
Virtual Navigation of Complex Scenes using Clusters of Cylindrical
Panoramic Images

Sing Bing Kanga Pavan K. Desikanb

aDigital Equipment Corporation
Cambridge Research Lab.

One Kendall Square, Bldg. 700
Cambridge, MA 02139

e-mail: sbk�crl�dec�com

bComputer Science Dept.
Duke University

Durham, NC 27708
email: pkd�cs�duke�edu

Abstract
The traditional approach of generating novel virtual

views of an object or a scene is to render the appropriate
3-D model. The alternative is to render directly from the
original images; this approach, which is based on pixel
interpolation or reprojection, is called image-based ren-
dering. In this paper, we describe a technique that en-
ables virtual navigation within a complex environment
using an image-based rendering technique. In particu-
lar, we make use of clusters of cylindrical panoramic
images. Each cluster of panoramic images allows the
user to smoothly navigate within a particular area, say
within a single room. Having a collection of such inter-
connected clusters would enable the user to seamlessly
navigate within a complex environment, such as an en-
tire floor of a building, with each cluster representing a
room. To achieve this goal, we examine a few techniques
for image-based rendering using a cluster of cylindrical
panoramic images to synthesize views from virtual view-
points. We also describe our method for enabling smooth
transition between clusters.

Keywords: Image-based rendering, virtual reality, cylin-
drical panoramic images.

Introduction
The ability to synthesize new views from many different
virtual viewpoints is important in many current and fu-
ture applications, in areas that range from games and en-
tertainment to business (e.g., real estate, tourism) and ed-
ucation. A typical application would involve real-time in-
teractive walkthroughs within a virtual environment. The
scene to be displayed remains the same, but the view po-
sition and direction of the virtual camera are controlled
by the user.

The traditional method for producing such walk-
throughs is based on 3-D model-based rendering, where
views are generated by directly rendering 3-D models at
specified viewpoints. The 3-D representation of the ob-

ject or scene can either be created using a geometric mod-
eler or from real data. Real 3-D data can be obtained
using a 3-D digitizer or a rangefinder, or by applying a
stereo algorithm on multiple images of the same scene
or objects at different camera viewpoints. In scientific or
biomedical visualization, the input data may be multidi-
mensional.

In the specific case of visualizing 3-D objects or
scenes, the resulting virtual views can be made more
photorealistic by either texture-mapping images of actual
objects onto the surfaces of models, or simulating sur-
face properties using physically-based reflectance mod-
els. However, it is difficult to produce photorealistic im-
ages in a timely fashion without the use of both sophis-
ticated and expensive rendering software and graphics
hardware accelerators.

An alternative method for rendering is to create new
views directly from images, called image-based render-
ing. Novel virtual views created using this approach can
be as high a quality as the input images. As a result, it
can be relatively easy to produce photorealistic images
from images of real scenes. The philosophy of image-
based rendering is that all the information for rendering
is available in the images themselves.

We are particularly interested in developing an image-
based rendering system that allows a user to smoothly
navigate within a large and complex environment (such
as a multiple room environment). While there are tech-
niques to allow navigation within a restricted range of vir-
tual camera motion [1, 7], none has addressed the prob-
lem of allowing virtual navigation along a long, continu-
ous path.

Previous work
There is a significant amount of work done involving
visualization of wide scenes, some of which have been
commercialized with some degree of recognition and suc-
cess. A notable example of such a commercial product is
Apple’s QuickTime VRTM [1]. With this product, the



user is able to pan and tilt the virtual camera to view (af-
ter dewarping) a section of a cylindrical panoramic image
of a real scene. Other commercial products are based on a
similar principle, such as Infinite Pictures’ SmoothMove,
IBM’s PanoramIX, and RealSpace, Inc.’s RealVRTM. In-
stead of using cylindrical panoramic images, Interactive
Pictures Corp.’s IPIX (formerly Omniview’s Photobub-
ble) uses spherical images instead.

On the research front, mosaics are constructed to
represent a wide scene; examples include rectilinear
panoramic images (e.g., [10]), cylindrical panoramic
images (e.g., [1, 7, 4]), spherical mosaics [14, 12], super-
resolution images (e.g., [3]), image mosaics with iden-
tified multiple motions (e.g., [9, 13]), and image mo-
saics with identified parallax (e.g., [5]). However, only
cylindrical and spherical mosaics allow 360� viewing in
at least one direction. Out of the work listed, only [7]
and [4] allow virtual navigation involving arbitrary trans-
lational motion. This is done using multiple cylindrical
mosaics. Both systems are restricted to viewing of one
wide scene. One approach to viewing a complex, inter-
connected set of wide scenes is to construct the appropri-
ate 3-D model and render it. For real scenes, construct-
ing such a 3-D model is difficult to achieve with high
accuracy without resorting to using accurate, expensive
rangefinders.

