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Abstract
Pencil and paper are perhaps the most effective problem-
solving tools ever invented. Why is this so, and what
does this portend for computer-assisted problem solv-
ing? In this paper we investigate why the computer has
not made more significant inroads into many aspects of
problem solving, even in domains ostensibly concerned
with purely formal methods. We observe that for many
problem-solving activities computers are currently more
constraining than enabling, particularly during problem
formulation. We identify some of the obstacles that must
be overcome in making the computer a more attractive
medium for problem solving, and explore some of the
tools that will likely play a part in bringing this about.
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1 Introduction

The Oxford American Dictionary defines serendipity as
“the making of pleasant discoveries by accident.” The
history of science is filled with examples of serendipitous
discoveries, from the invention of nylon to the discov-
ery of pulsars [23]. As one medical researcher recently
put it, making important discoveries is more a game of
pool than billiards: “You score points regardless of which
pocket the ball goes into.” He cites the fact that nearly
every gene linked to breast cancer was discovered by re-
searchers seeking something quite unrelated [17].
While all discoveries, by their very nature, involve

some element of surprise, they cannot be entirely acci-
dental. In fact, the word serendipity, as originally coined
by Horace Walpole, carried the connotation of fortuitous
accident coupled with the sagacity to recognize its signif-
icance. Of course, sagacity needn’t be entirely ex post
facto. Serendipitous discoveries often occur once the
search has been painstakingly narrowed to a few promis-
ing avenues. Indeed, any rational approach to problem
solving leaves as little to chance as possible, in accord

with the famous dictum of Louis Pasteur: “In the field of
observation, chance favors only the prepared mind.” Dis-
coveries that are to some degree foreseen, and result from
goal-directed winnowing of the alternatives, are some-
times referred to as “pseudo-serendipitous” [23]. The
role of chance is frequently downplayed in such discov-
eries, if not entirely discounted. Nevertheless, without
an element of chance, “discovery” is nothing more than
verification; without sagacity, it is mere happenstance.

The focus of this paper is the prospect of computer-
assisted discovery, which necessarily entails both ele-
ments of serendipity: intelligence in search and recog-
nition, and the possibility of fortuitous accidents. Our
emphasis shall be on machines that assist human inves-
tigators rather than those that seek discoveries indepen-
dently; although, as we shall see, autonomy is a vital at-
tribute of such a machine. While research in artificial in-
telligence has demonstrated the feasibility of purely au-
tonomous discovery by machines [18, 34, 20], the po-
tential for computer-assisted discovery appears to be far
greater in the near term.

In addition to considering only this more modest aim,
we shall further limit the scope of the discussion to a do-
main in which the computer has already proven to be a
valuable parter in exploration: namely, mathematics. In-
deed, remarkable progress has been made in areas such
as computer algebra [21, 33], mechanical theorem prov-
ing [8], and computer-aided construction and verification
of proofs [26, 31].

Despite their impressive repertoire, existing tools for
computer-aided mathematics are simply not amenable to
the haphazard process by which humans make serendipi-
tous discoveries, nor do they accommodate the ill-defined
methods by which we formulate problems. Unfortu-
nately, the latter often requires the preponderance of the
labor. As Barwise and Etchemendy put it, “In problem
solving, well begun really is half done” [5]. In the re-
mainder of the paper, we examine these shortcomings in
greater detail and suggest avenues by which the computer



may become a more attractive vehicle for human-oriented
problem solving.

2 The Nature of the Challenge

Since the 1950’s researchers have envisioned the com-
puter as a means of solving all manner of problems that
are beyond human abilities. In the early days of artifi-
cial intelligence, Ashby conjectured that important socio-
economic problems could be resolved by human intellect
that was computationally enhanced [4]. The idea behind
Ashby’s “intelligence amplifier” was to extend human
problem solving in two very general ways:

