Imaging all Visible Surfaces

Wolfgang Stuerzlinger

Department of Computer Science
York University, Toronto, Canada

Abstract

Today many systems exist to generate geometric m d-
els of existing scenes and objects. However, very few
systems store accurate data about surface appearance
such as colors and textures. One way to capture surface
texture data is to record a series of images that, collec-
tively, captures all visible surfaces of the object. Find-
ing good viewpoints for this task is not easy.

This paper presents a new heuristic method to find a
good set of viewpoints for a given geometric model.
Taking images from the computed viewpoints will
show every visible part of every surface at least once.
The approach uses a hierarchical visibility algorithm to
preprocess the scene. A good set of viewing regions is
identified with simulated annealing and then good
viewpoints are derived. Results and visualizations of
the computed solutions are presented.

Key words: Texture Acquisition, Image-Based Rende r-
ing and Modeling, Visibility.

1 Introduction

For many man-made objects some form of CAD (com-
puter aided design) data is available today. Prominent
examples are buildings, mechanical structures like
power plants, and interior rooms like kitchens and bath-
rooms. Typically the data set describes the geometry of
the object exactly, but does not contain accurate or
content specific data about surface appearance (such as
color or texture). Therefore, a visualization of the object
will only show the geometric structure but will not
match the visual appearance. For such objects (known
geometry but unknown surface appearance) many
methods to derive textures from pre-recorded images
have been introduced in computer vision. Some a p-
proaches allow the user to specify approximate geome-
try for the scene and map the images onto this approxi-
mation (see e.g. [6]). The main application for the pre-
sented method is the automated acquisition of textures
for environments with known geometry. Subsequent
rendering of the textured scene model will provide a
more realistic visualization. This can be used in virtual
training systems, in the visualization of modifications to
real scenes, and all augmented reality applications.
Common to all mentioned approaches is that in general
there are some parts of the scene that are not visible in

the pre-recorded images, therefore heuristic hole-filling
algorithms are used to generate a complete surface de-
scription.

It is hard to judge for a human if a set of pre-recorded
images is complete in the sense that every part of every
surface and object is visible in at least one of the i m-
ages. Furthermore, it is time-consuming to set up cam-
era and lighting so that high quality images (e.g. with-
out highlights and/or reflections) can be recorded.

This work addresses the visibility portion of the prob-
lem with a method to compute a good set of viewpoints
from which to capture images. The method assumes
that the geometry of the scene is known. Approximate
geometry can be used as well, but the quality of the
results depends on the quality of the approximation.
Taking photographs from the computed viewpoints will
ensure that every part of every surface is visible in at
least one image. This can also be done with an auto-
mated imaging device (e.g. a robot). The method cur-
rently assumes that potentially a spherical image can be
obtained from every viewpoint. Compositing multiple
images to a spherical image [17] is one way to generate
such images.

The problem of determining an optimal set of view-
points is NP hard and is related to the art gallery prob-
lem known from computational geometry [16] and to
the aspect graph [9]. This article presents a heuristic
approach that tries to find a near-optimal solution in a
reasonable time frame. Furthermore, this work ad-
dresses only the visibility part of the problem. There-
fore, many other issues such as field of view, image
resolution, surface sampling density, depth of field, and
the avoidance of highlights or reflections are not ad-
dressed in this article as they are of a different nature.

2 Imaging all Visible Surfaces

The method operates on a scene with known geometry.
The volume of all possible viewpoints for subsequent
viewing needs to be defined as input. To make the
problem tractable this volume is subdivided into a
number of smaller regions. For each of these sub-
regions, visibility of all surface parts of the scene is pre-
computed. Based on this discretization of viewing space
a set of sub-regions that contain a set of good view-
points is computed.

i

[] Global viewing region

Scene geometry

Figure 1: Examples for global viewing regions.

Subdivided global viewing region
Optimal set of viewing regions
Optimal set of viewpoints

Scene geometry

Important extremal lines

Figure 2: Scene with two tables, a global viewing region, and an optimal
set of viewing regions and viewpoints (see text).

2.1 Viewing Regions

A viewing region is defined as a volume of empty space
with the interpretation that it represents the union of all
viewpoints inside this volume. The volume of all possi-
ble viewpoints is called the global viewing region. Fig-
ure 1 depicts possible viewing regions for some simple
scenes.