The goal of our work is to enable smooth virtual navi-
gation along a long, continuous path within a large com-
plex environment. An example of such complex environ-
ment is a multi-room floor of a building, where one or a
small number of panoramic images taken at close prox-
imity to each other is not sufficient to visualize and rep-
resent the entire environment. There are two options to
realize this goal:

� Use a relatively dense sampling of panoramic snap-
shots of the entire environment, or

� Use a select number of clusters of panoramic snap-
shots strategically chosen to represent the environ-
ment.

For a very large environment, option (1) would require a
very large number of panoramic images, which will be
very expensive in terms of both memory and computa-
tional requirements. In addition, there are other difficult
issues that have to be addressed. One such issue is choos-
ing the appropriate subset of panoramic images to create
the virtual view. Furthermore, automatically extracting
a consistent scale of relative camera distances between
projection centers of panoramic images across the entire
set of panoramic images is difficult due to drifting and
error propagation. We use option (2) instead, which is
a good compromise between requiring high memory and

computation and reasonable visualization. Here, the “ap-
propriate” sets of panoramic images are predetermined;
in addition, scale consistency is less of an issue between
panoramic clusters. The tradeoff would result in the user
not being able to navigate and get high quality image re-
construction at all viewpoints. The idea for option (2) is
shown in Figure 1.

This paper also explores some of the techniques for
image-based rendering. For modeling wide scenes that
have a angular span close to or greater than 180�, flat
images are mathematically unwieldy. Cylindrical and
spherical panoramic images offer a much better mathe-
matical generalization for modeling such a scene. The
approach that we use is to reproject the pixels in a geo-
metrically consistent manner. As in [7], we use cylindri-
cal panoramic images as input, though the concept can be
extended to spherical images as well.

General idea–Using multiple panoramic clusters

In work such as those of [7] and [4], the user has the
ability to view the scene at any vantage point, even at lo-
cations not coincident with any of the projection centers
corresponding to the previously recorded images. How-
ever, they are restricted to visualization of a single wide
scene at a time. We add to this the ability to not only
move within a wide scene, but to move from one wide
scene to a different wide scene in a smooth, seamless
manner. We represent each wide scene with a cluster
of panoramic images, each cluster consisting of at least
three panoramic images. This idea is depicted in Fig-
ure 1. Travel between clusters is through an access point
called a “hotspot,” using the term for Apple’s QuickTime
VRTM.

In comparison with unconstrained navigation within
a cluster, traveling between clusters is necessarily re-
stricted due to the limited visual overlap. In our imple-
mentation, between-cluster travel is constrained to an ap-
proximation of one degree-of-freedom translational mo-
tion. This motion is only approximate because we use
interpolated affine global motion. This is reasonable as
long as the 3-D location of the “hotspot” is far away in
comparison with the between-cluster baselines, which, in
our case, is true. On reaching the destination panoramic
cluster, information from previous cluster representing
the previous wide scene is discarded and the information
representing the destination wide scene is automatically
loaded. This information is now used for virtual naviga-
tion in the second wide scene until the user opts to move
to another wide scene by clicking at another “hotspot.”
(Note that the wide scene information have been com-
puted off-line.)



Extracting information for a panoramic cluster
We assume that the distance between camera centers (or
baseline) within a cluster of panoramic images are small
enough so that there is almost complete visual overlap
between the constituent panoramic images. This allows
automatic (or in the worst case, guided) registration to be
performed.

As mentioned earlier, the scene to be modeled is as-
sumed to be a static scene. For ease of modeling wide
scenes, we require cylindrical panoramic images. The
input is obtained by taking a sequence of images while
rotating the camera about a vertical axis passing through
the camera projection center. The panoramic image is a
composite of these rotated camera images [7, 4]. At least
two cylindrical panoramic images are needed to capture
the geometry of the scene.

