LIC algorithm proposed by
Cabral and Leedom [2] can be used only for regular
2D Cartesian grids. For many applications, however,
it is important to visualize the flow over or near a
3D surface. Forssell and Cohen [3] successed in ex-
tending LIC for visualizing the flow on a 3D para-
metric surface represented as a slice of a 3D curvilin-
ear grid. Their algorithm is realized as the two-way
mapping between the computational space and the
physical space of a curvilinear grid. First, the vec-
tors in the 3D physical space are mapped into the
computational space, which is a regular 2D Carte-
sian grid of unit cell size. Then, the original LIC
algorithm is performed and the resulting 2D LIC
image is mapped back onto the 3D parametric sur-
face in the physical space. A major advantage of
this approach is that by making use of texture map-
ping hardware, it is possible to render the resulting
LIC texture mapped 3D surface in real time. How-
ever, as a curvilinear grid usually consists of cells of
drastically different sizes, the resulting LIC texture
may be largely distorted after being mapped to the
3D parametric surfaces. Such texture distortion is
particularly undesirable for the purpose of visualiza-



tion because a distorted LIC texture may even cause
some wrong conclusions about the characteristic of
a flow.

Forssell and Cohen [3] suggested to vary the
length of convolution kernels in computational space
according to the local cell sizes in the physical space.
This usually can not resolve the problem completely,
because not only the filter kernels but also the noise
granularity of the input image is stretched or con-
densed with the mapping. In other words, in addi-
tion to the sizes of filter kernels, it is also necessary
to adapt the local noise granularity of input image
according to the local cell sizes in the physical space.

This paper presents a new technique for gen-
erating multi-granularity noise. A stochastic sam-
pling technique called Poisson ellipse sampling is
employed to resample the computational space of a
curvilinear grid with a set of randomly distributed
points. Each point is associated with a binary noise
value and an elliptical region whose size is decided
based on the physical space cell size at that position.
Then a multi-granularity noise can be constructed
from these sample points for generating 3D LIC tex-
ture without distortion in the physical space. In the
next section, we first briefly review the curvilinear
grid LIC algorithm and show an example of the dis-
torted LIC texture. Some related work is also dis-
cussed there. Then, we introduce the Poisson ellipse
sampling and explain how to generate the LIC im-
age with the multi-granularity noise. Before giving
the conclusion, we show some experimental results
of the presented technique.

Background

Given a 2D vector field represented as a regular
Cartesian grid, the original LIC algorithm proposed
by Cabral and Leedom [2] takes a white noise image
of the same size as its input image. The output im-
age, which 1s also of the same size as the grid, is gen-
erated by convolving the input image at each pixel
with a 1D filter kernel defined on the local streamline
passing through the corresponding cell in the grid. A
curvilinear grid can be considered to be obtained by
non-linearly transforming a regular grid of unit cell
size so as to fill a volume or warp around an object
of complex shape while keeping the grid topology.
Usually, the regular grid defining the logical organi-
zation of the grid is called the computational space,
and the warped structure is called the physical space
of the curvilinear grid. To visualize the flow over a
3D parametric surface represented as a slice of a 3D
curvilinear grid, the technique developed by Fors-

sell and Cohen [3] makes use of the above 2D LIC
algorithm by first mapping the 3D physical space ve-
locity vectors on a slice into its computational space,
which is a 2D regular Cartesian grid. Denoting the
physical space and computational space coordinates
of a point as P, = (,y,2) and P, = (£, 7, (), respec-
tively, then the computational space velocity vectors
can be obtained by multiplying the physical space
velocity vectors by the inverse Jacobian matrix:
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Figures 2, 3 and 4 show the grid over the surface
of a spiked blunt body, the velocity vectors on the
surface, and the velocity vectors after being mapped
to the computational space, respectively.

Now an LIC image can be calculated in the com-
putational space by dropping the 9¢/dt component
and using the 2D vector [0€/0t, 0n/0t)T. Figure 5 is
the LIC image computed with the vector field of Fig-
ure 4. Finally, the flow over the parametric surface
can be visualized by mapping the resulting 2D LIC
texture onto the 3D surface. Figure 6 is obtained by
mapping the texture in Figure 5 onto the parametric
surface in Figure 2.

