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Abstract

This paper presents a method for automatically generat
ing a hierarchical B-spline surface from an initial set of 
control points. Given an existing mesh of control points 
M lt*11, a mesh with half the resolution Mw , is construct
ed by simultaneously approximating the finer mesh 
while minimizing a smoothness constraint using weight
ed least squares. Curvature measures of are used
to identify features that need only be represented in the 
finer mesh. The resulting hierarchical surface accurately 
and economically reproduces the original mesh, is free 
from excessive undulations in the intermediate levels 
and produces a multiresolution representation suitable 
for animation and interactive modelling.
Keywords: modelling, fitting multiresolution, and l i 
sp line.

Introduction
Many 3D computer graphics modelling and animation 

systems use a B-spline representation for curves and sur
faces because of their geometric properties such as 
smoothness and controllable C" parametric continuity 
between patches. However, the tensor product nature of 
the underlying parameterization makes it expensive to 
construct complicated, continuous surfaces where differ
ent regions have differing amounts of local detail.

For example, the surface in Figure 1, as a bicubic B- 
spline, requires 16524 control points to define its shape 
simply because the non-local property of knot insertion 
forces the creation of patches over the entire surface. 
This also increases the overhead when using splines for 
surface approximation, rendering, or polygonizing the 
surface for export to other applications such as video 
games. It is also the major factor limiting the complexity 
of spline-based facial models.

Furthermore, as the shapes become more complex, it
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Figure 1 Spiny B-spline surface, 16524 control points

becomes difficult to make a broad-scale change to the 
surface shape without distorting or deforming the small- 
scale details of the surface. This greatly increases the 
time and cost of manipulating free-form shapes for tasks 
such as facial animation.

A hierarchical B-spline [1] is a multi-resolution sur
face representation that provides:

1. Local refinement of tensor-product spline sur
faces which localizes detail where it is required.

2. Multi-resolution surface editing that retains sur
face detail during broad-scale surface manipula
tion.

3. Economical surface representation. The surface 
in Figure 1 requires only 178 data points as a hi
erarchical spline.

4. Multi-resolution animation capabilities that 
make it easier to animate complicated surfaces 
[2].

Hierarchical spline surfaces are constructed using a in
teractive surface modelling system. However numerous 
applications in medical imaging and computer animation 
begin with real-world data and it would be extremely 
useful to construct hierarchical surfaces from such infor-
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mation.
This problem is related to work in multiresolution 

analysis, particularly curve evolution [3] and wavelets. 
Wavelets have also been used both for curve and surface 
representation in an interactive setting [4], and have also 
been extended to B-splines [5] and subdivision surfaces
[6], Wavelets have the nice mathematical property that 
they provide a single unique representation of a function 
where each level of detail is a least-squares approxima
tion of the next finest level.

In hierarchical surfaces constructed ab initio, the 
coarser level surfaces are typically not “blurry” versions 
of the final form, but are built up in much the same way 
as a clay sculpture, starting with a basic shape to which 
details are added. Thus the hierarchy for a surface with a 
high-frequency spike would be modelled as flat except at 
the finest level o f detail (Plate 2). A multiresolution rep
resentation created by least-squares approximation [7] or 
wavelet decomposition produces filtered surfaces that 
can also undulate (Figure 2). This is less useful if these 
coarser representations are used to interactively control 
shape.

This paper presents a scheme that, given an initial con
trol mesh for a tensor-product B-spline surface, will con
struct a multi-resolution hierarchical B-spline that is ap
propriate for use in modelling and animation. By adding 
detail only where curvature is high the storage cost of 
representing that shape either as a spline or when tessel
lated into polygons can be drastically reduced. We as
sume that the initial mesh already sufficiently represents 
the desired surface and we are concerned solely with 
constructing the multiresolution structure for a hierarchi
cal B-spline.

Initial Surface 1/2 resolution approximation

1/4 resolution approximation 1/8 resolution approximation

Figure 2 Least squares approximation 

Hierarchical B-Splines
In 1988 Forsey & Bartels [1] introduced the concept of 
locally refining a B-spline surface. In this scheme a sur
face is represented as a series of levels, each of which 
consists of a collection of B-spline surfaces Hm with 
twice the resolution of the parent surface at level k-1.

Hlk\ t ,  «) = X  Z  B'i\ ( “ ) (EQ 1)
i = 0; = 0

Hik\t,u) is defined by an n x  m mesh o f control ver
tices Vf.*J, and piecewise polynomial basis functions, 
Bi,x(t) and fi„.t)( i ) , of degree K and 1 respectively. The 
parameters t and u vary independently from some min
imum tmm, u„¡„ to some maximum tma„ u „„ . Certain val
ues of t and u , called knots, correspond to the joints be
tween polynomial patches and form a knot sequence in
each parameter{f„....... t„t t \ and{K0, ... ,  «„*,]. The basis
functions are assumed to have local support; i.e., each 
basis function affects only a restricted area o f the spline.