Pixel correspondence between pairs of panoramic im-
ages is obtained by using the spline-based registration
technique, which attempts to deform a mesh in order
minimize the intensity difference between the first image
(used as reference) and the warped second image [11].
Once we have the pixel correspondences, we use the 8-
point algorithm [6] to recover the camera parameters and
position up to a scale factor. An example of a cluster of
panoramic images and its recovered structure is shown in
Figure 8. As before, the left part of Figure 8(a)-(e) and
(j) are the top view of the rough shape of the current en-
vironment. Note that the dot and arrow (in red) indicate
the location and direction of view that corresponds to the
right image part.

Rendering techniques within a cluster
In this section, we describe the techniques that we have
implemented for the image-based rendering using cylin-
drical panoramic images within a cluster. The rendering
is basically done in two phases: (1) The forward map-
ping phase, during which pixels from the given cylindri-
cal panoramic images are mapped onto the virtual cylin-
der, and (2) The inverse mapping phase, during which
holes or missing pixels in the virtual cylinder are filled.
This two-phase approach is adopted primarily for speed
considerations.

Forward mapping
Forward mapping refers to the process of projecting pix-
els in texture space (available panoramic images) to the
final screen space (rendered virtual view). This simple
idea is depicted in Figure 2. The forward mapping pro-
cess is equivalent to finding the 3-D point associated with
the two corresponding points in real panoramic images
1 and 2, and then projecting the point onto the virtual
panoramic image (corresponding to a virtual camera po-
sition). The final rendered virtual view is the dewarped

or “flattened” version of the frontal section of the virtual
panoramic image. Note that the accuracy of image trans-
fer is dependent on the accuracy of point correspondence
across the real panoramic images.

One fundamental issue that has to be handled in ren-
dering new images correctly is that of object occlusion,
or depth ordering.

Occlusion
The forward mapping is a many-to-one mapping, and this
is caused by object occlusion. As a result, occlusion has
to be handled correctly in order to generate correct views
from virtual viewpoints. A straightforward but inefficient
method for handling occlusion information is to compute
depth at every pixel and apply the usual z-buffering tech-
nique. However, as noted by McMillan and Bishop [7], a
depth buffer is not necessary if we can find a simple back-
to-front ordering as shown by the directions of traversal
in Figure 3. This ordering is indexed simply by the
cylindrical angular coordinate in the cylindrical reference
view.

Speeding up forward mapping
We approximate the limited human visual field with a
������� square viewing window. This viewing window
is usually much smaller than the size of the cylindrical
panoramic image. We can take advantage of this fact to
speed up the reprojection computation. In other words,
the main speedup in rendering virtual views comes from
the fact that we are not computing the entire virtual cylin-
der, but rather only a small portion of the virtual cylinder.

The selective scanning over the reference cylinder is
divided into four cases based in the relative position of the
reference cylinder with respect to the pyramid of view.
The apex of the pyramid is coincident with the optical
center of the virtual cylindrical panoramic image. The
four cases are illustrated in Figure 4, with the pyramid
of view shaded, the reference panoramic image shown as
solid circles, and the virtual panoramic image shown as
a dashed circle. For each of the cases, the regions appro-
priate for scanning are in solid thick arcs.

Case 1: The center of the reference camera lies in the
view pyramid. At first glance, it would seem that
in this case, no speed up is possible as the pixels on
the virtual cylinder could get their values from any
of the pixels on the reference cylinder. As a result,
it would appear that a complete scan is necessary to
ensure the correctness of the algorithm.

However, we can assume that there are no ob-
jects closer to the projection center of the reference
panoramic image than a user-defined distance rmin.
A reasonable value of rmin is 10 (relative to the



unit baseline length between projection centers of
the reference panoramic image and a second given
panoramic image). With this assumption, the range
of scan can then be restricted considerably (see Fig-
ure 4).

Case 2: The center of the virtual camera lies in the view
pyramid of the reference camera. In this case, a scan
is required to be performed only over the view pyra-
mid of the reference camera.

Cases 3 and 4: The two cases are symmetric. In both
these cases, the scan area on the reference cylinder
is larger than the view pyramid, but smaller than the
whole cylinder.

Inverse mapping
Holes will be created by the forward mapping process if
a small preimage area (i.e., on the reference panoramic
image) is projected onto a larger screen area (i.e., on the
virtual panoramic image), causing a loss of resolution.
Holes may also occur because of the existence of regions
that were not visible from any of the given cylindrical
panoramic images. These regions have to be filled in or-
der to produce a more visually appealing image. In this
section, we shall discuss some techniques for filling in
the holes.