1. Production of possible solutions

2. Selection of solutions that work

Today computers perform both functions in a variety of
applications from game playing to artificial life. How-
ever, nothing like the general-purpose intelligence ampli-
fier has come to pass. There are two fundamental rea-
sons: 1) enormous obstacles arise in problem formula-
tion, which often requires great ingenuity, and 2) the re-
sulting search is frequently intractable. We first examine
problem formulation, which has important implications
for human-computer interaction.
A cursory look at the way people solve problems, even

in the relatively restricted domain of mathematics, re-
veals an array of techniques that incorporate diagrams,
prose, and symbols with varying degrees of complete-
ness and correctness [5, 25]. As a concrete illustration,
Figure 1 shows a typical page from one of the author’s
notebooks. The page contains fragments of mathematics
mingled with annotations and sketches that explain the
meanings of symbols and evoke connections with appro-
priate mathematical machinery; in this case, Stokes’ the-
orem. Problem solving often begins by recording such
meanderings in notebooks or on napkins. The nature of
these scribbles highlights the gulf between humans and
machines, even in the realm of symbolic mathematics.
The content of Figure 1 is the very antithesis of a syn-
tactically well-defined language suitable for mechanized
processing.
The vast majority of user interfaces today cannot inter-

pret diagrammatic input. Furthermore, malformed, am-
biguous, or contradictory information from a user is han-
dled only superficially. Lacking any notion of tentative
“scratch work,” the typical interface rejects input that is
not complete and correct with respect to the current state
of the program. At best, the user is prompted to try again.
This is one of the many ways in which human-computer
interaction differs dramatically from human-human inter-
action. Shared background knowledge, default assump-
tions, and an ability to tolerate a certain amount of ambi-

Figure 1: A page of scribbled ideas consisting of sketches,
fragments of mathematics, and annotations, from one of
the author’s numerous dusty notebooks.

guity – in hopes that it will be rectified later – are a few
of the factors that make communication among people far
simpler. Moreover, when confronted with contradictory
information, humans exhibit at least a limited capacity to
re-examine and revise previous assumptions, and thereby
avoid obviously inconsistent beliefs. These attributes are
not yet exhibited by computers in their interaction with
humans. Consequently, computer-aided design tools are
frequently more constraining than enabling, as the user is
forced to proceed in a fashion that suits the system.

There appear to be only two ways to improve the situa-
tion: 1) impart greater discipline in human problem solv-
ing, or 2) imbue machines with a greater tolerance for
the haphazard processes by which humans tend to solve
problems. Of these, only the latter strategy offers much
hope of long-term success. While nature has endowed
us with remarkable abilities to think and to plan, our in-
nate reasoning is frequently at odds with sound logic [13].
While the human brain is superbly adapted for complex
social interactions and coping with a hostile environment,
its heuristics are less trustworthy in other contexts. In
particular, we are far more adept at quick intuitive assess-
ments, particularly in social contexts, than complex in-
ferences in formal logic [6]. Furthermore, myriad uncon-



scious processes generate insights and shift our aware-
ness, contributing to the apparent randomness of human
problem solving. It is clearly unrealistic to expect this to
change.
On the other hand, the task of making machines more

human-like in their behavior is an immense undertaking,
as evidenced by the scant progress toward this goal dur-
ing the past thirty years. Fortunately, a machine needn’t
pass the Turing test in order to meaningfully support hu-
man creativity. We shall argue that one step in the right
direction is to apply non-monotonic reasoning as well
as its counterpart, belief revision [12, 16], to human-
computer interaction, making computers more resilient to
the types of errors humans make. In essence, the dialog
between human and computer should be embedded in a
more accommodating logic; one in which the beliefs of
both agents are treated as tentative, and therefore subject
to revision in the light of new information. This allows
for liberal use of default assumptions, which in turn help
to smooth over ambiguities that arise, especially during
problem formulation.
A second step toward more effective machine-assisted

problem solving is to incorporate diagrammatic interac-
tion [2, 5]. Although mechanical recognition of hand-
drawn figures is a tremendously challenging problem,
there are numerous domains in which the highly con-
strained syntax of the diagrams vastly simplifies the task
of recognition: examples include state diagrams for finite
automata and pictorial representations of sets.
Once a problem is formulated, how can a computer as-

sist in the discovery of a solution? Certainly Ashby’s no-
tion of a machine that produces plausible solutions and
then helps to sift through them is not far from the mark.
However, production of possible solutions cannot be done
blindly, nor can the search be exhaustive. While one
could generate random strings of symbols in search of a
proof or refutation of some conjecture, such an approach
would be highly unlikely to turn up many new discover-
ies. To illustrate several plausible techniques, we outline
a hypothetical proof scenario.

