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Abstract
Wavelength dependent Monte Carlo rendering can correctly
and generally capture effects such as spectral caustics (rain-
bows) and chromatic abberation. It also improves the colour
accuracy of reflectance models and of illumination effects such
as colour bleeding and metamerism.
The stratified wavelength clustering (SWC) strategy carries

several wavelength stratified radiance samples along each light
transport path. The cluster is split into several paths or degraded
into a single path only if a specular refraction at the surface of
a dispersive material is encountered along the path. The overall
efficiency of this strategy is high since the fraction of clusters
that need to be split or degraded in a typical scene is low, and
also because specular dispersion tends to decrease the source
colour variance, offseting the increased amortized cost of gen-
erating each path.

Key words: Monte Carlo methods, wavelength dependent (spec-
tral) rendering, caustics, rainbows, refraction, reflectance,
global illumination.

1 Introduction
The faults of using three component colour models for com-
puting reflectance, absorption and dispersion are well known
[13, 14].
Most physical processes that produce changes in radiant

power spectra and colour (reflection, absorption, scattering,
etc.) are poorly approximated by models that assume smooth
spectra, linearity, or linear separability of colour computations
into separate geometric and wavelength dependent factors. For
instance, absorption computations involve the exponentiation of
a spectrum, while effects such as dispersion involve almost a
purely functional dependence between wavelength and geome-
try. A trichromatic model is suitable for perceptual representa-
tions of colour, but not for physical computations.
Any attempt to implement physically-based rendering should

therefore consider the transport of spectral power distributions
and should model reflectances and absorptions spectrally rather
than approximate them with a trichromatic model. In this pa-

per we demonstrate not only that this is feasible, but also that
with a strategy we call stratified wavelength clustering (SWC)
the marginal cost is negligible for Monte Carlo ray tracing and
bidirectional path tracing.

2 Outline

Prior work on wavelength dependent and spectral rendering is
surveyed in Section 3. Section 4 presents the stratified wave-
length cluster strategy. Three splitting strategies are also pre-
sented and compared. In Section 5 a bidirectional path tracer
that uses stratified wavelength clusters is described. Finally,
in Section 6 we present our results, comparing and contrasting
crude Monte Carlo integration over wavelength, quasi Monte
Carlo integration over wavelength using Halton sequences, and
the stratified wavelength cluster strategy.

3 Background

Before presenting our approach for extending Monte Carlo
global illumination algorithms to wavelength-dependent (spec-
tral) rendering, we first review the relationship of spectral power
densities to perceived colour and review wavelength-dependent
phenomena that have a significant effect on the generated im-
age. Previous algorithms and representations for spectral ren-
dering are also discussed.

3.1 Colour and Spectra
Given a spectral radiant power distribution ����, its CIE XYZ
colour coordinates can be computed with the following three
integrations [2], using the CIE 1964 matching functions �x�����,
�y�����, and �z�����,
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where k�� � ���lm/W. These integrations should be inter-
preted as inner products that project the infinite-dimensional
function ���� down onto a finite-dimensional vector space.
The functions �x��, �y�����, and �z����� only analyze the spec-
trum ����; they do not constitute a basis to reconstruct the
original spectrum. In fact, there are an infinite number of re-
construction bases that will generate different spectra with the
same XYZ coordinates.
The significance of the XYZ coordinates is perceptual: all

spectra with the same XYZ coordinates should be perceived as
the same colour by normal human observers. Such perceptually
equivalent spectra are called metamers.
A � � � matrix multiplication can convert XYZ colour co-

ordinates to any desired linear trichromatic colour coordinate
system [7]. Given the XYZ coordinates of a set of phosphors
on a monitor, a matrixM can easily be derived to convert from
XYZ coordinates to the monitor’s RGB phosphor space, at least
for colours within the gamut of the monitor and within the limits
of an assumption of linearity [3, 5].
The traditional approach to rendering immediately converts

spectral distributions into linear trichromatic colour coordi-
nates, such as RGB coordinates, at the time of definition of the
light sources and reflectances. In fact, usually perceptual co-
ordinates are all that is given, since colours are often chosen
interactively by observing the colour produced by a monitor.
Unfortunately, while a trichromatic linear model is all that

is needed for the perceptual representation of a colour, it is too
coarse to accurately compute the physical interactions of spec-
tra.