The texture shown in Figure 6 has obviously
been largely condensed at the spike, where the grid
is of high density, and has been stretched on the
body due to the large cell size. Such a distortion
even causes the illusion that the flow over the body
is faster than that around the spike. Moreover, the
directional blurring effect of LIC has been partially
counteracted by the aliasing defect and can hardly
been seen around the tip of spike.

To rectify such a distortion, Leeuw and van
Wijk [5] mentioned the possibility of using recti-
linear white noise input images in extending their
enhanced spot noise technique for curvilinear grid.
Obviously this approach is applicable only to those
grids where the cells lying in the same row or col-
umn are all of the same size at least in one dimen-
sion. Kiu and Banks [4] proposed a method for gen-
erating multi-frequency noise as the sum of masked
images obtained by applying low-pass filters of in-
creasing widths to the original high frequency white
noise. It seems possible to add some modifications to
their algorithm and generate a multi-frequency noise
by choosing the width of the low-pass filter at each
pixel according to the local cell size in the physical

space. However, high frequency components have



usually been filtered out in such a multi-frequency
noise, and therefore the directional blurring effect
in the resulting LIC image may become less obvious
compared with the images obtained with white noise
bitmap. Our new technique to be presented in the
following section adaptively changes the local noise
granularity of input image while preserving its high
frequency components.

Poisson ellipse sampling

Poisson ellipse sampling is a simplified version of
the Poisson sphere/ellipsoid sampling used for vol-
ume rendering 3D curvilinear grids through splatting
[6]. With the original Poisson sphere/ellipsoid sam-
pling, the physical space of a 3D curvilinear grid is
resampled with a set of randomly distributed points.
Each of them has a surrounding spherical or ellip-
soidal region which inhibits the existence of other
sample points into that region. The sizes of spheres
and ellipsoids are designed to match the local cell
sizes of the grid. Ellipsoids are used to resample the
grid with different rates for each of the three dimen-
siowus.

As shown in Figure 1, the idea presented in this
paper is to resample the 2D computational space in-
stead of the 3D physical space, for a slice of a curvi-
linear grid in a similar way to obtain a set of ran-
domly distributed points, each of which is associ-
ated with a circular or elliptical region. As a disc is
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Figure 1: Poisson ellipse sampling: (a) The physical
space of a curvilinear grid. (b) Resampling of the
computational space.

also an ellipse whose two axes are identical, here we
treat it as an ellipse and call the sampling method
Poisson ellipse sampling. The input image of LIC
is reconstructed from this set of sample points by
assigning a binary noise value to each ellipse. Ob-
viously, the local noise granularities are decided by
the sizes of these ellipses. Therefore we can obtain a

multi-granularity noise simply by adjusting the sizes
of ellipses to be inversely proportional to the local
cell sizes in the physical space. In other words, we
use a small ellipse for a sample point if it corresponds
to a position of large cell size in the physical space
and use a large ellipse if the position is of small cell
size. Assuming the Jacobian matrix for a point in
physical space is

13} 13} a
T=[Jc Jy Jo]=| 5 5 o
9z oz oz

9g o A

then the local cell sizes along dimension &, 7
and ¢ can be measured by [J¢l|,|J,| and |J¢|, re-
spectively. Suppose we are visualizing the flow on a
slice which is orthogonal to ¢ dimension in the com-
putational space, then the sizes of the two axes of
the ellipse can be calculated with |J¢| and |J,| in
the following way:

maxsizes — | J¢|

ec = ag + - . be
Marsizes — MINsizeg
B mazxsize, — |J | :
€y = Ay . . gn
maxsize, — Minsize,
Here maxsizeg, MINsizeg are the

largest and smallest cell sizes in dimension ¢ and
maxsize,, minsize, are the largest and smallest cell
size in dimension 1. ag,bg, a,,bn are user-specified
float values which control the range of granularity,
that is, e¢ takes the value between a¢ and ag + be,
and e, takes the value between a,, and a,, + b,. For
example, a¢ and a, can be chosen as 1.0. b and b,
are the half of the grid resolution in dimension £ and
1), respectively.