3 Anatomy of a Proof

We now consider a simple mathematical problem from
linear algebra, and suggest how a computer might assist
in its solution. Although the problem is elementary, it will
nevertheless serve to illustrate some basic points. The
problem is as follows: Given a monic polynomial of de-
gree n,

pn(x) = a0 + a1x+ · · ·+ an−1xn−1 + xn, (1)

construct a matrix whose eigenvalues are the roots of this
polynomial. In other words, find an n × n matrix Mn

whose characteristic polynomial is pn up to a constant
factor:

det (Mn − λI) = k pn(λ), (2)

where k is a non-zero constant. That such a matrix exists
can be seen immediately, since the diagonal matrix

⎡
⎢⎢⎢⎣
λ1

λ2
. . .

λn

⎤
⎥⎥⎥⎦ (3)

clearly satisfies Equation (2), where λ1, . . . , λn are the
(possibly complex) roots of pn. However, the more in-
teresting question is whether such a matrix can be con-
structed without first finding the roots of pn. If this could
be done directly from the coefficients a0, . . . , an−1 us-
ing a finite number of arithmetic operations, it would
demonstrate that the eigenvalue problem subsumes poly-
nomial root finding, and consequently cannot be solved
algebraically in general [30].
This problem has a well-known solution, which is

known as the companion matrix of the polynomial
pn [14]. For the purpose of illustration, we shall feign
ignorance of this result and set off to discover our own
solution, documenting some of the wrong turns and blind
alleys.
As a routine starting point, we observe that the problem

has a trivial solution when n = 1. The matrix [−a0] has
the characteristic polynomial−a0−λ, which is−1 times
the monic polynomial p1(λ) = a0 + λ. So far so good.
Next, we might consider the matrix[

a b
c d

]
,

with the characteristic polynomial λ2 − (a + d)λ − bc.
We observe that any 2nd-degree monic polynomial can
be obtained with a judicious choice of a, b, c, and d. The
difficulty, of course, is that there are many such choices,
and it is not obvious which choice, if any, will generalize
to n > 2. Unfortunately, the problem already begins to
get a bit messy with n = 3. Where do we go from here?
It’s time to try induction. Suppose we can construct

the matrixMn from any given pn; can we then construct
Mn+1 from pn+1? There seem to be many possible ways
to proceed. Should we represent the (n + 1)’st degree
monic polynomial as

pn+1(x) = αpn(x) + x
n+1 (4)

for some constant α, or as

pn+1(x) = α+ xpn(x) (5)



for a different choice of α? Should we create the larger
matrixMn+1 by modifying the matrixMn in some way,
or simply by padding,

Mn+1 =

⎡
⎢⎢⎢⎣
∗ ∗ · · · ∗
∗
... Mn
∗

⎤
⎥⎥⎥⎦ , (6)

and if so, how do we fill in the new entries? Here’s where
we could use a bit of luck. If we were to guess the correct
structure, it would likely be a straightforward matter to
prove it by induction (and thereby cover our tracks).
For the sake of brevity, let us suppose that we have

(correctly) chosen to pursue equations (5) and (6). In re-
ality, of course, several unsuccessful attempts might have
beenmade before discovering this combination. Express-
ingMn+1 as

Mn+1 =
[
βn uTn
vn Mn

]
, (7)

where βn ∈ IR and u, v ∈ IRn, we are left with the task of
determining how βn, un, and vn should be constructed.
Clearly, there must be some connection to each new co-
efficient added to the polynomial, so we try

βn = βn(α),

un = un(α),

vn = vn(α),

where α is the constant appearing in Equation (5). Now,
when n = 1, we haveM1 = [−a0], fromwhich it follows
that

β1 = 0,

u1v1 = −α, (8)

where u1 and v1 are scalars corresponding to the off-
diagonal entries of the 2 × 2 matrix. If we surmise that
βn = 0 for all n, we are then left with several other
choices in generalizing to arbitrary n > 2. How should
−α be “factored” into a product of two numbers, as re-
quired by Equation (8), and how should the scalars u1 and
v1 be generalized to vectors un and vn when n > 1? Fur-
thermore, do these strategies depend on n? We could at-
tempt the answer these questions through a deeper analy-
sis of the problem, or we could simply guess, perhaps us-
ing past experience with similar problems, esthetic con-
siderations, or even blind luck. In any case, a guess can
be discarded immediately if it fails on a simple example,
and ultimately proven symbolically if indeed it is correct.

