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Abstract
Fractal functions are explored as a representation for rough

data in computer graphics. Two new techniques for using frac-
tal interpolation functions to approximate rough functions and
curves are introduced. The first is based on a Hough trans-
form of fractal function transformation parameters. The second
is based on previous techniques in fractal image compression.
These techniques are then demonstrated on the task of recover-
ing the parameters of a fractal function, approximating a rough
function and approximating the boundary of a leaf.

Keywords: approximation, fractals, fractal functions, Hough
transform, interpolation, iterated function system.

1 Introduction

Methods for approximating piecewise smooth curves and sur-
faces are abundant. “Rough” curves (e.g., mountain range sil-
houettes) that are differentiable almost nowhere yet possess C�

continuity are generally more difficult to model accurately with
an economy of parameters. Fractal interpolation and approxi-
mation functions are attractive for their compact representation
of rough curves.

Parametric curves p�t� are generally descibed by coordi-
nate functions p�t� � �x�t�� y�t��� These coordinate func-
tions are commonly formed by the sum of basis functions. A
family of fractal functions has been developed [15] that repre-
sents such a graph not as the sum of basis functions, but out of
smaller transformed copies of the graph. Using such functions,
this paper explores new techniques for using these functions to
approximate existing data, and applies these approximations to
various input shapes, including a digitized leaf boundary.

1.1 Previous Work

Although fractal interpolation functions were formalized over a
decade ago, they are only seeing recent use in computer graph-
ics. They have been used to represent uncertainty in the vi-
sualization of scientific data [16] and to imply the shape of a
dropping leaf [18]. The use of iterated function systems to rep-
resent curves has been previously explored [17] but not applied
to reproducing a specific curve. The techniques explored in

Section 3.1 are an extenion of previous techniques designed to
detect self-similar structure in shapes [10].

1.2 Overview

Section 2 describes existing techniques for forming fractal func-
tions that interpolate a given set of data points. Section 3 intro-
duces two new techniques for using such functions to approxi-
mate an input data set, one based on the Hough transform, the
other based on fractal image compression. Section 4 applies
these approximation techniques to recover the parameters of a
fractal function, approximate a rough but non-self-affine func-
tion and efficiently represent the boundary of a leaf.

2 Fractal Interpolation

We pose the interpolation problem with a set of input points
f�ti� xi�g

N
i�� with nodes � � t� � t� � � � � � tN � � and

ordinates xi � F �ti� � R assuming some continuous function
F � ��� �� � R�

Classically, F is assumed smooth, and the input points are
interpolated with a single degree N polynomial, or piecewise
with a low-degree polynomial. Recent research has provided
an alternative assumption that the interpolation function F is
self-similar, and typically not smooth but fractal.

We note that a function F � ��� �� � R is well defined by
its graph, and use the same symbol to denote the set of points
in its graph. Hence a point �t� x� � F if and only if x � F �t��
We also use the notation F �t�� t�� to denote the graph of F over
the interval �t�� t��� Hence a point �t� x� � F �t�� t�� if and only
if �t� x� � F and t � �t�� t���

2.1 Fractal Interpolation Functions

We construct an iterated function system (IFS) whose attractor
is the graph of a function F � ��� �� � R� Such a function F is
called a fractal interpolating function (FIF) [2].

For i � �� � � � � N let Ti � ��� ���R � ��� ���R be shears
of the form

Ti �

�
x
y

�
��

�
ai �
bi ci

��
t
x

�
	

�
di
ei

�
(1)



where jcij � � is given as a parameter controling the roughness
of the function, and ai� bi� di and ei are determined either by
the constraints

Ti��� x�� � �ti��� xi����

Ti��� xN� � �ti� xi��

or the “reflected” constraints

Ti��� xN� � �ti��� xi����

Ti��� x�� � �ti� xi��

An example of a FIF is shown in Figure 1.

