Triangle Mesh Compression

Costa Touma
Department of Computer Science
Technion - Israel Institute of Technology
Haifa 32000, Israel

costa@ecs.technion.ac.il

Abstract

A novel algorithm for the encoding of orientable mani-
fold triangle mesh geometry is presented. Mesh con-
nectivity is encoded in a lossless manner. Vertex coor-
dinate data is uniformly quantized and then losslessly
encoded. The compression ratios achieved by the algo-
rithm are shown to be significantly better than those of
currently available algorithms, for both connectivity
and coordinate data. Use of our algorithm may lead to
significant reduction of bandwidth required for the
transmission of VRML files over the Internet.

Keywords:
VRML.

Triangle mesh, Compression, Coding,

1. Introduction

The advent of the World Wide Web, and its usage for
remote access to data servers through low bandwidth
communication lines, has dramatically increased the
need for efficient compression schemes for common
types of media found on the Web. For media such as
audio and video, it is possible to adapt compression
schemes devised for other purposes (e.g. storage) to the
Internet scenario. However, the Web has introduced
new data types, which are not traditional multimedia,
and for which compression schemes did not previously
exist. One of these is three-dimensional geometry, the
main content of VRML97 files. The current VRML97
format [7] is ASCll-based, containing a large amount
of redundancy, resulting in large download times. The
VRML community has realized that this is a major ob-
stacle to real-world VRML applications and has pro-
posed a new compact binary format [8]. Beyond binary

Craig Gotsman'
Virtue Ltd.
P.O.Box 199
Tirat Carmel 30200, Israel

gotsman(@virtue.co.il

tokenization of the regular ASCII content, the proposal
uses a polygonal mesh compression algorithm due to
Taubin and Rossignac. [11], which seems to yield more
compact datasets than the few other algorithms devised
for this purpose [4, 3, 2]. We call the algorithm of Tau-
bin and Rossignac the “IBM algorithm”. The IBM al-
gorithm encodes the mesh connectivity in a lossless
manner, quantizes the real vertex coordinate informa-
tion and encodes the result in a lossless manner.

The encoding of an arbitrary polygonal manifold in
three-dimensional space is a generalization of the en-
coding of a planar geometric graph. By “geometric”,
we mean a graph for which coordinates are associated
with each vertex, as opposed to an abstract planar
graph, for which only the edge information is
meaningful. Encoding geometric graphs involves
encoding also the vertex coordinates, in addition to the
edge information encoded for abstract graphs. Turan
[12] has shown that a planar graph may be encoded in
at most 12# bits, where » is the number of vertices in
the graph. Keeler and Westbrook [9] improved Turan’s
results, showing that a triangulated planar graph may
be encoded in at most 4.6 » bits. The IBM algorithm,
which bears some similarity to that of Turan, encodes
the edge information in an average of 4 bits per vertex.
The algorithm we describe in this paper will be shown
to encode the same edge information in less than 1.5
bits per vertex on the average.

The IBM algorithm proposes to encode the coordinate
information of the mesh vertices by quantizing each of
the three vertex coordinates to a fixed number of bits
(8, 10 or 12 bits is typical), and then losslessly encod-
ing the quantized values using a simple linear predic-

' On sabbatical leave from the Department of Computer Science, Technion - Israel Institute of Technology.

tion method. The integer prediction errors are then
entropy-encoded, resulting in approximately 13 bits per
vertex. We use a more sophisticated prediction scheme
based on local surface properties, requiring only ap-
proximately 9 bits per vertex for typical inputs.

2. Lossless Connectivity Encoding

The key to our encoding scheme is the following
(simple) observation: In a polygonal mesh which is an
orientable manifold, the vertices incident on any mesh
vertex may be ordered, i.e. sorted in clockwise order in
a consistent manner. This contrasts with general
graphs, for which this property does not hold. A
consequence of this is the separation property of
genus-0 meshes, namely, that the removal of any vertex
cycle, and all associated edges, separates the mesh into
two disjoint meshes - those inside the cycle, and those
outside it (in the degenerate case, one of these meshes
may be empty).

We shall see that this implies that the mesh
connectivity may be encoded as a list of vertex degrees
in a special order. A few other bits must be dedicated to
describe special cases which arise very infrequently in
typical cases.