Listed below are some of the obvious guesses that one
might try for “factoring” a real number:

φ1(x) = (1, x),

φ2(x) = (x, 1),

φ3(x) = (−x,−1),
...

Here each type of guess has been encoded as a function
from IR to IR2, although one would typically not employ
this degree of formality in searching for a solution.
Once we have chosen a method φi to produce the two

factors, they must be mapped to two vectors of the ap-
propriate size, and in such a way that they reduce to the
identity mappingwhen n = 1. Here are some of the more
obvious possibilities for such a mapping:

νn1 (x) = (x, 0, . . . , 0)
T
,

νn2 (x) = (0, . . . , 0, x)
T
,

νn3 (x) = (x, x, . . . , x)
T
,

...

where all of the vectors on the right are in IRn. By select-
ing the right functions, and composing them in the right
way (with the aid of the projection function πi, which
selects the i’th coordinate of an n-tuple), two correct so-
lutions emerge. Specifically, setting

un(α) = νn2 (π1φ2(−α) ),
vn(α) = νn1 (π2φ2(−α) )

and then recursively applying the construction depicted
in Equation (7) down to the base case M1, we generate
the matrix

Mn =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −a0
1 −a1
1 −a2

. . .
...

1 −an−1

⎤
⎥⎥⎥⎥⎥⎦
,

which is precisely the form of the companion matrix
given by Golub and Van Loan [14]. Similarly, the combi-
nation

un(α) = νn1 (π1φ1(−α) ),
vn(α) = νn2 (π2φ1(−α) ),

generates the transpose of the above matrix, which has
the same characteristic polynomial. Two further variants
arise when the matrixMn appears as the upper-left block
in Equation (6).



3.1 Opportunities for Mechanized Assistance
The problem described above could obviously be worked
out entirely on paper, with no mechanical assistance
whatsoever. On the other hand, the construction might
also have been discovered purely mechanically. Since
any problem of mathematics is conceivably solvable by
either means, the question of interest here is whether
there exists a middle ground in which there is a synergy
between human and machine. If so, how should the work
be partitioned, and how should information be exchanged
between the two?
The problem of the companion matrix suggests sev-

eral ways in which this synergy may be realized. First, it
suggests the utility of automatically testing the feasibil-
ity of guesses on simple test cases, either symbolically
or numerically. This type of testing can easily be the
most onerous aspect of solving a problem, yet it is invalu-
able for quickly ruling out approaches that are obviously
wrong. In the author’s prototype system, for example, the
(re)discovery of the companion matrix was partially au-
tomated using symbolic computation of the characteristic
polynomials followed by numerical evaluation for testing
all compositions of the guesses described earlier. After
constructing an arbitrary pn and the corresponding ma-
trixMn, for some n > 2, the ratio

pn(x)

det (Mn − xI)
(9)

was evaluated at n distinct points and checked for con-
stancy. In this way polynomials that differed by more
than a constant factor were quickly detected, using a
small number of evaluations on average. This test is
a valuable precursor to pure symbolic manipulation of
polynomials, which is typically much more costly.
Another area in which a machine can assist is in the

selection of the heuristics as embodied by the functions
φ1, φ2, . . . and νn1 , ν

n
2 , . . . introduced above. While there

is no guarantee that a simple trick used in one context
will be helpful in another, it is not uncommon for solu-
tion techniques to extend beyond their intended domain.
Coupled with a capability for quickly testing plausible
guesses on specific problem instances, automatic applica-
tion of a large collection of heuristics becomes a valuable
tool for discovery.
Naturally, when a heuristic search such as the one de-

scribed above does not succeed, it may indicate that the
construction is impossible, or simply that the appropriate
strategy has not yet been found. When all existing heuris-
tics have been exhausted, the machine can still assist by
discerning patterns of failure (via still other heuristics)
and by indicating opportunities for new heuristics to the
user.