Figure 1: Graph of a fractal interpolation function of the points
��� ��� ���
� ��� ��� �� using c� � ��� and c� � ���

Given the metric

d��t�� x��� �t�� x��� � jt� � t�j	
���A�


B
jx� � x�j (2)

where A � maxi jaij and B � maxi jbij� it can be shown that
each Ti has contractivity s � maxf��	A��
� Cg � �� where
C � maxi jcij� Hence, by the fixed point theorem, there exists
one and only one function F satisfying the invariance

F �
�
i

Ti�F �� (3)

2.2 Recurrent Fractal Interpolation Functions

A generalization of the FIF, called the recurrent fractal inter-
polating function (RFIF) [3], provides more flexibility in rep-
resenting rough curves. Like the FIF, the RFIF represents a
function F with a set of shears Ti� However, whereas the FIF
models the graph F out of smaller copies of F� the RFIF mod-
els the graph of F out of smaller copies of sections of F�

For each i� we have indices ji and ki such that

Ti�tji � xji� � �ti��� xi���� (4)

Ti�tki � xki� � �ti� xi�� (5)

and jtki�tji j � ti�ti��� If all of the shears Ti are contractive
under (2) then there is one and only one graph F that satisfies
the invariance

F �
�
i

Ti�F �tji � tki ��� (6)

Given a sequence of points �ti� xi� we can construct a RIFS
that interpolates these points by forcing the curve that lies be-
tween �ti� xi� and �ti��� xi��� to be a contracted copy of the
curve that begins at �ti��� xi��� and ends at �ti��� xi����

2.3 Partitioned Fractal Interpolation Functions

The RFIF model is general and can be used to describe a wide
variety of shapes, but it also requires that the “domain” intervals
�tji � tki � of each map Ti be the union of “range” intervals, since
tji � tki � ftig

N
i���

The Partitioned Fractal Interpolation Function (PFIF) re-
laxes this constraint by allowing the domain interval of each
map to be arbitrary. A PFIF is defined by a finite set of maps
fTig and an associated domain interval ��i� �i� such that
F �ti��� ti� � Ti�F ��i� �i�� and j�i � �ij � ti � ti��� As
before, when Ti is contractive, then there is one and only one
graph F that satisfies the invariance

F �
�
i

Ti�F ��i� �i��� (7)

We are currently unaware of any prior publication of par-
titioned fractal interpolation functions, although it is a rather
obvious extension of the ideas from fractal image compression
to fractal interpolation functions. The PFIF is the FIF analogy
of the partitioned iterated function system [7] and the local it-
erated function system [6].

2.4 Fractal Interpolation Curves

A parametric version of the curve can be constructed by assign-
ing a value of t to each knot and using two functions x�t� and
y�t� which interpolate appropriately.

Hence, we are given a collection of input data points f�xi� yi� ti�gNi��
where �xi� yi� are the co-ordinates to be interpolated, and ti is
the parameter value of the curve as it passes through that point.
As before, we require � � t� � t� � � � � � tN � ��

We now have two FIF’s, fXig
N
i�� and fYigNi�� where for

each i we have either

Xi��� x�� � �ti��� xi����

Xi��� xN� � �ti� xi��

or

Xi��� x�� � �ti��� xi����

Xi��� xN� � �ti� xi��

We also have either

Yi��� y�� � �ti��� yi����

Yi��� yN � � �ti� yi��

or

Yi��� y�� � �ti��� yi����

Yi��� yN � � �ti� yi��

We combine the two FIF’s by using a single set of maps of
the form

Pi �

�
t
x
y

�
��

�
ai � �
bxi cxi �
byi � cyi

��
t
x
y

�
	

�
di
exi
eyi

�
(8)



where, for example, bxi is the bi component of Xi� Note that
the ai and ei components ofXi equal their corresponding com-
ponents in Yi� While x�t� and y�t� are independent, they share
a common “hidden variable” t that allows a single transforma-
tion Pi to represent both for a given segment of the curve [4].