Image smoothing
The simplest method for filling in the holes is to perform
some kind of smoothing over the image space. The pixel
value at a hole is determined by the pixel values of its
neighbors. The value assigned is a weighted average of
the neighbors which have been mapped in the forward
mapping phase. The weights give more importance to
the pixels that are closer to the hole than those that are
farther away. The region of influence can be controlled
and this offers a trade-off between the sharpness of the
image and the number of holes that still remain after the
image smoothing. A small kernel might tend to leave
holes unfilled, while a large kernel might unnecessarily
smooth out sharp edges.

Two image smoothing techniques involving circular
interpolation kernels are implemented. The first uses a
fixed radius while the other uses an adaptive radius. Both
uses the weighting function

��r� � ���
r

� � r � �� (1)

where r is the distance of the neighboring pixel to the
pixel whose color is to be interpolated, and � is the pa-
rameter indicating the size of the kernel. In the first tech-
nique, � is set to 7 pixels. However, in the second tech-
nique, � varies; at every pixel location, � is automatically

set to the distance of the central pixel to the nearest col-
ored pixel. The second technique is very similar to the
idea of elliptical weighted averaging described in [2], ex-
cept that we apply a circular kernel in screen space on
unfilled pixels only.

Geometric interpolation
An alternative method for screen space interpolation is
the geometric interpolation. In this case, the interpolation
is not performed over the pixel values, but rather over the
geometric position of the pixel in the given images. The
neighbors of the hole on the scan line and in the vertical
line containing the pixel are inverse mapped onto the ref-
erence image. Bilinear interpolation is then performed on
the quadrilateral in the reference image to obtain an esti-
mate of the position of the pixel in the reference image
that corresponds to the hole in the virtual image. This es-
timate is accurate if the scene area is small or if the scene
is flat in this region and far from the camera optical cen-
ter. The pixel value at this position is then mapped onto
the hole.

Texturing issues
When multiple panoramic images are available, we can
make use of the information from the different panoramic
image pairs in order to obtain the virtual view. The for-
ward mapping is done using every pair of cylindrical
panoramic images available. Any image-smoothing tech-
nique can then be used for the inverse mapping as in the
case of just two cylindrical panoramic images.

The geometric interpolation, however, has a new inter-
pretation. There may be portions of the scene that are
visible from the virtual camera position but are not vis-
ible from the reference camera position. This portion
might be visible from some of the other given cylindri-
cal panoramic images. Forward mapping can never map
these regions onto the virtual cylinder if only pixels from
the reference panoramic image are used. Even though
the information is available from the other cylindrical
views, a simple image smoothing technique will ignore
the information. Application of the geometric interpola-
tion technique only on the reference image will result in
the mapping of some incorrect pixel value to the hole.
If we can identify the cylindrical panoramic image from
which the portion of the scene is actually seen, then a
geometric interpolation performed on this panoramic im-
age will yield a more accurate virtual panoramic image.
Thus it is possible that we accurately recover the scene
from the virtual viewpoint. Since we do not know the
“right” cylindrical panoramic image on which to perform
geometric interpolation, we perform geometric interpo-
lation on all the cylindrical panoramic images available
to us and average over the pixel values obtained from



each individual panoramic image. The averaging is ac-
tually weighted; a higher weight is accorded to pixels in
the panoramic image whose camera center is closest to
the virtual viewpoint. This is because we expect that the
closer the virtual camera position is to a projection center
of a real panoramic image, the more visually similar the
virtual panoramic image is to that real panoramic image.

Experimental results
We ran our algorithms on a set of panoramic images,
both synthetic and real. The size of the viewing image
is ��� � ���. In general, we did not notice significant
perceptual visual difference between the image smooth-
ing technique using the interpolation kernel with adaptive
circular radius and the geometric interpolation technique
for the inverse mapping, as Figure 6 shows. There are
significant differences in the rendered views between the
all different techniques if close-up views (such as in Fig-
ure 6) are involved. For distant views, however, the re-
sults are hardly distinguishable. Overall, however, there
is a reduction of quality in the reconstructed view using
the image smoothing technique with fixed-radius interpo-
lation kernel.