Figure 2: Illustration depicting a key step in the proof of
the Hahn-Banach theorem. Reproduced with kind per-
mission of C. M. Strauss.

4 The Role of Diagrams

Diagrams play many roles in problem solving. In form
they range from indecipherable doodles to complete rep-
resentations with precisely defined semantics. It is sug-
gested here that there is a vast and interesting middle
ground occupied by diagrams that provide hints and serve
as signposts for formal structure.
An amusing anecdote that nicely illustrates one

extreme in the spectrum is related in a paper by
C. M. Strauss [28]. Therein is the story of a professor
who, upon reaching an impasse in the proof of the Hahn-
Banach theorem during a lecture, drew the illustration
shown in Figure 2, and immediately saw the correct way
to proceed. While one may speculate that the illustration
somehow evoked the concept of “separation,” clearly the
diagram played no formal role in the proof and conveyed
essentially no information; the semantic content was en-
tirely in the mind of the professor.
At the other end of the spectrum are diagrams with

complete semantics, such as those that are isomorphic to
mathematical constructs. For instance, the diagrams in
Figure 3 denote sets A, B, and C, and several relations
that hold among them. The Venn diagram on the left de-
picts the properties A ∩ C ⊆ B and (B − A) �= ∅. The
Euler diagram on the right depicts the relations B ⊆ A
and B ∩ C = ∅. Both types of diagram have a precise
syntax and meaning [15]. As another example, consider
Figure 4, which depicts a Turing machine that increments
a binary-encoded number. This state diagram is isomor-
phic to the formal definition of the machine, and is thus
complete and unambiguous. Finite state machines and
push-down automata admit similar diagrammatic repre-
sentations. Such diagrams are far easier to comprehend
than their set-theoretic counterparts, yet sacrifice nothing
in terms of semantics.
Diagrams can also carry meaning without being fully

isomorphic to the concepts that they depict. Such dia-
grams can be used to clarify or suggest steps in a rigorous
proof, as is most evident in the case of geometry. How-
ever, even topological concepts can be conveyed through
diagrammatic representations. Let us consider a simple



(a) (b)
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Figure 3: Diagrams with well-defined formal semantics:
(a) Venn diagrams, and (b) Euler diagrams.

theorem from real analysis that rests upon purely metric
and topological notions and explore a hypothetical proof
procedure that is guided by highly abstract diagrams.
Suppose that we wish to prove the following statement:

a set S is relatively compact if it is totally bounded. By
a relatively compact set we mean a set in which every
infinite sequence contains a Cauchy sub-sequence. By a
total bounded set we mean a set that can be “covered”
by a finite number of open ε-balls (essentially disks of
radius ε) for any ε > 0. Both concepts are meaningful in
any metric topology, and technically involve no geometry
at all.
To prove the assertion we must somehow use total

boundedness to extract a Cauchy sequence from an ar-
bitrary infinite sequence in S. This can be accom-
plished with an iterative process that has a simple visual
metaphor. Figure 5 shows a sequence of illustrations rem-
iniscent of what one might draw in attempting to explain
or discover the necessary connection.
In the figure, S depicts a totally bounded but otherwise

arbitrary set, and S0 is an infinite sequence in S; the sec-
ond illustration shows a finite collection of ε-balls that
cover S0. The balls are depicted as circles, although the
actual shapes are irrelevant. Since S0, as a set, is also
totally bounded by virtue of being in S, we can choose
such a cover that is finite. The key insight is that the infi-
nite sequence S0 must then hit at least one of the ε-balls
“infinitely often,” which is a common idiom of analysis.
In the illustration, each ε-ball containing infinitely many
elements of S0 is emphasized. We denote by S1 the sub-
sequence of S0 contained in one such ball, and “zoom
in”; it becomes evident that this process can be repeated
indefinitely, since each sub-sequence retains the essential
properties of the original sequence. Finally, by choos-
ing a single point from each of S1, S2, S3, . . . , we pro-
duce the desired Cauchy sub-sequence of S0, as the tail
of this sequence is contained within ever shrinking neigh-
borhoods.
This example illustrates the potential for diagrammatic

representations in exploring topological concepts. The

q0

q1

q2 q5

q3 q4
#,#,R

#,#,L

0,0,R 1,1,R
#,#,R #,0,R

0,1,R

0,1,R

1,0,L

0,0,R

Figure 4: A simple Turing machine, completely described
in terms of its state diagram.