Equation 8 is a separable function in that theX�t� and Y �t�
component functions are unrelated, except for sharing the same
parameter t� The form

Pi �

�
t
x
y

�
��

�
ai � �
bxi cxi cxyi
byi cyxi cyi

��
t
x
y

�
	

�
di
exi
eyi

�
(9)

includes additional factors cxy and cyx that allow the X�t� and
Y �t� curves to affect each other. While the representation is no
longer separable (X�t� and Y �t� are mutally dependent), the
added factors increase the flexibility of the curve.

3 Fractal Approximation

Like the previous interpolation methods, we pose the approxi-
mation problem with a set of input points f�ti� xi�gNi��� Unlike
interpolation, we seek to represent the input data with a frac-
tal function (FIF, RFIF, PFIF) with significantly fewer than N
transformations. In the general approximation case, there are
more data points than degrees of freedom in the representation,
hence an error minimization over the space of transformation
parameters is performed to find the best fit of the fractal func-
tion to the input data.

3.1 Hough Transform

A Hough transform detects organization in input data by as-
suming the input data is organized according to some model. It
then gathers all groups of the input points and fits each group
to the model, yielding the model’s parameters for that group
of points. These model parameters are plotted in a parameter
space, and the Hough transform detects the presence of the or-
ganization of the input points according to a given model by the
clustering of model parameters plotted in this parameter space.

For example, the Hough transform can detect lines in a col-
lection of 2-D points [1]. For every pair of 2-D points in the
input data, the equation y � mx	b of the line passing through
the two points is determined, and the parameters m and b are
plotted in a 2-D parameter space. Clusters of points in this pa-
rameter space indicate that numerous points in the input data lie
on the same line, and the parameters for this line can be found
at the center of this cluster.

Given a set of N 	 � points f�ti� xi�gNi�� we seek to find
a small number of shears that approximate the data points out
of smaller copies of other points. These shears may then be
organized into a FIF, RFIF or PFIF. We find all shears that take
collections of points to other collections of points, and plot the
parameters of the shears. These parameters cluster around pa-
rameters of the self-affinity of the input data.

From the set of input points, we enumerate all four-tuples
of points �ti� xi�� �tk� xk�� �tl� xl� and �tn� xn� such that

1. i	 � � k�

2. l 	 � � n� and

3. tk � ti � tn � tl�

For each such four-tuple, we then solve for the two sets of val-
ues a and d such that T maps the t-domain �ti� tk� onto the
t-range �tl� tn�� The first set of values is found by solving

ati 	 d � tl� (10)

atk 	 d � tn� (11)

and the second set by solving

atk 	 d � tl� (12)

ati 	 d � tn� (13)

For each set of values a� d we then find the value b� c and
e� For each index j such that i � j � k we find the index m
strictly between l and n that minimizes j�atj 	 d�� tmj� That
is, we find the tm between tl and tn closest to the image of tj
under T� We then solve�

ti xi �
tj xj �
tk xk �

��
b
c
e

�
�

�
xl
xm
xn

�
� (14)

Each set of parameters a� b� c� d� e generated by the above
processes is plotted in a 5-D space. If the input data con-
tains self-affine structure, then these plotted points will cluster
around the parameters of the self-affinity.

Due to the enormous memory required for storing anO�N��
array we use a two pass algorithm. During the first pass we use
a 3-D array corresponding to the map parameters a� b and c�
For the second pass, a set of K 2-D parameter plots are created
for the K most popular a� b� c parameter clusters discovered
during the first pass. All of the parameters a� b� c� d� e are then
re-generated in a second pass of the input data and d and e are
plotted in the corresponding 2-D array if a� b and c correspond
to one of the K most popular parameter clusters.

Candidate maps are extracted from the array entries corre-
sponding to the most popular a� b� c� d� e parameters. At this
point, no attempt has been made to automatically create a full
description of the approximating RFIF. This would involve se-
lecting the appropriate set of maps T from the candidates map
parameters, refining them (the maps may be very crude due to
quantization), and defining the proper domain segments. In-
stead, a program was designed that allowed the user to select
candidate maps and determine their appropriate domains man-
ually.