Some typical timing data collected are listed in Table 1.
As can be seen, the rendering technique of forward map-
ping and geometric interpolation is the fastest amongst
the three techniques using forward mapping as the first
step. We have observed a significant variation in time be-
tween refresh. This can be attributed to the virtual view
being a result of a varying number of projected preimage
pixels, which in turn depends on the virtual camera field
of view of the environment. Our program was run un-
der the UNIX platform in DEC AlphaStation 600, which
has an operating frequency of 333 MHz. Based on speed
and output quality, the technique of forward mapping and
geometric interpolation performed the best.

Mapping technique tave F

Forward mapping (FM) only 220 msec 4.5 Hz
FM & Fixed rad. smoothing 683 msec 1.5 Hz
FM & Adaptive rad. smoothing 1.15 sec 0.9 Hz
FM & Geometric interpolation 325 msec 3.1 Hz

Table 1: Timing comparisons between the different map-
ping techniques for motion within the vicinity of the vir-
tual camera viewpoint shown in Figure 6. tave is the av-
erage time between refresh and F is the frequency.

When the number of the panoramic image sources used
to generate a new view was increased, we noticed some
degree of degradation in the quality and blurring of the
picture, as can be seen in Figure 7. This is because of the

slightly incorrect registration information that is a result
of the spline-based registration technique. It is in general
very difficult to achieve exact registration.

So far we have described how new views are generated
at virtual camera locations within a cluster of panoramic
images. We now describe how travel between clusters is
implemented.

Moving between panoramic image clusters
Travel between wide scenes or clusters of panoramic
images is implemented through transition points called
“hotspots” located within the reference panoramic im-
ages. To illustrate how the idea of “hotspots” work,
we use an example of a network of wide scenes rep-
resented by three clusters, each in turn, consisting of
three panoramic images. One of the three clusters is
shown in Figure 8. In this figure, the top three images
are the panoramic images that represent the respective
wide scene. The bottom left window is the top view of
the 3-D distribution of precomputed points of the scene;
crosses in the center of this window indicate the location
of the camera centers corresponding to the three cylindri-
cal panoramic images. The bottom right window is the
viewing window. Note that the precomputed 3-D points
shown in the bottom left window are not used in render-
ing the new views; they are there to provide a rough shape
of the environment only.

Indicating “hotspots”
A “hotspot” can be viewed as a gateway from the current
cluster to another cluster of panoramic images. From the
user’s point of view, it allows the viewer to move seam-
lessly from one scene to another scene. In our imple-
mentation, the user or developer indicates the “hotspots”
and their auxiliary points as shown in Figure 9. Each
“hotspot” is represented by hollow squares while each
auxiliary point is represented by a cross. “Hotspots”
comes in pairs, and for each pair, there is a designated
source “hotspot” and a designated destination “hotspot.”
Figure 9 shows the pairs of “hotspots,” where a source
“hotspot” leads to a corresponding destination “hotspot”
(in the direction of the arrowed line). The auxiliary points
also come in pairs; they are used to compute the global
affine motion from the source to the destination portions
of the reference panoramic images.

Once the “hotspots” have been indicated and saved,
the initialization for the cluster system is then complete.
“Hotspots” are initialized by simply clicking at appropri-
ate points in the reference panoramic images. The user
can now virtually navigate this cluster system, i.e., he
or she can move virtually navigate (in an unconstrained
manner) within each cluster and travel smoothly (in a
constrained manner) between clusters.



Moving to “hotspot” and changing scenes
We provide two ways of changing scenes via “hotspots.”
The first is to have the user manually navigate until he
or she sees a “hotspot” within view; the “hotspot” is in-
dicated by a hollow box. The user can then indicate a
change of scene by clicking inside that box. The other
way is to just type a key command. This has the effect
of automatically moving and reorienting the virtual cam-
era view such that the location of the virtual camera is at
the reference location and the virtual camera is pointed
directly at the nearest “hotspot.” The camera motion is
determined by linearly interpolating the camera position
and angular orientation independently.

Once the virtual camera has been properly positioned
and oriented, toward the “hotspot,” transitioning between
reference views of the source and destination clusters be-
gins. The transition views are computed based on inter-
polated global affine motion. The global affine motion
can be calculated from the corresponding the “hotspot”
and auxiliary corresponding points by computing the
least-squares best fit through Singular Value Decompo-
sition (SVD). Let �ui� vi�T and �u�

i
� v�

i
�T be the ith point

in the source image and the corresponding point in the
destination image respectively. Then, using the global
affine motion model,
�
� u�

i

v�
i

�

�
A�A

�
� ui

vi
�

�
A�
�
� a�� a�� a��

a�� a�� a��
� � �

�
A
�
� ui

vi
�

�
A

(2)
For N�N � �� point pairs, the elements of A can be

extracted by solving the overdetermined system through
SVD [8].