To be used in a hierarchical surface representation the 
bases are required to be refinable in the sense that each 
one can be re-expressed as a linear combination of one or 
more “smaller” basis functions with additional knots.

Let Mm be the initial mesh at level 0, defined by con
trol vertices V1*1. Points /?'**" in the refined mesh Afm 
are computed by linear combinations of the V1*1. Ex
pressed in matrix form:

/?“ + " = 5  V1*1 (EQ 2)

The components of the subdivision matrix S depend 
upon the order and type of basis functions, the number 
and location of the inserted knots and the topology of the 
surface. In tensor-product surfaces such as the B-spline, 
refinement is non-local in that knots are added in the 
parametric domain resulting in the addition of an entire 
new row or column of patches across the entire surface.

In a hiearchical B-spline surface representation, each 
control vertex V'**" in Af'**"is represented in offset 
form:

V/i*+ 'i = /?'* + " © * 11 (EQ 3)

where /?'**" is derived by mid-point refinement of V1*1 
as in Equation 2, £)'**11 is the offset vector and “© ” the 
offset operator.

The position of VI.*/ " directly after a new level is cre
ated is equal to /?)*/" and, by definition, 2)l.y11 = 0 .  
Any change to the position of a control node 1/1.*/" , is 
represented in the offset vector dl.*/" as a relative 
change in position from the reference point /?!.*/". 
Changes to V!.*/'1 (and thus to 2)i.y ") do not change the 
position of the reference point. On the other hand, chang
es in the shape of a parent surface alter /?!.*/ ", resulting 
in a procedurally defined move of V!.*/".

The reference+offset form allows a hierarchical B- 
spline surface to be locally refined so that patches can be 
added to a restricted region of the surface [1], and im
proves the economy of the representation because the 
non-zero offsets totally define the shape of the surface.



Offsets correspond to the difference between the 
shape of the surface at two levels of representation. The 
offset operator determines how that difference is inter
preted. In the simplest case the operator is simply vector 
addition and is, in operation, similar to wavelet decom
position. However the offset operator can be arbitrarily 
complex and is used to enhance the behaviour of the sur
face so that detailed features follow broad scale defor
mations of the surface [1] or of an underlying skeleton
[2].

The hierarchical approach is not restricted to B- 
splines but is applicable to any representation where the 
basis functions have local support and are refinable. For 
example [4] uses a wavelet basis while incorporating the 
offset form for the wavelet coefficients.

M ulti-resolution B-spline Approximation
Given an initial control mesh M[t*" with points V1**11 
defining a B-spline surface, the idea is to generate a 
“smooth” M l>] mesh for H w that, when refined, mini
mizes the magnitude of the offsets in //'**". We note 
that we are operating on the control mesh, not on any 
data points that may have been used to create A/1**'1.

Initial Approximation
Minimizing the offsets implies minimizing

¡5V1*1-  Vl*+1,||2 (EQ 4)

which leads to solving the linear system

( VlkJ ),2« is the second order uu-derivative computed 

by central differencing [j _ 2  i] .

( V,!*1 ),( is the mixed second order uv-derivative

computed by forward differencing - 1  1 

1 - 1

(V!*jy, is the second order vv-derivative computed 

by central differencing [j _ 2  i] r .

These components are collected into the smoothness 
energy matrix P , which is de-coupled into a linear sys
tem for each of the x, y, and z coordinates.

Thus to minimize both the offsets and the energy we 
attempt to minimize

||SV(*' _ v !*+11||2 + A.||/>VI*1||2 (EQ 8)

which can be written as an over-determined least square 
problem

J k P  )

(  y l* + U  ^
(EQ 9)

When A,=0, the smoothness constraint is ignored, 
thus reducing the minimization to a simple least squares 
of fitting errors like Wavelets.

Ax = b (EQ 5)

where x is the column vector of the unknown control 
vertices V1*' , A is determined by the subdivision ma
trix S , and b is the column vector of the V1**'1.

Smoothness Constraint
To control the solution to Equation 5, we impose a 
smoothness constraint upon the approximation. Various 
fairness norms are available and we have chosen to use 
a simple thin plate model that minimizes

J 2 + 2 ||V '* 'J2 + 2)dudv (EQ 6)

Where X is the regularization parameter that controls 
the stiffness of the plate. Here the control mesh itself is 
treated as a grid of sampled points on a control mesh sur
face.

Discretizing the energy measure for this regular grid 
control mesh yields

m n

I I  U( VW\l + 2(VW\ \  + ( )  (EQ 7)
i = 0 ] = 0

Where

X is the regularization parameter.