2.1 The Formal Algorithm

In this section, we make some definitions relevant to
our coding algorithms, and describe them briefly.
Pseudo-code for the encoding and decoding algorithms
may be found in Figs. 2-3. A simple example demon-
strating the operation of our algorithm appears in Fig 4.
The input to our algorithm is an orientable manifold
triangle mesh, and the output is the code for the mesh
connectivity.

Definitions

Vertex cyele: A cyclic sequence of vertices along tri-
angle edges in the mesh.

Active List: A vertex cycle in the mesh. The active list
partitions the mesh into an “outer” part containing
edges not yet encoded, and an “inner” part containing
edges already encoded. Each vertex in the active list
has encoded and unencoded incident edges separated
by the edges to the two vertices which are its predeces-
sor and successor in the active list.

Focus: One vertex in the active list is designated as the
focus vertex. All coding operations are done on the
focus vertex. When this is complete, the focus is moved
to the next vertex in the active list and the previous

focus vertex is removed from the active list to become
one of the “inner” vertices. This causes the active list to
“expand”.

Free Vertex: A vertex not yet encoded.
Free Edge: An edge not yet encoded.
Full Vertex: A vertex with no free edges.

Offset: The number of vertices separating two given
vertices along the active list (clockwise).

The encoding algorithm starts off with an arbitrary tri-
angle in the mesh, defining an active list of three edges.
An arbitrary vertex of this triangle is designated as the
focus. The algorithm proceeds by trying to expand the
active list by “conquering” edges in counter-clockwise
order around the focus. Each such edge generates an
“add” command. When all these edges are exhausted
(the vertex is “full”) the focus is moved to the next
vertex in counter-clockwise order around the active list.
The conquering procedure repeats for the new focus. If
the active list, during expansion, intersects itself, it is
split to two active lists, each of which is traversed re-
cursively. This event also generates a “split” command
in the code. The procedure terminates when all vertices
are full (all edges traversed).

The decoding procedure is straightforward. Each “add”
command encountered in the code causes a new vertex
and triangle to be generated, by connecting the new
vertex to the focus and its predecessor on the active list.

2.2 Special Cases
Split and Merge

If, during encoding, the first free edge of the focus of
an active list does not lead to an unencoded vertex,
there are two possibilities: either it leads to a vertex in
the same active list or to a vertex in another active list
(on the stack). Note that all other vertices are inner
vertices and all their edges have already been traversed.
In the first case, the active list is sp/it into two separate
active lists. One is pushed onto the stack for future
treatment, and the encoding procedure proceeds with
the second. In the latter case, the two active lists are
merged to form one active list on which the encoding
continues. Note that merge will never happen if the
object has sphere topology (genus 0), and can only
occur in a torus-like topology (genus 1).

Handling Boundaries

If the mesh is not closed, i.e. has boundaries, this is
treated by adding a dummy vertex for each boundary
and connecting it to the vertices of that boundary, cre-
ating a closed topology. These dummy vertices should
be removed after the decoding and reconstruction of the
mesh. They are tagged when encoding the mesh,
located and removed when decoding.

2.3 Entropy Coding of the Command Sequence

The three commands appearing in the connectivity
code are “add <degree>", “split <offset>" and “merge
<index><offset>". In practice, a typical code contains
mostly “add” commands, a few “split” commands, and
almost no “merge” commands.

In typical meshes, the average vertex degree is 6, and
there is a spread of degrees around this value. This in-
vites entropy coding, e.g. Huffman. The entropy coding
results sometimes in long runs of the same bit patterns,
which is susceptible to run-length encoding.
Combining run-length encoding with entropy encoding
of the command sequence yields compression rates of
less than 1 bit per vertex. For meshes with regular
topologies, where most of the vertices have the same
degree, spectacular compression rates, such as 0.2 bits
per vertex, result.