Clearly, the camera cannot be placed inside objects.
Therefore, the global viewing region cannot intersect
geometry. In addition, for real (non-zero size) cameras
a minimum distance from each object hastobe o b-
served. The global viewing region may be only a poly-
gon in space. This appears when the viewpoint is co n-
strained to remain at average eye height level, a com-
mon restriction in many walkthrough systems. Note that
the global viewing region can also consist of several
disjoint viewing regions.

Because the search space for optimal viewpoints in the
global viewing region is very large, we subdivide it into
a number of smaller viewing regions. A sufficient set of
(smaller) viewing regions is then a set that ‘sees’ every
part of every surface at least once. An optimal set
avoids redundancies as far as possible and has a mini-
mal number of viewing regions. The same definition
applies to sets of viewpoints. Note that the optimal set
of viewing regions and viewpoints is not necessarily
unique.

Figure 2 shows a simple scene with two objects and a
global viewing region. An optimal set of viewing re-
gions and an optimal set of viewpoints is shown. Tak-
ing images from the three viewpoints shown will pic-
ture every part of the scene that is visible from within
the global viewing region. To illustrate the optimality
the most important extremal lines of sight are shown.

Note that the exact position of the middle viewpoint
(and the middle viewing region) is not crucial. In fact,
the viewpoint can be anywhere between points A and B
in the diagram. This freedom to place a viewpoint is an
important property, especially if other objects are added
to the scene. Note also that there are scene parts that are
invisible from all viewpoints inside the global viewing
region. An example is the left leg of the left table.
Computing an optimal set of viewpoints or viewing
regions is NP hard [16]. Therefore, we apply the fo -
lowing heuristic approach: First we compute a near-
optimal set of viewing regions and then compute a
near-optimal viewpoint in each of these regions. With
decreasing size of viewing regions, this will converge
to a correct solution.

In the approach presented here the global viewing re-
gion is subdivided hierarchically into a pre-defined
number of viewing regions.

2.2 Hierarchical Visibility

The hierarchical visibility algorithm used in this work is
based on the idea of linking all surfaces that are at least
partially mutually visible (they can ‘interact’). These
interactions are subdivided based on the potential error
in visibility. A similar idea was introduced previously
in the context of hierarchical radiosit [13]. Most re-
cently, Drettakis and Sillion [7] exploited a similar
method (termed line-space hierarchy) to store visibilit
information in a scene. In the hierarchical radiosity lit-
erature, the (smaller) parts of a subdivided surface are
called elements, and this convention is used here, too.
Assume that the scene is a set of surface polygons or-
ganized in a hierarchy. The interior nodes of this hierar-
chy called clusters whereas the leaves correspond to
surfaces. If needed, these surfaces will be subdivided

Global viewing region

Surface

Viewing Regions
e N

&@® Occluder
—— Link

Occluded link

Figure 3: Initial link (top) and two examples for refined links.

further into elements. The hierarchy can be constructed
during modeling or automatically by clustering nearby
surfaces together (e.g. [2]). A hierarchical visibility
method subdivides this scene hierarchy depending on
the relative visibility of objects.

The hierarchical visibility algorithm used in this
method starts with two nodes. One is the top level
bounding box enclosing the whole scene. The other is
the global viewing region. The visibility between these
two objects is represented as a link. Each link and with
it, the objects are subdivided recursively until the p o-
tential error in visibility falls below a predefined
threshold. For simplicity, a regular subdivision patter
is used. Figure 3 shows a visualization of the initial
situation and two examples for subdivided links.

If there is no occluder between the two nodes, a link is
stored. Otherwise the larger node is subdivided and the
process is applied recursively. Shaft culling [12] is used
to speed the refinement process. Note that shaft culling
can be optimized in the recursive refinement by tempo-
rarily storing the current list of potential occluders dur-
ing recursive subdivision and using this list during fur-
ther refinement of the link [1], [7]. For each link created
the list of potential occluders is stored for later use. If
there is one occluder that occludes the whole shaft, the
nodes are mutually invisible and subdivision stops. This
test is a simple addition to the shaft-culling test [1].

The result of the hierarchical visibility algorithm is a set
of links that associates each viewing region to the ele-
ments, which are at least partially visible from the re-
gion. Note that the visibility information stored in the
links is in some sense conservative: as long as there is
one point in the viewing region that can potentially see
a part of a surface, a link is created. Unfortunately, it is
conservative in the wrong way: links will be created for
every element that is at least partially visible. However,
there may be no a single viewpoint inside one viewing
region that will see all the elements (partially) visible
from it. Fortunately, elements are usually visible from
more than one viewing region. This means that gener-
ally several alternative solutions exist and a solution
method is free to choose among them!