Weighted Approximation
Applied to a mesh that is flat except for a single extreme 
spike (Figure 3), the method described above produces 
the surfaces in Figure 4 (with X -  0.1 ). This is a rea
sonable approximation. It is smooth, and does not exhib
it the undulations typical of an unadorned least-squares 
solution, but it does not capture the notion of a simple 
surface with added features.

To identify these features, the second order partial de-

Figure 3 Original Surface. 19x19 control points
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Figure 4 Approximation with Â O. 1

rivatives uu and vv (which approximate curvature) of 
each vertex in V1**" are calculated (using central differ
encing). These are normalized and used as a weight w„ 
for each control vertex as an indication of the importance 
of that vertex in the approximation. The higher the cur
vature, the less important that vertex will be in determin
ing the shape of the approximating surface. This alters 
Equation 9 giving

f

\

WS

J x p

,[*] iy y |t+l1

< 0 ,
(EQ 10)

For example, Figure 5 shows the control mesh for the 
surface of Plate 3, with the corresponding weights 
graphed in Figure 6.

Once the unknown V1**" are determined, a two-level 
hierarchical surface is created by using the reference 
points /?'**" to determine the offsets required to calcu
late the V1*' by Equation 3. To reduce the total number 
of offsets required to represent the surface, offsets that 
are less than a given tolerance are set to zero. It is this tol
erance that determine how close the approximation fits 
the initial mesh.

Implementation 

Basic Algorithm
The previous section describes how to create a fair ap
proximating control mesh with half the resolution of the 
initial input mesh. A complete hierarchical structure is 
constructed by repeatedly applying this procedure until 
the resolution of the mesh can no longer be reduced (i.e. 
there would no longer be enough control points to define 
a valid surface). Once all the meshes have been calculat
ed, the offsets for each level (starting at the coarsest) are 
determined with thresholding applied to the magnitude 
of the offsets. The surface is stored by collecting all the 
non-zero offsets and saving them in a format that can be 
read by the interactive surface modeler.

Solving Methods
The heart of the algorithm is to solve the over-deter
mined least squares problem Equation 9 at each coarse 
level. Because the x, y, and z component of the resulting 
minimization are de-coupled, the solution can be com
puted by solving three linear systems. This speeds up and 
simplifies the computation.

There are numerous sparse matrix techniques avail
able for solving the least square problem [8,9,10,11,12]. 
We compared several versions of CNE (Corrected Nor
mal Equation) and conjugate gradient (CG) methods as 
well as several others which there is not space to de
scribe. CNE without ordering turned out to be the most 
efficient and accurate approach to compute the solution.

The conjugate gradient methods turn out to have over
head per iteration in CG in relation to the rate of conver
gence. Moreover, the normal equation A TA matrix sur
prisingly has less non-zero entries than the original A 
matrix as show in Table 1.

Figure 5 Original 11x11 control mesh Figure 6 Weights for mesh in Figure 5
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Matrix 1 1 x1 1
mesh

19x19
mesh

35x35
mesh

67x67
mesh

A 1083 3203 10803 39443
ATA 841 2401 7921 28561

Table 1: Number of non-zeros in matrix
This is due to the tensor product of the B-spline and 

the second order partial derivative that are within the 
profile of the B-spline subdivision matrix.

The Cholesky factorization in the CNE method is 
done only once to yield a triangular system used for each 
of the three x, y, and z components. In addition, ATA is 
banded in the flat topological mesh case, making the 
CNE very efficient. The instability of the normal equa
tion is reduced by the correction steps in CNE, by the 
over-determined nature of the problem (about 6 times 
more rows than columns).

Results
Solution of the least squares problem outlined above 

is 0 (n 2). Typical executions times are within 10 seconds 
for a 67x67 mesh on a MIPS RS4000 processor.

The algorithm was tested on a variety of input mesh
es. Most were created using an interactive editor for hi
erarchical B-splines, one created using Softimage, and 
the last from a digitized surface data created using a Cy
berware laser scanning system. The results are illustrat
ed in the image plates at the end and summarized in 
Table 2 and Table 3. All of the resulting surfaces (with 
exceptions noted below) approximate the initial input 
mesh with 0.5% of its overall range. The final column in 
the table lists the number of control points required to 
represent the surface as a traditional full tensor-product 
B-spline.

Surface Original No. 
of Offsets

No. of Offsets 
from Approx.

No. of 
Patches

B-spline
Equivalent

Plop (PI. 1) 19 19 28 1 2 1

Spike (PI.2) 17 17 34 49
Hump (PI.3) 19 19 40 143
Eye (P1.4) 422 253 565 2625
Dog (P1.5) 257 302 609 1176

Table 2: Example surfaces created using an 
interactive editor for hierarchical B-splines.