role of the diagram is to serve as a guide for the math-
ematics, not as a substitute for it. Once the underlying
principles are discovered, a rigorous symbolic proof can
be constructed.
Such idiomatic illustrations lend themselves to random

construction by computer. These representations can be
used to access and apply relevant concepts, such as finite
covering sets. To help the user avoid incorrect assump-
tions, the “arbitrary” examples that are generated should
include reminders of valid special cases, such as a single
point appearing infinitely many times in a sequence, or
multiple balls in a cover being hit infinitely often. Dia-
grams of this nature can enhance computer-assisted dis-
covery by associating concepts with appropriate imagery,
and providing visual cues for salient properties.

5 Implications for Human-Computer Interaction

To some extent it is possible to mimic mathematical rea-
soning on a computer [7]. When a human participates
in the solution process, however, many special considera-
tions involving the interface arise that have no counterpart
in purely mechanical processes. We now identify some
of these considerations, and discuss how they influence
human-computer interaction.
In principle one can perform anymanner of experiment

using conventional computer algebra systems and theo-
rem provers, and thereby synthesize proofs or make dis-
coveries. In practice, however, experimentation is ham-
pered by representations that are somewhat difficult to
specify and to manipulate. While a conjecture may be
succinctly expressed with a diagram or concise mathe-
matical notation, transcribing it into the language of the
system and constructing or verifying basic test cases can
be tedious. To the extent that these obstacles are lessened,
and promising avenues made more perspicuous, the like-
lihood of finding useful connections increases; that is, we
encourage serendipity.



S

(a) (b) (c) (d)

S

S S
S0

S1

Figure 5: Steps in a topology proof guided by diagrams that serve an informal role. (a) Representation of an infinite
sequence S0 within a totally bounded set S. (b) Representation of a finite covering of S0 by ε-balls. Balls that meet
S0 infinitely often are emphasized. (c) Closeup of the subset S1 within the selected ε-ball. (d) An ε-covering of S1, but
with a smaller ε. The process can be repeated indefinitely.

We shall consider some of the difficulties encountered
with hand-written notation, both because pen input can be
very expressive, and because it illustrates a wide variety
of errors and ambiguities that must be dealt with. Pen-
based computer interfaces were first developed as a tool
for geometric construction and manipulation [29], and
shortly thereafter found application in symbolic mathe-
matics [3]. The processing of hand-drawn mathemati-
cal notation continues to be a challenging research prob-
lem [19, 27] as it requires both character recognition and
two-dimensional parsing. Part of its appeal is that it of-
fers the opportunity to combine symbolic, diagrammatic,
and gestural information [9, 24].

Figure 6 shows a hand-written equation that presents a
number of challenges for a hypothetical pen-based math-
ematics system. First, since the symbols “2a” are not
very legible, they are mistakenly recognized as the sym-
bol “u,” which in turn makes the ellipsis ambiguous. On
the second line, the upper limit of the product does not
agree with the factor cos(2ka) on the line above; it is
likely that either the k or the k − 1 is not what was in-
tended. The symbols “sin 2ka” are initially interpreted as
“sin(2k)a,” but “sin(2ka)” was intended. Finally, the de-
nominator is initially interpreted as “2k sin d” rather than
“2k sina.” Correctly interpreting this expression is chal-
lenging for humans and machines alike.