3. Vertex Coordinate Compression

The IBM algorithm [11] encodes the mesh vertex co-
ordinates v, by first quantizing the three vertex co-
ordinates to a finite number of bits (8 bits is typical) by
bounding the interval in which the coordinates lie. The
algorithm then uses a linear scheme to predict the inte-
ger coordinates of the vertex from a small number (k)
of vertices immediately proceeding in the code:

k
P —
v/ =round Zajv,.fj
J=1
The coefficients are real numbers, which, for lack of
anything better, are usually taken to be
a, =l,a, =a, =...=a, =0. The integer prediction
errors are; A =V - v,p and are encoded using entropy
coding,.
It is possible to use a more sophisticated prediction
scheme, albeit still linear, to predict the vertex from
those surrounding it on the mesh surface. This results in

a more accurate prediction, therefore smaller and a
more concentrated distribution of prediction errors,

which may be compressed better with entropy coding.
Due to our connectivity encoding scheme, using an
active list, whenever a new vertex r is to be decoded,
we already have a triangle (u,v,w) neighboring on the
triangle the new vertex forms with vertices (u,v) in the
active list. This enables us to predict the new vertex
using the following rule: 77 =v+u—w.

We call this rule the "parallelogram™ rule, because its
geometric interpretation is to predict » as the fourth
vertex of a parallelogram whose three other vertices are
v,u and w. This assumes, incorrectly, that all four verti-
ces are co-planar. If it were possible to estimate the
“crease angle” between the two triangles along the edge
(u,v), a more accurate prediction of » would result. This
angle is a discrete “curvature” value. We estimate this
crease angle as the average of the crease angles be-
tween two sets of adjacent triangles, whose crease is
the closest to parallel to the crease line in question. At
least one such set must already have been decoded, so
this information is available. See Fig. 1.

The resulting integer prediction errors tend to cluster
around zero. We found it most effective to store an ex-
plicit codebook for the 32 error values surrounding
zero, and to assume a fixed rate code for all remaining
error values. This reduces the size of the codebook
which must be stored with the codewords without
damaging the compression ratio significantly.

4. Complexity

The most complex operation in the mesh connectivity
encoding procedure is searching for a given vertex in
some active list on the stack. This is needed only to
support “merge” operations, which are extremely rare.
Apart from that, both the space and time requirements
of our encoding and decoding algorithms are linear in
the number of mesh edges. For the examples brought in
Section 5, both IBM’s and our encoding/decoding algo-
rithms ran for a few seconds on a 166MHz Pentium PC
computer.

5. Experimental Results

We have run our compression algorithm on a variety of
triangle meshes found in some common VRML97 files
(i.e. IndexFaceSets), and compared them with the re-
sults obtained by simple gzip of the ASCII content
(after coordinate quantization), and the IBM algorithm.
Fig. 5 shows some of the meshes, and Table 1 summa-
rizes the compression results. As expected, gzipped
ASCII is highly inefficient, even after quantized to 8
bits per vertex. The IBM algorithm reduces the dataset

size by an additional factor of 0.16 on the average. On
top of that, we reduce the overall dataset size by an
average additional factor of 0.61 relative to the IBM
algorithm. Our connectivity encoding algorithm is far
superior, reducing the dataset size relative to the IBM
algorithm by an average of 0.34. Our vertex coordinate
compression reduces the dataset size by 0.69. Since this
is the dominant component of the mesh geometry, it
sets the tone for the overall compression ratio.

Increasing the number of quantization bits per coor-
dinate for the vertices from § to 10 increases the size of
the code by 30%-40% on the average, both for the IBM
algorithm, and ours.

Running the standard gzip compression utility on the
compressed data does not reduce its size any further.
On the contrary, it only increases it. This is a positive
indication that our compression algorithm is doing a
good job, and no additional “general purpose” com-
pression techniques are applicable. Our compression
algorithm is idempotent, namely, applying it again to a
decoded dataset yields an encoded dataset identical to
the original encoded version.

6. Discussion

We do not think it will be possible to achieve compres-
sion ratios significantly better than ours for mesh con-
nectivity. For regular meshes, such as those obtained
from CAD systems by tesellating free-form surfaces, or
those obtained by subdivision techniques (e.g. the
“eight” and “shape” meshes of Table 1), we are able to
compress the connectivity data to almost nothing (0.2
bits/vertex). On the other hand, we are confident that
significant improvements are still possible for the ver-
tex coordinate compression, possibly at the cost of
longer decoding time. This is the subject of our current
research. We are exploring some improved non-linear
prediction methods involving local surface curvature
(“crease angle”), and preliminary results are encourag-
ing. We are also investigating two-pass encod-
ing/decoding methods, in which the connectivity of the
entire mesh is first decoded, and only then the coordi-
nate decoding is started. This contrasts with the method
described in Section 3, where both the mesh connectiv-
ity and vertex coordinates are decoded in a single pass.
Two-pass methods have the advantage that more com-
plete connectivity information is available at the time
of the coordinate decoding.