Constructing intermediate views between clusters is
done through inverse mapping, i.e., using the mapping
from screen space to both source and destination image
spaces. The color at each pixel is the weighted average of
both the appropriately sampled pixels at the source and
destination images. Let � be the parameter ranging from
0 to 1 that indicates the “proximity” of the user to the
destination scene (with 0 being at the current scene and
1 being at the destination scene). Then, if c is the color
RGB vector,

c��u� � �csrc�f�u� �� A
����	 �����cdest�f�u� �� A��

(3)
where

f�u� �� A� � �I��� 	 ��A��� � I�����u	 �t� (4)

with I��� being the �� � identity matrix,

A��� �

�
a�� a��
a�� a��

�
, and t �

�
a��
a��

�
(5)

An example of automatically moving to a “hotspot,”
transitioning, and arriving at a new scene is shown in Fig-
ure 10.

Discussion
We chose our current approach of visualization using
clusters of panoramic images rather than more densely
sampled ones to reduce both computational and memory
demands. Judicious choices of cluster location can enable
us to visualize the complex scenes without sacrificing too
much quality in the reconstructed virtual view and with-
out prohibitively narrowing the range of virtual camera
motion that results in view reconstruction with accept-
able quality. However, our choice of approach opens up
a range of questions.

Most of these questions relate to the quality of lo-
cal navigation. In our work, we limit the number of
panoramic images within each cluster to three. As such,
the quality of reconstructed virtual views is sensitive to
the quality of image registration between panoramic im-
ages within the cluster. Unless both the panoramic image
construction and image registration are perfect, which is
impossible in practice, the quality of reconstructed views
is expected to degrade with increasing distance of the vir-
tual camera position to the reference camera position. A
reasonable solution to this is to restrict the range of mo-
tion of the virtual camera to within a certain distance from
any of the panoramic image center. A distance threshold
that can be used is the average baseline (i.e., average dis-
tance between camera centers) within the cluster.

As we have seen earlier, using multiple panoramic im-
age sources does not necessarily result in higher quality
view reconstruction than using just one panoramic image
source. In theory, though, using multiple panoramic im-
age sources should be better if the panoramic images are
constructed and registered exactly correctly. In such as
case, one can envision taking advantage of the multiple
image sources to provide super-resolution images [3]. In
practice, however, we are very likely better off using just
one panoramic image source.

There is also the question of how many panoramic
images per cluster is sufficient for acceptable output.
While two panoramic images are theoretically sufficient
for view reconstruction, the quality will be poor in the
vicinity of the epipole locations, or points where the line
joining the two camera centers intersect the cylindrical
panoramic images. As a result, at least three panoramic
images are required, as long as the camera centers asso-
ciated with the images are not colinear. Again, there are
the competing factors of high computational and memory
demands against quality of reconstruction in choosing the
number of panoramic images per cluster.



All said and done, our technique still requires some
degree of manual intervention, specifically in specifying
“hotspots,” and subsequently their auxiliary points for es-
timation of global affine motion. This is necessary be-
cause panoramic images across clusters may differ sub-
stantially in appearance that automatic registration will
fail. In addition, “hotspots,” whose locations are ad hoc,
are usually best left to the user or developer to specify.
Currently, the placement of camera associated with each
panoramic image within the cluster and the choice of the
reference panoramic image per cluster are still heuristic.

Summary
We have described a technique for enabling smooth vir-
tual navigation of a complicated network of wide scenes.
Any environment that involves a large expanse of space
(such as an outdoor environment) or significantly large
occluding partitions (such as a multi-room environment
within a floor of a building) is a good candidate for this
method of visualization. The technique that we have pro-
posed uses clusters of panoramic images, with each clus-
ter representing a separate wide scene.

Each cluster of panoramic images allows local and
unconstrained navigation within a wide scene. For this
purpose, we have devised a combination of forward and
inverse mapping techniques to reconstruct new virtual
views using the original panoramic images. The interpo-
lation technique using the adaptive circular radius yields
the best results. The geometric interpolation technique
yields images of very visually similar quality, except that
it is significantly faster. It is a good tradeoff between the
speed of view generation and quality of reconstruction.