3.2 Wavelength Dependent Phenomena
Due to metamerism, the apparent colour of an object can depend
critically on the illumination spectrum. Two objects which have
the same colour under one illuminant can look very different un-
der another illuminant. Many illuminant spectra, such as those
of flourescent lights, can be far from smooth, and this can result
in a significant dependence of the final colour on the detailed
shape of a reflectance or absorption spectrum.
Many wavelength dependencies in physically-based re-

flectance models can be traced to the variation of the complex
index of refraction with wavelength. The variation with wave-
length is quite strong; Sellmeier’s Law [4], which is a good fit
to observed data, results in an O���� dependency in d��d�.
The complex refractive index is used in the Fresnel formulas to
compute the ratio of reflected to transmitted light at a specular
surface. The Fresnel formulas are an important component of
all physically-based models, since they result directly from the
continuity conditions required by Maxwell’s equations.
Unfortunately, the Fresnel formulas have a non-separable

and highly nonlinear dependence on both the wavelength de-
pendent refractive index and the incident angle. Other non-
separable wavelength dependent effects, such as interference
and diffraction, can also be important in reflectance models [6],
and futhermore can lead to “spiky” reflectance and transmission
spectra.
Consider also absorption in participating media. A homo-

geneous material absorbs some fraction ���� of radiant energy

per unit length. Light travelling a length z through such a ho-
mogeneous material will have its spectral power modified by
the multiplicative absorption factor given by Beer’s Law:

���� z� � exp������z�

Lout��� 	� � ���� z�Lin��� z��

The cumulative absorption ���� z�, a function of both wave-
length and distance, is a nonlinear function of another spectrum
����. The function ���� z� is also not separable into factors
containing only z and � alone. In fact, longer distances tend to
increase the contrast (change the shape) of the absorption spec-
trum, resulting in a more saturated colour for thicker materials.
Participating media can also have wavelength-dependent

scattering distributions [4, 10], which can result in similar
distance-dependent spectral colour shifts.
Finally, the refractive index determines the angle of spec-

ular refraction, by Snell’s Law. This effect is called disper-
sion because polychromatic light tends to be spread apart into
monochromatic light, producing saturated colours from unsat-
urated ones. This is the strongest wavelength dependent effect
and also the hardest to handle properly, since it results in a direct
dependence of ray direction on wavelength [18, 22]

3.3 Linear Spectral Representations
One way to extend a renderer to handle spectral phenomena is
to represent spectra explicitly and correctly implement the oper-
ations, primarily multiplication, that can take place on them. A
simple dense vector with 80 samples can handle most physical
interactions and can represent spiky spectra accurately, but such
a representation is too expensive to be practical.
Other models with a smaller number of parameters have been

used in an attempt to improve efficiency. In the linear rep-
resentation, a vector of colour coordinates �w�� w�� � � � � wK�
weights a set of basis functions fb����� b����� � � � � bK���g
which are summed to reconstruct the spectrum:
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The traditional trichromatic models can be interpreted as linear
representations if we assign appropriate basis functions.
In the context of spectral nonlinearities (as in absorption) or

when there is a strong geometric dependence on wavelength (as
with specular dispersion) or when two spectra can interact by
multiplication (reflection and absorption), using a trichromatic
representation to compute the interaction of spectra can lead to
major colour and illumination errors.
In particular, absorption cannot be correctly handled using

only trichromatic colour computations [7] due to its nonlinear
exp������z� factor.
In the case of reflection, elementwise multiplication of colour

coordinates is equivalent to spectral multiplication if and only
if the basis functions used to reconstruct the spectra are non-
overlapping box functions. For only three colour coordinates
such basis functions are subject to aliasing and/or significant
approximation error.