Our treatment of non-manifold meshes is identical to
that of the IBM algorithm: A single non-manifold mesh
is decomposed into a number of manifold meshes, each

of which is encoded separately. General VRML geo-
metric content contains information other than mesh
connectivity and geometry, e.g. normal vector data,
colors and other properties. We are currently working
on efficient coding of the normal data, which seems
will be more compact than the coordinate data. Other
vertex properties will be addressed too.

Beyond its obvious use for reducing storage and trans-
mission costs, mesh encoding is relevant to the efficient
rendering of the meshes on graphics engines. Most
modern graphics engines employ a graphics pipeline,
through which the mesh polygons travel during their
rendering. The pipeline first performs the geometric
projection transformation on the vertices, and then
scan-converts the projection interior, with appropriate
shading and depth (z-buffer) calculations. Naive ren-
dering of a triangle mesh involves sending each indi-
vidual triangle down the pipeline. This is also the naive
way of specifying (encoding) the edge information of
the mesh: The vertices are assigned indices, and a list
of index triplets describe the triangle mesh. This means
that each vertex index will be specified three times on
the average (to describe all edges, we need to specify
only half the triangles). In terms of rendering, each
vertex will undergo the projective transformation three
times on the average. Encoding the mesh more effi-
ciently can help reduce this cost, possibly at the price
of some extra storage space. One way of doing this is to
partition the mesh to triangle strips [5], each of which
may be rendered efficiently while projecting each ver-
tex only once. Even if a mesh may be described as a
single strip, each vertex must still be specified twice on
the average. In the typical case, since a mesh consists
of many such strips, more vertices are needed in the
“code”. In order to decode and make use of the triangle
strip information, the rendering engine must use a ver-
tex store for three vertices. Deering [4] proposed to
extend the vertex store to more than three vertices, ena-
bling use of a more compact encoding scheme. Deering
also pointed out the connection to mesh compression in
general.

Chow [3] has recently described some heuristic algo-
rithms, using a store of 16 vertices, that generate codes
where each vertex of a typical mesh appears only 1.3
times on the average. Sun Microsystems’ Java3D API
[10] makes use of these techniques. Independently,
Bar-Yehuda and Gotsman [1] proposed a similar
scheme, described algorithms for mesh decomposition
and provided theoretical bounds on the tradeoff
between the size of the vertex store and the rendering
efficiency. One of their results is that a »n-vertex mesh

may be specified (encoded), such that each vertex
appears only once in the code, only ifa vertex store of
size Q(n) is available. This is a lower bound on the
space complexity of our decoding algorithm.

Progressive meshes [6] have gained popularity over
recent years as a mechanism for streaming geometry
over a network, such that the decoder may immediately
begin decoding the bit stream, and progressively refine
it as more bits are received. However, not only is this
type of data hard to compress, but might even enlarge
the amount of data which has to be ultimately transmit-
ted, relative to the original mesh size. Future work will
address this problem.

References

[1]R. Bar-Yehuda and C. Gotsman. Time/space
tradeoffs for polygon mesh rendering. ACM Trans-
actions on Graphics, 15(2):141-152, 1996.

[2] F. Bossen. Geometry compression. Contribution
No. MPEGY96/M1236, October 1996 Chicago MPEG
meeting of ISO/IEC JTC1/SC29/WGT1.

[3] M. Chow. Optimized geometry compression for
real-time rendering. Proceedings of Visualization ‘97,
pp- 347-354, IEEE Computer Society Press, 1997.

[4] M. Deering. Geometry compression. Proceedings of
SIGGRAPH , pp. 13-20, ACM Press, 1995.