3.2 Least Squares Minimization

Following the technique popularized by fractal image compres-
sion [11], given the set of input points f�ti� xi�gNi�� we seek to
find an PFIF with significantly fewer thanN maps that approx-
imates the input data.

We first partition the input data into K non-overlapping
range segments fRkg

N
k��� Each range segment contains M

input points. We also create a coarser partition of possibly-
overlapping domain segments Dj each containing more than
M points. For each range segment Rk we iterate through the
domain segments, and subsample each such domain segment
Dj to produce M samples. We then use least squares mini-
mization to find the parameters of a transformation T that min-
imizes

d�T �Dj�� Rk�
� �

MX
m��

jjT �Dj�m���Rk�m�jj�� (15)



For each range segment, we save the domain index l and the
transformation parameters a� b� c� d and e that best approximate
it, forming a PFIF approximation of the input data containing
K transformation-domain pairs. If the domain segments can be
formed as the union of range segments, then the PFIF structure
can be converted to an RFIF.

Fractal curves formed by the separable basis (8) can be ap-
proximated by performing the above operation independently
on its coordinate functions. However, this results in a range
segment of the curve being influenced by two domain segments:
one influencing X�t� and another influencing Y �t�� Hence,
fractal curves are best approximated by partitioning the curve
into range curve segments, and again into larger domain seg-
ments. Then to determine the fitness of a given domain segment
for approximating the current range segment, least squares min-
imization is used to minimize (15) for the eight parameters in
the separable case (8) or the ten parameters in the non-separable
case (9).

4 Results

We applied the Hough transform and least squares minimiza-
tion techniques to an inverse problem and two approximation
problems.

4.1 Recovering Parameters of a Fractal Func-
tion

The inverse problem for fractal interpolation functions is given
the graph of a FIF, recover the parameters of the FIF.

Figure 2: Fractal function with two maps.

Figure 2 is the attractor generated from the parameters in
Table 1.

a b c d e
T� 0.5 .746 0.5 -0.5 0.246
T� 0.5 -0.199 -0.6 0.5 0.189

Table 1: FIF Parameters for Figure 2.

We generate a set of ideal feature points as the set of fixed
points of the maps Ti and their images under various composi-
tions. Two such ideal feature point sets were generated contain-
ing 65 and 129 points. The resolution of the Hough transform
plot was �
�� for the a� b� c plot used during the first pass and

Rank Hits a b c d e
#1 43,657 0.496 0.746 0.496 -0.488 0.251
#2 24,587 0.496 -0.201 -0.600 0.488 0.211
#3 5,637 0.496 -0.911 0.496 0.016 0.512
#4 5,373 0.496 1.337 -0.420 -0.992 -0.571
#5 3,251 0.496 1.456 -0.600 0.016 1.607

Table 2: Five most popular parameter clusters for Figure 2.



�� for the d� e plot used during the second pass. Each pass,
generating 38,519,585 valid maps and took approximately 3
minutes 20 seconds on a MIPS R10000. The first five maps
extracted from the Hough transform are shown in Table 2. The
top two discovered maps correspond to the transformations in
Table 1 within quantization error.

4.2 Approximation of a Rough Function

Figure 3 shows an example of a hidden-variable fractal inter-
polation function. Its projection on the “top” plane is shown in
Figure 4 and is claimed to be not self-affine [4]. The goal of
our second experiment is to discover a PFIF that approximates
this function using the hashing method as a guide.

Figure 3: A 3-D Sierpinski space curve and its projections onto
three coordinate planes.

A set of low and high resolution features points were con-
structed by the method described in Section 4.1 containing 55
and 163 feature points respectively.

Figure 5 illustrates the hashing process. The top figure
shows the distribution of clusters for the top 100 parameter
clusters. A total of ��� ��
� �
� parameters were plotted. The
middle figure shows the original feature points and their image
under the most popular extracted map. The lower figure illus-



Figure 4: The “top” projection of the Sierpinski space curve.

trates the 5-D hash table projected onto the axes represented by
the a and c “scale” parameters.