2.3 Finding a Set of Good Viewing Regions

The result of the above hierarchical visibility algorith
is a set of links that express the visibility relation be-
tween the set of viewing regions and the surfaces of the
scene. This information is used to determine a good set
of viewing regions. The number of combinations to
consider increases exponentially with the size of the
viewing region set. This prohibits an exhaustive search
for non-trivial subdivisions of the global viewing re-
gion. This means also that only approximate solutions
can be computed in practice. Furthermore, itis very
important for any optimization method that the benefit
of a proposed combination of viewing regions can be
evaluated quickly. The link structure of the hierarchical
visibility algorithm is not well suited for this purpose.
Therefore, the information is transformed into a differ-
ent data structure.

The method starts by enumerating all viewing regions
and all elements by traversing the corresponding hierar-
chies. Then a two-dimensional visibility array is created
and filled. It is indexed by viewing region and element
number. To identify all elements that are visible from
one particular viewing region the links of the viewing
region and all its parents have to be considered. Each
array entry is set if a visibility link exists between the
viewing region and the element (or one of its parents).
The problem of finding the best combination of a set of
objects is now a combinatorial optimization problem.
One simple way to define the benefit or ‘goodness’ of a
particular set of viewing regions is the total number of
visible elements. As the hierarchical subdivision of the
surfaces does not necessarily produce elements with
equal areas, it is better to calculate the benefit by sum-
ming the surface areas of all visible elements and to
weigh them by the element’s visibility. This puts more
emphasis on finding large (fully) visible elements first
during the global optimization.

To find the best possible solution the presented method
uses simulated annealing. It works by changing the
vector of solutions randomly. The magnitude of the
potential changes is non-monotonically decreased over
time. Simulated annealing has proven to be a very gen-

eral and efficient global search method in a variety of
applications and for combinatorial optimization pro b-
lems. While it cannot be guaranteed that simulated an-
nealing will find the global optimum it consistentl

finds at least values very close to the optimum in re a-
sonable time (see e.g. [14]). The interested reader is
referred to the literature for a more detailed description.
Because we cannot determine beforehand how many
viewing regions are needed to view every surface part
at least once, we decided to adopt the following incre-
mental heuristic approach. The method calls the opti i-
zation procedure repeatedly with increasing numbers of
viewing regions. As soon as the maximum set of visible
surface parts is reached, (i.e. at least a local optimum
has been found) the loop terminates.

24 Computing a Good Set of Viewpoints

The set of viewing regions computed by the above
method provides a basis for computing a good set of
viewpoints. A good viewpoint inside a viewing region
‘sees’ (almost) everything that is visible from the whole
viewing region. It may be necessary to compute multi-
ple viewpoints to cover everything visible from a par-
ticular viewing region. However, this does not happen
often if the viewing regions are sufficiently small a
other viewpoints in other viewing regions will also
‘cover’ other parts of the scene.

For each viewing region, the method searches for the
best possible viewpoint position, i.e. the position that
maximizes the total visible surface area. This search is
again done with simulated annealing, but the search is
now for the best position (instead of the best combina-
tion). Only links with partial visibility need to be re-
evaluated, and the stored occluder lists for each link can
be used to speed processing.

3 Implementation

The hierarchical visibility pre-processing mentioned in
section 2.2 was implemented based on a public domain
radiosity package [1]. As explained above the visibilit
refinement process uses shaft culling to speed the visi-
bility tests. If there are polygons within a shaft and no
single polygon occludes the shaft completely the cur-
rent implementation uses ray casting with 16 random
rays to resolve visibility. If all rays are blocked ar the
lowest subdivision level the algorithm falsely concludes
that the link is occluded.

The impact of this approximation is not necessaril
fatal in this context. First, visibility errors occur only at
the lowest levels of subdivision, because the hierarchi-
cal visibility algorithm automatically refines partial
visibility links up to the maximum subdivision limit.
This limits potential errors to small regions. Further-
more, there will be other viewing regions in general,

which can see the corresponding element at least par-
tially. As long as there is more than one link to an ele-
ment, this element will be included in the solution set.
Consequently, the implementation potentially fails onl
for elements that are partially visible from a single
viewing region (e.g. something visible through a small
hole or crack). Another consequence is that the solution
may be sub-optimal, because some small details may be
missed. Nevertheless, elements linked to a viewing re-
gion are weighted with the visibility estimate in the
optimization process and therefore partially visible
links are chosen with less preference.