[5]1F. Evans, S. Skiena, and A. Varshney. Optimizing
triangle strips for fast rendering. Proceedings of
Visualization ‘96. IEEE Computer Science Press, 1996.

[6] H. Hoppe. Progressive meshes. Proceedings of
SIGGRAPH, pp. 99-108, ACM Press, 1996.

[7] http://www.vrml.org/Specifications/ VRML2.0

[8] http://www.research.ibm.com/vrml/binary/
specification

[9] K. Keeler and J. Westbrook. Short encoding of
planar graphs and maps. Discrete Applied Maths,
58:239-252, 1995.

[10] H. Sowizral. The Java3D API Specification.
Academic Press, 1998.

[11] G. Taubin and J. Rossignac. Geometric compres-
sion through topological surgery. Research Report
RC-20340, IBM Research Division, 1996.

[12] G. Turan. On the succinct representation of
graphs. Discrete Applied Maths, 8:289-294, 1984.

Figure 1: The “parallelogram” rule without and with crease angle prediction. Filled triangles have already

been decoded. Vertex 77 is the prediction of true vertex using the parallelogram rule, and ry

-, the prediction

adopting the crease angle between triangles (s,v,w) and (s,v,f).

Procedure EncodeConnectivity (Tmesh M)

Stack S; // Stack of active lists
ActiveList AL, ALT;

while not all triangles of M visited { // catch all connected components
pick an unvisited triangle (v1,v2,v3) of M;
AL.Add(v1,v2,v3);

output (“add %d”,v1.degree);
output (“add %d”,v2.degree);
output (“add %d”,v3.degree);
AL focus = vl;

S.Push(AL);

while not S.Empty() {
AL = S.Pop();
while not AL.Empty() {
e = AL.focus.FreeEdge(); // next free edge in clockwise order
u := AL.focus.Neighbor(e); / neighboring vertex along edge ¢
if uFree() {
AL.Add(u); // this is always possible
output (“add %d”, u.degree);
} else
if AL.Isin(u) {
(AL,AL1) := AL.Split(e); //split AL to AL and AL1 at edge e, inherit focus
S.Push(AL1);
output (“split %d”, offset from AL.focus to u)
} else {
ALl :=S.Isin(u); //uis already in some list on the stack - find it
k =S.Pop(ALl); //kis index of ALl on stack
AL.Merge(AL1,u); // merge AL1 with AL atu
output (“merge %d %d”, k, offset from AL.focus to u)

s
AL.RemoveFullVertices();
if AL .focus.Full() AL.focus := AL.focus.NextNeighbor();

-

Figure 2: Pseudo-code of the connectivity encoding algorithm.

Procedure DecodeConnectivity (TMeshPtr pM)

ActiveList AL,ALIL;
Stack S;

while not EOF {
read degrees of vertices (v1,v2,v3);
M.add(v1,v2,v3); //triangle
AL.add(v1,v2,v3);
AL .focus :=vl;
S.Push(AL);

while not S.Empty() {
AL :=S.Pop();
while not AL.Empty() {
¢ := AL.focus. FreeEdge();
cmd = ReadCommand();
if cmd = “add <deg>" {
Vertex u(deg); // create new vertex u, with the given degree
AL.Add(u); // insert u between focus and its predecessor
pM->Add(u); // update the mesh to have two more edges
} else
if emd = “split <offset>" {
(AL,AL1) := AL.Split(e,offset); // split AL into two at the given offset
S.Push(AL1);
} else
if emd = “merge <i> <offset>" {
AL1 :=S.Pop(i); //pop the i’th active list from the stack. It must be there.
AL Merge(All,offset); // merge the two active lists together at the given offset

1
s
AL.RemoveFullVertices();
if AL.focus.Full() AL.focus := AL.focus.NextNeighbor();

-~

Figure 3: Pseudo-code of the connectivity decoding algorithm.