Currently, a stratified dart throwing algorithm
is used for resampling the computational space.
That is, for each cell in the computational space, we
generate a random points inside the cell and check
if it 1s already enclosed in the ellipse of an existing
sample point. If not, calculate the Jacobian matrix
for this point by interpolating the Jacobian matrices
at the four corner points of the cell, and decide an
ellipse as well as a binary noise value for the point.
This process is repeated uuntil either the generated
points have reached some expected number, or no
point has been generated for a certain period. Here
is the pseudo code of the resampling algorithms:



CHECKED <« O0;

for each cell in the computational space
repeat
Generate a random point p(&,n); /*&,n € (0,1]*/
if P s not covered by existing ellipse extents
begin
CHECKED « O;
Interplate J
from the four corner points of the cell;
Calculate e¢, ey;
Generate a binay noise value;
Append the point to the sample points list;
end
else
CHECKED <«— CHECKED + 1;
until CHECKED >= NUM_TO_STOP;

Differing from Poisson sphere/ellipsoid sam-
pling, in which spheres and ellipsoids should over-
lap with each other to prevent leaving gaps during
volume rendering [6], the ellipses should not over-
lap with each other in Poisson ellipse sampling for
retaining the high frequency in reconstructed noise.
This is realized by using an extent which is twice
the size of the ellipse in point-ellipse enclosing test
at the fifth line of the above algorithm. As shown
in Figure 1, the resampled computational space ac-
tually has many regions not beeing covered by any
ellipses. Precisely, we need to generate the weighted
Voronoi diagram by using each ellipse as the power
diagram for each sample point [1] and construct the
input noise by assigning a binary value to each of the
subregions in the Voronoi diagram. As explained in
the next section, here we assign the noise value to
each ellipse, and for the region which is not covered
by any ellipse, the noise value at the closest sample
point will be used. We found that such an approx-
imation is enough to generate LIC images of rea-
sonable quality from the perspective of solving the
texture distortion problem.

LIC on multi-granularity noise

Instead of reconstructing a white noise image
and using it as the input for LIC, we take the sam-
ple points and their binary noise values as the input
directly and reconstruct the noise values during the
execution of LIC only at those points required for
convolution. The local streamline in the computa-
tional space is calculated in the same way as in [2]
with the vectors mapped from the physical space. To
decide the input noise value at a point, we search the
list of sample points to see if the point is covered by
the ellipse of a sample point. If such a sample point
is found, then its noise value is used. Otherwise, the
noise value of the closest sample point is used.

Results

The Poisson ellipse sampling technique together
with the LIC algorithm on multi-granularity noise
has been implemented on the commercial visualiza-
tion software AVS '. The graphics workstation used
was SGI Indy with R5000 150MHZ CPU and 64
megabytes memory running an Iris 6.2 operating sys-
tem. In this section we will show some results of ap-
plying the new technique to two datasets obtained
from CFD simulations.

The first dataset is the same one as that used in
the second setion. This is the numerical simulation
result of the supersonic flow attacking a spiked blunt
body [8]. The size of the original grid is 80 x 30 x 80
and the second slice from the body surface is used
here (See Figure 2). Asshown in Figure 7, the resam-
pling process results in a set of points sparsely dis-
tributed at spike (left area in Figure 7) and densely
distributed on the blunt body (right area in Figure
7). The multi-granularity noise reconstructed from
these sample points is shown in Figure 8. Figure 9
is the resulting 2D LIC image and the final texture
mapped image is shown in Figure 10. Compared
with the LIC texture generated with a constant gran-
ularity white noise (See Figure 6), here the texture
distortion due to the difference of cell sizes has been
compensated and the flow near the tip of spike is
also clearly visualized.

The second example is the Post dataset from
NASA (See Figure 11). Figure 12 is the texture
mapped LIC image generated with constant gran-
ularity noise. The resampling of the computational
space is shown in Figure 13. The distribution of sam-
ple points is getting sparse gradually from the top to
the bottom area, as the cell sizes are getting smaller
toward the center in the physical space. Figure 14 is
the LIC image generated with the multi-granularity
noise reconstructed from the sample points shown
in Figure 13. Figure 15 is obtained by texture map-
ping the LIC image in Figure 14 back to the physical
space. Compared with Figure 12, we can see in Fig-
ure 15 the feature size of the LIC texture around
the center area becomes larger and closer to those of
outer regions.

Concluding remarks

A new technique for generating distortion free
LIC textures for 3D curvilinear grids has been pre-
sented. By employing an adaptive stochastic sam-
pling technique called Poisson ellipse sampling, we
are able to adjust the noise granularity continuously

LAVS is a trademark of Advanced Visual Systems Inc.



over the input image according to the local cell sizes
of the curvilinear grids.