Predefined “hotspots” provide gateways to smoothly
transition (albeit in a restricted manner) from the cur-
rent cluster to the next cluster. We interpolate views us-
ing global affine motion to simulate linear camera motion
from one wide scene to another.

*
References

[1] S.E. Chen. QuickTime VR – An image-based ap-
proach to virtual environment navigation. Com-
puter Graphics (SIGGRAPH’95), pages 29–38,
Aug. 1995.

[2] N. Greene and P. Heckbert. Creating raster Omn-
imax images from multiple perspective views us-
ing the Elliptical Weighted Average filter. IEEE
Computer Graphics and Applications, pages 21–27,
June 1986.

[3] M. Irani and S. Peleg. Super resolution from image
sequences. In International Conference on Pattern
Recognition, pages 115–120, 1990.

[4] S. B. Kang and R. Szeliski. 3-D scene data recov-
ery using omnidirectional multibaseline stereo. In
Proc.s IEEEComputer Society Conference on Com-
puter Vision and Pattern Recognition, pages 364–
370, June 1996.

[5] R. Kumar, P. Anandan, M. Irani, J. Bergen, and
K. Hanna. Representation of scenes from collec-
tions of images. In IEEE Workshop on Represen-
tations of Visual Scenes, pages 10–17, Cambridge,
Massachusetts, June 1995.

[6] H. C. Longuet-Higgins. A computer algorithm for
reconstructing a scene from two projections. Na-
ture, 293:133–135, 1981.

[7] L. McMillan and G. Bishop. Plenoptic model-
ing: An image-based rendering system. Computer
Graphics (SIGGRAPH’95), pages 39–46, August
1995.

[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
Cambridge, England, 1988.

[9] H. S. Sawhney and S. Ayer. Compact represen-
tations of videos through dominant and multiple
motion estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(8):814–830,
August 1996.

[10] R. Szeliski. Video mosaics for virtual environments.
IEEE Computer Graphics and Applications, pages
22–30, March 1996.

[11] R. Szeliski and J. Coughlan. Hierarchical spline-
based image registration. In IEEEComputer Society
Conference on Computer Vision and Pattern Recog-
nition (CVPR’94), pages 194–201, Seattle, Wash-
ington, June 1994. IEEE Computer Society.

[12] R. Szeliski and H.-Y. Shum. Creating full view
panoramic image mosaics and environment maps.
Computer Graphics (SIGGRAPH’97), pages 251–
258, August 1997.

[13] J. Y. A. Wang and E. H. Adelson. Represent-
ing moving images with layers. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
3(5):625–638, September 1994.

[14] Y. Xiong and K. Turkowski. Creating image-based
VR using a self-calibrating fisheye lens. In Confer-
ence on Computer Vision and Pattern Recognition,
pages 237–243, San Juan, Puerto Rico, June 1997.



Cluster 1

Cluster 2

Cluster 3

Figure 1: Virtual navigation using multiple panoramic
clusters (3 clusters in this example). Here, each cluster
consists of three cylindrical panoramic images.

Panoramic image 1 Panoramic image 2

Virtual panoramic image

Figure 2: Forward mapping (within a cluster)

Reference View Second View

Virtual View

Epipole 1

Epipole 2

P
2

1
P

Figure 3: Handling occlusion using back-to-front order-
ing within a cluster (top view).

Case 1

Case 2

Case 3

Case 4

Viewing
pyramid

rmin

rmin

Figure 4: Different cases for forward mapping within a
cluster (top view).

Pixels in the virtual image
(screen space)

Reference panoramic image
(texture space)

Figure 5: Geometric interpolation for filling in holes left
by forward mapping.



(a) (b) (c) (d)

Figure 6: Results for a close-up view: (a) Forward mapping only, with the rest with forward mapping and (b) Smooth-
ing with fixed radius, (c) Smoothing with adaptive radius, and (d) Geometric interpolation.

(a) (b) (c) (d) (e)

Figure 7: Using a single panoramic image source ((a), (c)), and some worst case effects of using multiple sources: two
panoramic images ((b), (d)), and three panoramic images (e).

Figure 8: First cluster. See text for explanation of each image.



Figure 9: Example of “hotspots” (indicated by hollow squares) and supporting anchor points (indicated by crosses).
The arrows indicate the direction of transition between panoramic clusters.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 10: Sequence of snapshots taken during motion to one “hotspot” (a)-(e), transitioning from one cluster to
another (f)-(i), and arrival at the destination cluster (j).