Figure 4: An example of a run of the connectivity encoding algorithm. The active lists are marked by thick
lines. Edges already traversed (encoded) are dashed lines. (a) Input mesh. (b) Dummy vertex added and
connected to all boundary vertices. (¢) Pick initial triangle to start, mark focus vertex, and generate code words
“add 6, add 7, add 4”. (d) Expand the active list and generate code word “add 4”. (e) “add 8”. (f) “add 5. (g)
“add 5”. Focus vertex becomes full (all edges encoded). (h) Focus vertex removed, and focus moved on along
active list. (i) “add 4”. (j) “add 5”. Now the next free edge of the focus leads to a vertex already in the active
list. (K) Active list split into two. Generate code word “split 5” (5 is the offset), and smaller one pushed on
stack. (I) Focus vertex removed, and focus moved on. (m) “add 4”. (n) “add 4”. Focus vertex is full so it is
removed. (0) The dummy vertex is added “add dummy 6”. (p) First active list complete. The second active list
popped from the stack. (q) “add 4”. (r) Focus vertex removed, and focus moved on. (s) Focus vertex removed,
and focus moved on. (t) Second active list complete. The resulting code is “add 6, add 7, add 4, add 4, add 8,
add 5, add 5, add 4, add 5, split 5, add 4, add 4, add dummy 6, add 4”.

Decode the mesh using the code “add 6, add 7, add 4, add 4, add 8, add 5, add 5, add 4, add 5, split 5, add 4, add
4, add dummy 6, add 4”. (a) Build the initial triangle from the commands “add 6, add 7, add 4”. Mark the first
vertex as focus. (b) “add 4”: add a vertex with degree 4 and connect it to the focus and its predecessor in the
active list. (¢) The same with the next “add 8”. (d) “add 5. (e) “add 5”. Now the focus is full (all edges
accounted for). (f) Focus vertex removed and focus moved on along active list. (g) “add 4”. (h) “add 57 (i) “split
57:Split the active list at an offset of 5 free edges (clockwise) from the focus vertex . (j) Focus is full and
removed. (k) “add 4”. (I) “add 4”. Focus vertex is now full. (m) Focus vertex removed and focus moved on. (n)
“add dummy 6”: Add a dummy vertex with degree 6, and connect it. (o) The first active list is exhausted, and
the second popped from the stack. (p) “add 4”: A vertex with degree 4 is added to the second active list and
connected. (q) The focus vertex is full and removed. (r) Focus vertex removed and focus moved on. (s) The
second active list is exhausted and the decoding complete.

Gzipped IBM’s scheme Our scheme Our/IBM ratio

Model Vertices VRML97 |[Conn. | Coord. || Conn. | Coord. | Conn. | Coord. | Total

blob 8036 117K 3447 10352 1709 7951 0.50 0.77 0.70
(119) 3.4) (10.3) (1.7) (7.9)

tricerotops* | 2832 44K 1523 3673 764 2937 0.51 0.80 0.71
(127) (4.3) (10.4) 2.2) (8.3)

eight 766 11K 363 1146 53 683 0.16 0.60 0.49
(118) (3.8) (12.0) (0.6) (7.1)

shape 2562 35K 713 4578 48 2990 0.09 0.65 0.57
(112) 2.2) (14.3) (0.2) (9.3)

beethoven* | 2655 36K 1585 4982 781 3576 0.50 0.72 0.66
(111) (4.8) (15.0) 2.4) (10.8)

engine 2164 24K 1041 4703 330 3425 0.32 0.73 0.65
1) (3.8) (17.4) (1.2) (12.0)

dumptruck® || 11738 114K 4929 20351 1210 11162 0.25 0.55 0.49
(80) 3.4) (13.9) (0.8) (7.5)

cow 3066 40K 1766 4878 779 3376 0.44 0.69 0.63
(108) (4.6) (12.7) (2.0) (8.8)

Average (108) (3.8) (13.3) (1.4) (9.0) 0.34 0.69 0.61

Table 1: Quantitative comparison of compression results between gzipped VRML97, the IBM algorithm and
ours. Dataset sizes are measured (for connectivity and coordinate data separately) in bytes. The numbers in
parantheses are in bits per vertex. The models are mostly those used in the IBM benchmarks. Models marked
by (*) had to be triangulated (in a very simple manner) prior to compression. Quantization of vertex coordinates
was to 8 bits.

(@) (b)

Figure 5: Sample meshes used to test our compression algorithm. The mesh polygons are drawn in random
colors. The white line shows the active lists used for the compression. These lists traverse all mesh vertices.
(a) Beethoven (b) Tricerotops.