Unfortunately, raising the dimensionality of linear represen-
tations does not help much unless the basis functions are very
carefully chosen [7]. Certain illuminants, such as fluorescent
lighting, can contain spikes at specific frequencies, and these
spikes will be poorly captured by a non-adaptive representation
scheme. As noted above, some kinds of reflective phenomena
can also have very spiky spectra, for instance if thin-film inter-
ference or diffraction is involved.
For any given scene, especially in the context of indirect and

global illumination, the large number of possible multiplicative
interactions between illumination and reflectance spectra can
lead to a large class of possible spectra.
Peercy [13] has studied generalized linear models, in which

a set of orthogonal basis functions are chosen based on a char-
acteristic vector analysis of the “important” spectra in a scene.
In practice, it can be difficult to determine which of the pos-
sible spectra will actually be present in the scene and con-
tribute significantly to the final image. If overlapping basis
functions are chosen (the usual result of a characteristic vector
analysis) the cost of computing reflectance (or any spectrum-
to-spectrum multiplicative interaction) with this scheme also
grows as O�K��, where K is the number of basis functions.
The generalized linear approach is only feasible if spectral

effects are linearly separable from geometric influences (a poor
physical assumption). Otherwise, a matrix with O�K�� entries
needs to be recomputed for every surface reflection, with the
computation of each entry in the matrix involving an integra-
tion of a spectrum against the product of two basis functions.
Even if nonoverlapping basis functions are chosen (which re-
duces approximation power) the cost of the O�K� integrations
required to project the spectra against the basis functions can be
prohibitive.
Raso [14] uses piecewise polynomials to represent spectra.

When spectra must be multiplied, this raises the degree of the
polynomials, and so they must be projected down onto lower
degree polynomials. This approach can be considered a gen-
eralization of the linear model where approximation error is
handled more explicitly using polynomial approximation al-
gorithms. Unfortunately, as with Peercy’s scheme, if the re-
flectance models and absorption models are not separable, the
coefficients for the polynomial representations of surface colour
cannot be precomputed, and the approach’s marginal cost be-
comes too high to be practical.

3.4 Point Sampling Approaches
In general, for computing nonlinearities and multiplication of
spectra, point sampling strategies have O�n� complexity for n
wavelengths. Unfortunately, any deterministic point sampling
strategy can be subject to aliasing. Choosing a high enough
sampling rate can overcome aliasing, if the spectra are “smooth
enough”. It has been shown that in the absence of aliasing, a
small number of spectral samples, on the order of eight or nine,
can capture most perceivable spectrally-generated phenomena
[7].
Practically speaking, the marginal cost of using nine point

wavelength samples (rather than three RGB samples) is small,
since the reflectance computation usually grows slowly with the

number of point samples: overhead costs and common terms
can be shared, and the floating point code typical of reflectance
models can be pipelined. Typically, rendering costs are usu-
ally dominated by geometric intersection computations, not re-
flectance computations.
Meyer [11] has studied point-sampling approaches to spec-

tral rendering. A Gaussian integration scheme can be used, in
conjunction with a specific class of basis functions, to select
the best set of wavelengths to sample to minimize perceptual
spectral error during rendering. However, Meyer’s approach to
optimizing sampling considers only the case of smooth spec-
tra, and so cannot handle the disrupting influence of nonsmooth
illuminants.
Gondek, Schramm, Meyer, and Newman [6, 16] have stud-

ied the simulation and representation of wavelength dependent
BRDFs based on explicitly modelled subsurface scattering and
interference. However, their microgeometry simulator [16] uses
only a single wavelength per ray, which we will show is fairly
inefficient.
Dispersion can also be handled with adaptive splitting at dis-