As discussed in section 2.4 the optimization for the best
viewpoint positions needs to re-evaluate visibility for
partially visible links. The implementation uses again
multiple random rays to approximate visibility. Again
the same arguments as above holds: if the implementa-
tion falsely concludes that an element is invisible, the
program may not find the best possible solution a
may fail in the presence of small holes or cracks.

The table encoding the mutual visibility of the viewing
regions and elements is realized as an array of bit-
vectors. All needed operations are then expressed as
efficient Boolean operations on elements of this array.
Computing the set of visible surface parts from a set of
viewing regions is then equivalent to computing the
union of the corresponding bit-vectors. Furthermore,
the union of all viewing region visibility vectors gives
all elements visible from the whole global viewing re-
gion. This is used to detect if the optimization has
reached the best possible solution.

Our current implementation can also handle only one
convex two-dimensional viewing region due to an early
implementation choice. Nevertheless, we can argue that
the set of everything visible from an empty cubical vol-
ume in space is equivalent to the combination of ev e-
rything visible from all six faces of this cube. The final
result may not be optimal as there are scenes for which
a point inside the volume is the best possible answer
(consider e.g. a star-shaped scene). As such scenes are
rare in practice the restriction to two-dimensional
viewing regions was not considered a limit. Further-
more, the optimization method presented above does
not require one connected global viewing region. This
means that the optimization approach is even applicable
in the presence of several disjoint viewing regions.

4 Results and Discussion

Experimental results obtained with three real data sets
are presented here. All statistics were measured on a
SGI Max Impact and timings are given in seconds.

L7/

[[1]/

I
[

[T
|

-

]
I

IL

=8

Figure 4: Visualization of solutions for simple environment (top and middle) and for complex environment (bottom).
The global viewing region is the large dark polygon near the ceiling, viewing regions are shown in medium gray and
small white rectangles depict viewpoints. The color of each surface element encodes how many viewing regions can
see it.

First, experiments were performed with a simple living
room scene with 316 polygons. The big black polygon
at eye height level (visible in the upper part of the im-
age) is the global viewing region.

Two experiments were performed, one subdividing the
global viewing region into 64 respective 256 parts. The
surfaces were subdivided in the hierarchical visibility-
preprocessing phase into 1514 respective 2822 el e-
ments.

Figure 4 shows a visualization of the obtained sol u-
tions. The global viewing region is depicted as a black
polygon, the set of viewing regions is shown in medium
gray and the set of viewpoints is depicted as white rec-
tangles. The intensity shown for each surface element
encodes how many times each element is visible from
the computed set of viewing regions. Black signifies
that the element is invisible from all viewpoints inside
the global viewing region. As the current viewpoint for
these images is outside the global viewing region these
regions are visible.

The top and middle images of Figure 4 show a set of 7

respective 9 viewing regions. The reason for the differ-
ence in the number of viewing regions is that the im-
plementation does not evaluate visibility for partial
links at the deepest subdivision level exactly. Conse-
quently, a finer subdivision generates a more correct
solution. However, a quick experiment with further
subdivision did not yield more viewing regions or
viewpoints! Therefore we believe the solution with 9
viewpoint regions to be at least near the optimum.

A more complex living room scene with 1228 polygons
was processed with 256 viewing regions. The surfaces
were subdivided into 5959 elements. The bottom image
in Figure 4 shows a visualization of the solution. Be-
cause the scene is more complex 10 viewing regions
were necessary to cover all visible surfaces.

The computation of the optimal viewpoints for the mid-
dle image in Figure 4 solution took 166 seconds and for
the bottom image 535 seconds to find the shown set of
viewpoints.

To empirically verify and visualize the quality of the
computed results we generated images that encode the

Figure 5: Visualization of the coverage. Color encodes how many viewpoints see each visible surface point.

visibility of each visible surface point with respect to
the computed set of viewpoints.

In Figure 5 each visible surface point was colored ac-
cording to the number of viewpoints that can see the
surface point. Black means that none of the viewpoints
could see the corresponding part of the scene. In the
images, only surface parts facing away or completel

hidden from the global viewing region are black. The
black region beneath the table(s) is indeed invisible
from the global viewing region. We could detect only
one artifact caused by the approximate visibility com-
putation method: The triangular black region under the
serving table on the left side in the bottom image.