Fortunately, problems of this nature can often be rec-
tified if the decisions made during interpretation are re-
examined and possibly revised when additional infor-
mation becomes available or when inconsistencies arise.
For example, the ambiguity of the ellipsis indicates that
something is awry, so recognition and stroke grouping
can be re-examined to identify any “nearby” interpreta-
tions that might disambiguate it. The low recognition
confidence of the “u” points to it as the likely culprit,
and re-grouping the strokes reveals the correct interpre-

tation; this process depends on a scheme similar to that
described by Smithies et al. [27].
The misrecognition of the “a” as a “d” and the group-

ing of “2ka” are more interesting, as the equation might
actually be correct as it stands. However, two factors
invite other interpretations to be considered. First, the
equality of the last two expressions would be directly
testable if not for the free variable d, and second, “a”
is the next-most-likely interpretation of the symbol “d.”
Numerical verification of the identity

k−1∏
j=0

cos
(
2ja
)
=
sin
(
2ka
)

2k sin a
(10)

then provides concrete evidence that this is indeed what
was intended. The corresponding changes are adopted
until other evidence prompts the system to revisit these
decisions yet again.
As an example that illustrates the use of higher-level

context in resolving conflicting information, consider the
hand-written equation shown in Figure 7. Appearing on
the right hand side is a diagrammatic representation of a
matrix, which we shall denote by U. Several default as-
sumptions can be immediately made about this equation,
including

1. M is an arbitrary matrix.

2. Q is a non-singular matrix.

3. U is upper-triangular.

As a consequence of these assumptions, it also follows
that all the matrices are square. In isolation, these default
assumptions are consistent. However, now suppose that
the problem to be solved is to constructQ fromM so that
the equality holds. By default, it is assumed that such a
construction is to be direct, or closed-form, and this leads



Figure 6: A hand-written equation with several errors
and ambiguities.

to a contradiction. Specifically, the assumptions taken
together imply the existence of a closed-form solution to
the general eigenvalue problem; the companion matrix
was instrumental in proving this impossible. Thus, it is
necessary to retract (or weaken) some prior belief about
the symbols. For example

1. M has some special form.

2. Q is computed iteratively, not directly.

3. U is upper Hessenberg, not upper triangular.

Any of these choices would remedy the problem, yet
there is no purely logical means to choose among them.
Here we rely upon the relative likelihoods of the default
assumptions to break the tie. Most suspect is the struc-
ture of the matrix U, as it has been inferred from a crude
diagram. Thus, we retract the assumption and replace it
with the next-most-likely interpretation, which is that of
an upper Hessenbergmatrix; that is, a matrix that is upper
triangular except for entries along the sub-diagonal. This
choice is further supported by the fact that the two rep-
resentations can be easily confused. We leave aside the
difficult problem of how this new interpretation is com-
municated to or verified by the user; a continuum of be-
haviors may be appropriate, depending on the needs and
preferences of the user. We instead focus on tools that
can assist in identifying and resolving ambiguities and
contradictions such as these.

6 Non-monotonic Reasoning

When a contradiction arises, the belief set maintained by
the mathematics system must be repaired or it becomes
useless. Consequently, as new information is acquired,
it may result in previous assumptions being rejected or
modified. The reasoning embodied by such a system is
thus referred to as non-monotonic. Recent work in belief
revision provides some insight into the non-monotonic
nature of cooperating agents [12]; in fact belief revision
is essentially a formalization of non-monotonic reason-
ing in which rationality axioms constrain how an agent
responds to conflicting information.

Figure 7: A hand-printed similarity transformation in
which the structure of one matrix is specified diagram-
matically.

6.1 Belief Revision
First, let us assume that the “beliefs” of an agent are en-
coded as a collection of logical formulas, or sentences,
which are formed using basic logical connectives, propo-
sitional variables, and perhaps quantifiers. Let B denote a
collection of beliefs defined by some finite base of propo-
sitional formulas (essentially axioms), and all sentences
that logically follow from these formulas according to a
specified set of inference rules. That is, we assume that
B is closed under logical inference, or entailment; for ex-
ample, if x ∈ B and x → y ∈ B, then y ∈ B, by modus
ponens.
A belief set can be expanded by adding a sentence

to the base, and implicitly including all new inferences.
Thus, simple expansion is defined by