Many of the maps extracted from the plot were similar due
to quantization “spill over” in adjacent bins. These spurious
maps could be removed by only considering very localized max-
ima in the hash table. Also, many of the maps are “echoes” or
compositions of other more popular maps. These maps can also
be readily identified and removed.

domain a b c d e
[0.278, 0.667] -0.333 0 -0.500 0.222 0.375
[0.167, 0.500] 0.333 0 -0.500 0.074 0.563
[0.167, 0.444] 0.333 0 0.500 0.185 0.063
[0.000, 1.000] 0.333 0 0.500 0.333 0.250
[0.167, 0.444] -0.333 0 -0.500 0.815 0.938
[0.167, 0.500] -0.333 0 0.500 0.926 0.437
[0.277, 0.667] 0.333 0 0.500 0.778 0.625

Table 3: PFIF parameters used to approximate the curve in Fig-
ure 4.

Seven maps were used to construct the approximating PFIF
listed in Table 3. Maps 1, 7, 8, 13, 14, 25, and 30 from the
top 100 hash table bins were refined to build the PFIF whose
attractor overlays the original in Figure 6.

It is not obvious whether this PFIF can be redefined in terms
of a RFIF or if there are other map sets that could be extracted
from the hash table that could be used to define an appropriate
RFIF.

4.3 Approximation of a Leaf Boundary

We approximated the boundary of the Maple leaf shown in Fig-
ure 7 (top) with a fractal curve based on PFIF component func-
tions. First, 261 feature points �xi� yi� were assigned to the
boundary of the leaf (which contained 4,068 pixels) using the
Polyline Splitting technique [12], and each feature point was
assigned a uniformly spaced parameter ti increasing from 0 to
1.

The technique introduced in Section 3.2 was applied to the
silhouette curve of the maple leaf, and two resulting approxi-
mations of the leaf appear in Figure 7. The more accurate curve
on the left was generated by a non-separable RFIF consisting
of of 52 maps whereas the less accurate curve on the right was
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Figure 5: Top: Histogram of the top 100 clusters. Middle:
Feature points and a contracted image under the most popular
map. (The slight misalignment is due to quantization error.)
Bottom: Projection of 5-D hash table for parameters ���� �
a� c � 	���� (The size of each circle indicates the popularity
of the associated parameters.)
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Figure 6: Error of the approximation of the hidden-variable fractal function by a partitioned fractal interpolation function. Maximum
error is 0.0858 and mean squared error is 0.000180.

generated by a non-separable RFIF consisting of 29 maps. No-
tice that the less accurate approximation had fewer maps but its
rough surface still appears leaf-like. Fewer maps yields an ap-
proximation with the same rough quality but without the same
specific roughness as the input.

5 Conclusion

Fractal functions have been shown the potential to be a use-
ful tool in the modeling of 2-D shapes with fractal boundaries.
Two automatic techniques were developed to aid the modeler
with the unintuitive task of finding self-affinity in a rough curve.
These techniques were demonstrated on the tasks of recovering
fractal function parameters, approximating rough functions and
modeling natural shape boundaries.

5.1 Further Research

This paper served to explore the application of fractal func-
tions on a variety of graphics modeling tasks. While the results
suffice to demonstrate the utility of fractal functions, the im-
mediate next step is to perform a detailed error analysis of the
models to determine their accuracy.

The Hough transform technique is very sensitive to noise in
the input dataset, and techniques for making it more robust will
need to be developed before it can become a useful method for
detecting self-affinity in natural object boundaries.

Preliminary principal component analysis experiments on
the parameter space plotted by the Hough transform shows that
typically most of the information happens in a two or three-
dimensional subspace. Plotting these subspaces would provide
a visual perception of the clustering, a better understanding of
the method and lower the memory requirements of the tech-
nique.
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