Table 1 summarizes the runtime and memory statistics
for the examples shown. The time spent in visibilit

pre-processing grows with the complexity of the envi-
ronment and the subdivision level. The last entry in
Table 1 emphasizes that the optimization times grow
more than linearly with the number of viewing regions
due to the exponential growth in possible combinations.
This is also known as the “curse of dimensionality” in
the optimization literature (e.g. [14]), which causes the
solution time to grow significantly. The statistics of the
optimization process for Figure 5 are summarized in
Table 2: Optimization times increase more than linearly
with the number viewing regions as more dimensions
are added to the problem. The statistics show also that
the optimization process quickly finds a good solution
for a small number of viewing regions, but converges
only slowly to the best possible result. The two-

dimensional table for the optimization consumes a

small amount of memory. For the more complex exam-
ple the table was less than 200kB.

To test the scalability of the approach we performed a
test on a scene with 62000 polygons on a machine with
128 MB of memory. Unfortunately the program started
swapping during the hierarchical visibility calculation
and was aborted after 24 hours.

Table 3 shows how long the iterations of the viewpoint
optimization for the larger environment took and how
good the current solution was. Again, the system
quickly reaches a reasonable solution. However, for a
good solution the full number of viewpoints is needed.
Optimization times for each viewpoint are approx i-
mately constant as the stored occluder lists simplify the
visibility computation considerably.

5 Conclusions and Future Work

This work introduced a method to compute a good set
of viewpoints for a given scene. First, the scene is pre-
processed with a hierarchical visibility algorithm. Then
a good set of viewing regions is computed. Finally,
good viewpoints are identified inside each of the view-
ing regions. Taking images from the computed set of

viewpoints will show everything visible from the global
viewing region at least once.
For scenes with known geometry, the presented method
can be used to automatically acquire textures for all
surfaces. Texture maps for all surfaces can then created
by registering the images with the geometry. For the
final applications, such as virtual training systems or
augmented reality systems, the textured scene geometry
will provide images that are much more realistic.
Due to the limitations of our implementation, we cannot
guarantee that small regions with complex visibility are
correctly included in the solution. Nevertheless, as e x-
plained in section 3, as long as there are other view-
points that see the affected surface parts the algorith
will still compute a correct solution. The examples
demonstrate that this hold frequently in practice. An
implementation of the presented approach that co m-
putes visibility exactly (e.g. with the method introduced
in [8]) can be guaranteed to compute an exact result.
An interesting fact is that a relatively moderate number
of viewing regions suffices for picturing all surfaces in
the example scenes. This means that this approach can
be used in practice and that it is feasible for automati-
cally gathering texture data in similar environments.
The sampling question was not addressed in this work
because of the following issues: Spherical images with
finite resolution do not necessarily yield good textures
for all surfaces. The following situation demonstrates
this: A photograph of a textured wall from across the
room will not provide a texture with enough resolution
for close-up views. A better sampling strategy would
try to minimize the perspective distortion of the images
with respect to the textured surfaces. Moreover, there
are at least two strategies for acquiring textures that are
more detailed - moving the camera closer or zooming.
The first alternative may not be feasible if the acquisi-
tion device cannot move close enough to a surface be-
cause of obstacles. The second requires that a computer
controlled, fully calibrated zoom is available on the
acquisition device. Both alternatives feature different
tradeoffs.
Future work includes:
= Better tuning of the optimization process. Few po s-
sibilities for tuning the optimization package were
exploited in the current implementation. It might
well be that a significant speedup is possible if the
parameters of the global optimization algorithm are
set appropriately. Another option is to experiment
with alternative search algorithms for the combina-
torial optimization problem (e.g. Tabu-search [10],
(11D.
= The method currently assumes that at each view-
point a spherical image can be generated. It is easy
to show that it might not be necessary to take a full
spherical image everywhere. For example in a non-

Figure | Elements Visibility pre- Links created | Opt. viewing | Optimization | Memory
processing time (sec) regions time (sec) (kb)
4 top 1514 74 18350 7 31 1538

4 middle 2822 311 96936 9 143 5624

4 botto 5959 817 251381 10 956 16252
Table 1: Statistics for viewing region determination.