B + x = {y | B ∪ {x} 
 y} ,

where the sentence x may or may not be consistent with
the beliefs already in B. If ¬x ∈ B, then B + x con-
tains all possible sentences, since it entails a contradic-
tion. Consequently, this method of accumulating infor-
mation is useless when conflicting facts arise.
To accommodate potential contradictions, we must

adopt the use of a revision operator, denoted by
◦
+ , which

ensures that the revised belief set B ◦+ x remains consis-
tent provided that B was consistent to begin with, and x
is not itself a contradiction [12].
Revision operators have several fundamental proper-

ties. First, they are not uniquely determined by logical
considerations alone; that is, for any given belief set B
and sentence x, there may be numerous logically consis-
tent ways to retract information from B so that x can be
safely added. Second, under mild assumptions revision
is completely determined by contraction; that is, by the
strategy for removing information from a belief set. This
second fact follows from the Levi identity,

B ◦+ x =
(
B ◦− ¬x

)
+ x, (11)

where ◦− denotes the contraction operator. Equation (11)
holds under the rationality axioms proposed by Al-
chourrón, Gärdenfors, and Makinson [1], which state, for
example, that x ∈ B ◦+ x ⊆ B+x, and that B ◦+ x = B+x
when x is consistent with B. Furthermore, these axioms



require the revision operator to be sensitive only to mean-
ing and not syntax. Thus, when x and y are logically
equivalent, it must follow that B ◦+ x = B ◦+ y.
By imposing these rationality axioms, the possible in-

terpretations of contraction and revision are constrained
but not entirely determined; thus, as we saw in the pre-
vious examples, we require some extra-logical informa-
tion to decide which revision is most justified. One
such source of additional information is epistemic en-
trenchment [11], which is a partial ordering on the be-
liefs that indicates our degree of commitment to them,
or our confidence in them. Alchourron et al. [1] have
shown how to characterize the possible revisions that sat-
isfy the rationality axioms, which precisely demarcates
the role of extra-logical heuristics such as entrenchment
and confidence measures. This is a promising theoretical
foundation for constructing agents that can reason non-
monotonically, and hence cope with some degree of am-
biguity.

7 Autonomous Assistants

We now summarize some of the lessons embodied in
the examples discussed, and translate them into desirable
properties of a mathematical assistant. First, and most
fundamentally, the user of such a system should not be
forced into a rigidly formal development. Requiring that
each step be thoroughly specified is overly constraining
and is antithetical to the way people tend to work. People
are quite accustomed to carrying on in the face of uncer-
tainty, so it is desirable, if not expected, that an assistant
will have this characteristic also. The use of hand-written
information and diagrams are consistent with this man-
date, although not a fundamental requirement.
An immediate consequence of this freedom is that the

assistant must be capable of applying tentative default as-
sumptions about the meanings of symbols as well as the
objectives of the user. The tentativeness of the assump-
tions leads to non-monotonic reasoning on the part of the
assistant, which can be characterized in terms of its strat-
egy for belief revision.
Since contradictions might be revealed only after sig-

nificant computation, either through logical inference
(i.e. theorem proving) or numerical experiments, changes
in the assistant’s beliefs may occur at seemingly ran-
dom times. It is therefore reasonable to require that the
human-computer dialog never be suspended pending the
outcome these computations; thus they must be relegated
to independent threads of execution. Since neither the hu-
man nor the assistant need ever be completely stalled due
to information required from the other, their activities are
largely decoupled. The picture that emerges is that of an
autonomous assistant.

Multi-threaded execution can also be useful in carry-
ing out numerical experiments and symbolic computa-
tions simultaneously, since either path may turn up useful
information, or fail to do so even after significant compu-
tation [32]. In addition to the use of concurrency [10], de-
fault assumptions, non-monotonic reasoning, and heuris-
tics that encapsulate previous tricks and plausible reason-
ing [22], there are many other ways in which the useful-
ness of an autonomous assistant may be enhanced. For
example, it would be useful to devise ways in which to
inform the user of pending computations and current be-
liefs of the assistant. This will likely require the assis-
tant to periodically inject unsolicited information, and
may therefore benefit from assistants that can mimic ad-
ditional human attributes, such as “politeness” or “as-
sertiveness.”
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