Plates 1 through 3 (Table 2) demonstrate the hierar
chical surface produced for some simple geometries. 
The intermediate levels quite closely resemble those 
produced with the interactive editing system, have no
extra undulations, and add no extra offsets. Note that the

\
original non-monochrome images in this section show 
the distribution of patches of different parametric size. 
But now they are all grayscale, so it may be harder to 
see.

Surface Initial No. 
of Points

No of 
Offsets

No. of 
Patches

B-spline
Equivalent

Reboot(P1.6) 648 658 600 576
Variable(P1.7) 576 324 369 576
Spock (PI.8) 43520 6492 19567 40376

Table 3: Example surfaces from other sources.

The human eye in Plate 4 (Table 2) was one of the 
first efforts of someone unfamiliar with the interactive 
H-spline editor. The resulting approximation actually 
reduces the number of offsets used to represent the sur
face while retaining the final shape. The algorithm was 
unable to improve the representation created by the 
same individual after training shown in Plate 5 
(Table 2), but is reasonably close.

One goal of the algorithm is to widen the applicability 
of hierarchical B-splines by creating them from existing 
data. The head in Plate 6 (Table 3) was created using a 
commercial modelling and animation package (Softim
age) for Reboot, a weekly television series executed en
tirely using CGI(Computer Generated Images). Because 
of time constraints in the production schedule, this sur
face is about at the limit of the allowed complexity. The 
surface is tedious to manipulate and there are too many 
patches in places where they are not needed (i.e., the top 
and back of the head).

The initial mesh of 27x24 control points produced a 
3-level hierarchical surface (Plate 6a-c). If a single off
set tolerance is used for the entire surface, 658 offsets 
are generated. By selectively decreasing the tolerance in 
those regions where detail is not necessary (such as the 
top and back of the head), the number of offsets can be 
reduced to 324, and the total number of patches required 
dropped from 576 to 369 because only the surface in the 
region of interest is refined (Plate 7). In either case, the 
hierarchy is suitable for building complicated facial ex
pressions far faster than with the original model 
(Plate 6d).

Finally, a hierarchical surface was generated from 
digitized surface information. The original data was 
170x256 points representing radii (Plate 8h), evenly dis
tributed around a vertical axis. These were converted to 
cartesian coordinates in 3 dimensions and used directly 
as the B-spline control points for the initial mesh. The 
mesh was approximated using an offset tolerance of 
0.5% (the data ranges from 0-500) producing a hierar
chical surface (Plate 8a-f) with 5 levels using a total of 
6492 offsets. The surface decomposition is show in 
Table 4 and summarized in Table 3.



Level No. of patches No. of Offsets

0 40 64
1 160 195
2 640 505
3 2551 1250
4 9178 2650
5 19567 1828

Table 4: Distribution o f offsets for the surface in 
Plate 8

With the surface in hierarchical form, control points at 
lower levels of detail in the hierarchy are used to make 
broad scale changes in surface shape. Plate 8i shows the 
result of moving just 5 control points at level 2 in the hi
erarchy: three for the eyebrow and two for the comer of 
the mouth.

Conclusions
We have described an efficient method for constructing 
the levels for a hierarchical B-spline surface from an ini
tial mesh of control points. On input meshes derived 
from hierarchical surfaces, the algorithm generates inter
mediate levels that, in simple cases, is very close to the 
original and for more complex cases improved on the 
representation built interactively.

On input meshes derived from external sources, the re
sults are also excellent, producing a representation that is 
immediately useful for subsequent modelling and anima- 
tion.Future work will examine additional methods to im
prove the identification of a features on a mesh.
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Plate 1: Plop.
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Levels 0-3 (28 patches, 19 offsets)



Plate 2: Offset Spike.
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Plate 3: Hump.

Levels 0-3 (40 patches, 19 offsets) Levels 0-3 (40 patches, 19 offsets)

Plate 5: Dog Head.Plate 4: Eye.
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Levels 0-6 (565 patches, 253 offsets)
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Plate 6: Reboot Head. Uniform tolerance.

a)-c) Levels 0-2 (600 patches, 658 offsets) 
d) Sample expression

Plate 8: Spock Head

Plate 7: Reboot Head. V ariable tolerance.

L ighter colour indicates region with larg 
er patches (369 patches, 324 offsets)

(a) Level 0

(d) Level 3

(b) Level 1

(h) Smiling Spock

(c) Level 2

(f) Level 5

(i) Original Data(g) All Levels

a-f) Levels 0-5
g) Level 5 rendered to show distribution of coarse patches among finer patches
h) O riginal C yberw are data, 43520 data points.
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