Number of viewing regions 2 3 4 5 6 7 8 9 10
Percent of final result 97.11 | 98.37 [9943 [99.64 [99.85 [99.82 | 99.97 [99.97 | 100
Visibility evaluations. 360 86 249 404 | 4805 | 4296 | 3452 | 3429 | 4402

Time (sec) 10 9 19 25 60 98 191 224 317

Table 2: Optimization statistics for optimization process for bottom image of Figure 4.

Percent of final result

91.26

95.72

96.62

9733 | 9748 | 98.5 [99.15 | 99.52 | 99.74

100

Optimization time (sec)

52

49

55

87 47 51 47 56 47

44

Table 3: Optimization statistics for viewpoint determination.

textured environment the ceiling may need to be
photographed only from one viewpoint. Depending
on the sampling strategy this is also applicable in
textured environments.

Another important problem area is that in an auto-
mated system side effects such as camera distortion,
depth of field, highlights, and reflections need to be
handled correctly.

6 Acknowledgements

The author thanks Anselmo Lastra, Gary Bishop, Mary
Whitton, and John Amanatides for reading early drafts
and the reviewers for their helpful comments.

7 References

[1] Bekaert P., de Laet F. S., Dutre, P., “RenderPark: A
Photorealistic Rendering Tool”, http://
www.cs.kuleuven.ac.be/cwis/research/graphics/
RENDERPARK, 1997.

[2] Cazals, F., G. Drettakis, C. Puech, “Filtering,
Clustering and Hierarchy Construction: a New So-
lution for Ray-Tracing Complex Scenes”, In Pro-
ceedings of EUROGRAPHICS ’95 , pp. 371-382,
1995.

[3] Chen, S. E., L. Williams, “View Interpolation for
Image Synthesis”, In Proceedings of SIGGRAPH
"93, pp- 270-288, 1993.

[4] Chen, S. E., “QuickTime VR- An Image-Based
Approach to Virtual Environment Navigation”, In
Proceedings of SIGGRAPH 95, pp. 29-38, 1995

[5] Darsa, L., B. Silva, A. Varshney, “Navigating
Static Environments Using Image-Space Simplifi-
cation and Morphing”, In Proceedings of 1997
Symposium on Interactive 3D Graphics, pp. 25-34,
1997.

[6] Debevec, P. E., C. J. Taylor, J. Malik, “Modeling
and Rendering Architecture from Photographs: A

Hybrid Geometry- and Image-Based Approach”, In
Proceedings of SIGGRAPH ’96, pp. 11-21, 1996.

[7] Drettakis, G., F. X. Sillion, “Interactive Update Of
Global Illumination Using A Line-Space Hierar-
chy”, In Proceedings of SIGGRAPH 97, pp. 57-64,
1997.

[8] Durand, F., G. Drettakis, C. Puech, “The Visibilit
Skeleton: A Powerful And Efficient Multi-Purpose
Global Visibility Tool”, In Proceedings of SI G-
GRAPH 97, pp. 89-100, 1997.

[9] Gigus, Z., J. Malik, “Computing the aspect graph
for line drawings of polyhedral objects. In IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 12(2), pp. 113-122, 1990.

[10] Glover, F., “Tabu Search - part I”’, ORSA Journal
on Computing 1(3), pp. 190-206, 1989.

[11] Glover, F., “Tabu Search - part II”’, ORSA Journal
on Computing 2(1), pp. 4-32, 1990.

[12] Haines, E. A., “Shaft Culling for Efficient Ray-
Traced Radiosity”, In Brunet and Jansen, editors,
Photorealistic Rendering in Computer Graphics,
Springer Verlag, pp. 122-138, 1993.

[13] Hanrahan, P., D. Saltzman, L. Aupperle, “A Rapid
Hierarchical Radiosity Algorithm”, In Proceedings
of SIGGRAPH 91, pp. 197-206, 1991.

[14] Ingber, L., “Adaptive Simulated Annealing
(ASA)”, http://www.ingber.com/#ASA-CODE and
http://www.ingber.com/asa_papers, 1989.

[15] McMillan, L., G. Bishop, “Plenoptic Modeling: An
Image-Based Rendering System”, In Proceedings
of SIGGRAPH 95, pp. 39-46, 1995.

[16] O’Rourke J., Art Gallery Theorems and Algo-
rithms, Oxford University Press, New York, 1987.

[17] Szeliski R., H. -Y. Shum, “Creating Full Panoramic
Image Mosaics and Environment Maps”, In Pro-
ceedings of SIGGRAPH 97, pp.251-258, 1997.