As we mentioned previously, a distorted LIC im-
age can give a user a wroug impression about a vec-
tor field. From this point of view, the LIC image
generated with the multi-granularity noise is supe-
rior to that generated with the constant granularity
noise. However, as low sampling rate is used for the
regions of small cell sizes, detailed information at
these regions may be lost in an LIC image generated
with the multi-granularity noise. Conversely, an LIC
image generated with the constant granularity white
noise preserves all the information and we can reveal
the details of these regions by zooming into them. In
case a curvilinear grid consists of cells of drastically
different sizes, it might be difficult to remedy the
texture distortion completely because the range of
sampling rates in the computational space can not
exceed the resolution of the grid. One possible solu-
tion is to resample the vector field into higher reso-
lution, though this is not a desirable approach from
the perspective of time/space efficiency.

A future research direction is to improve the
Poisson ellipse resampling algorithm. The current
dart throwing algorithm usually leaves many regions
uncovered by any ellipses and we need a method to
generate a more densely packed distribution. Aun-
other direction is to combine the multi-granularity
noise with other texture-based visualization tools.
For example, it is easy to add some minor mod-
ifications to the spot noise algorithm [7], so that
the multi-granularity noise can be used for generat-
ing distortion free spot noise textures on curvilinear
grids. The proposed method for generating multi-
granularity noise may also be used for synthesizing
other kinds of distortion-free textures on parametric
surfaces.

Acknowledgements

The authors are deeply grateful to Kozo Fujii
from Japan Institute of Space and Astronautical Sci-
ence for providing the test datasets. Special thanks
to Issei Fujishiro from Ochanomizu University for
his helpful comments. This work was partially sup-
ported by Telecommunications Advancement Orga-
nization of JAPAN, the National Science Funda-
tion grant MIP9527694 and Office of Naval Research
Grant Nooo149710402.

References

[1]

[4]

[6]

(8]

F. Aurenhammer (1991). “Voronoi Diagrams -
A Survey of a Fundamental Geometric Data
Structure.” ACM Computing Surveys, Vol. 23,
No. 3, pp. 345-405.

B. Cabral and C. Leedom (1993). “Imaging Vec-
tor Field Using Line Integral Convolution.” Pro-
ceedings of SIGGRAPH’93, pp. 263-270.

L.K. Forssell and S.D. Cohen (1995). “Using
Line Integral Convolution for Flow Visualiza-
tion: Curvilinear grids, Variable-speed Anima-
tion and Unsteady Flows” IEEE Transaction
on Visualization and Computer Graphics, Vol.1,
No.2, pp. 133-141.

M. H. Kiu and D. C. Banks (1996). “Multi-
Frequency Noise for LIC.” Proceedings of Vi-
sualization’96, pp. 121-126.

W.C. Leeuw and J. J. van Wijk (1995). “En-
hanced Spot Noise for Vector Field Visualiza-
tion.” Proceedings of Visualization’95, PP. 233-
239.

X. Mao, L. Hong and A. Kaufman (1995).
“Splatting of Curvilinear Volumes.” Proceedings
of Visualization’95, pp. 61-68.

J.J. van Wijk (1991). “Spot Noise:
Synthesis for Data Visualization”. Computer
Graphics, Vol. 24, No.4, pp. 309-318.

Texture

M. Yamauchi, K. Fujii and F. Higashino (1994).
“Numerical Investigation of Supersonic Flows
around a Spiked Blunt-Body” Journal of Space-
craft and Rockets, Vol. 32, No.1, pp.32-42.



Figure 4: Velocity vectors in the computational
space.

Figure 2: Curvilinear grid over a spiked blunt-body.

Figure 5: LIC image calculated with a white noise

wmage and the 2D vector field in Figure 4.

Figure 3: Velocity vectors in the physical space.

Figure 6: Texture mapping of the LIC image wn Fig-
ure 5.



Figure 7: Resampling of the computational space of
the spiked blunt-body grid.

Figure 10: Teaxture mapping of the LIC image in
Figure 9.
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Figure 8: Multi-granularity noise reconstructed from
the sample points shown in Figure 7.

Figure 9: LIC wmage with the multi-granularity noise
i Figure 8.



Figure 11: Curvilinear grid structure of Post dataset. Figure 13: Resampling of the computational space.

noise.

Figure 12: Tezture mapped LIC wtmage with constant
granularity noise.

Figure 15: Texture mapping of the LIC image in
Figure 1.