persive interfaces, as in Thomas’ work [18]. However, split-
ting can result in a large number (100+) of secondary rays per
primary ray spread over many wavelengths, far more than are
needed to simply integrate over the spectrum. Individual rays
are also more complex; a spread angle and spread vector must
be carried along after the first dispersive interaction, and split-
ting rules must take this spread angle into account.
Thomas’ approach has been optimized by Yuan et al [22] in

the case of polyhedral objects, using a pencil of three rays to
estimate and simplify the splitting rules. Yuan et al also use
quadratic interpolation of spectral effects to approximate dis-
persion directions, improving performance considerably.
None of the point-sampling approaches considered to date

have been integrated with Monte Carlo global illumination al-
gorithms, such as bidirectional path tracing.

4 Stratified Wavelength Clusters
An ideal and physically correct approach to spectral rendering
should defer projection of spectra onto the perceptual matching
functions until after all light transport has been calculated.
In this case, all transport quantities are spectral distributions

and the colour coordinate integrals should be incorporated into
the sensor responses of the measurement integral [4, 19]:

Yij �

ZZZ
W Y

ij ���x� 
��L���x� 
�� dxd
� d�

with W Y
ij ���x� 
�� � k���y�����Wij�x� 
�� being the spectral

sensor sensitivity1 for pixel ij, for colour coordinate Y . Similar
definitions need to be used for Xij and Zij .
As a simple alternative approach to rendering colour, these

integrals can be estimated using a Monte Carlo approach. All
Monte Carlo rendering techniques generate paths from light

1Adaptive renderers typically use WY
ij

���x� ��� or an appropriate
nonlinear transformation of Y as the “importance”, since the Y colour
component is proportional to the human visual system’s luminance sen-
sitivity under photopic viewing conditions.



sources to the pixel sensors. In a spectral renderer, the genera-
tion of each path should depend on a wavelength �i generated at
random using an importance probability distribution p���, just
as it depends on other random choices to select a subpixel lo-
cation, light source, point on the lens aperture, each reflection
direction at every glossy surface encountered, etc.
After a set of paths have been generated, a weighted average

of the power density transported overN paths can be computed
to estimate the measurement integral:

Yij �
�

N

X
i

W Y
ij ��i�xi� 
�i�L��i�xi� 
�i�

p��i�
�

This approach can tolerate spikes in the illuminants’ spectral
power distribution if p��� is proportional to the chosen illumi-
nant’s power distribution. If other importance sampling distri-
butions are used, for example for glossy reflection, correction
factors should likewise be included in the above calculation. As
is usual in Monte Carlo methods, aliasing energy is converted
into noise rather than systematic error.
Unfortunately, we have found that this direct Monte Carlo

approach, even with quasi Monte Carlo sampling of wavelength
as well as the other important dimensions, leads to an increase
in source variance of up to an order of magnitude relative to the
standard trichromatic approach, with a very objectionable loss
of interpixel colour coherence. This more than triples the error
and renders the naive direct scheme unusable. The problem is
that each path takes almost as much time to calculate as before,
but each carries only roughly a third of the information.
We therefore modify the direct scheme as follows: rather

than choosing a single random wavelength per path, a clus-
ter of K importance sampled, stratified random wavelengths
is generated. This is done by first picking a light source at ran-
dom, then picking a set ofK random numbers stratified intoK
cells �i�K� �i 
 ���K� for i � f	� �� �� � � � � K � �g, and then
warping this set of random numbers through the inverse of the
culmulative normalized spectral power distribution of the light
source. The normalized spectral power distribution itself is used
as p��� in the above estimator.
The rest of the path is then constructed as usual, but the

power transfer is computed for all wavelengths simultane-
ously at every interaction with a surface or with a participat-
ing medium. As noted previously, the incremental cost for the
computation of power transfer for a cluster of wavelengths vs. a
single wavelength is small.
Certain effects, such as specular dispersion (wavelength de-

pendent refraction), can decrease the effectiveness of this strat-
egy, since the direction of the refracted ray becomes a deter-
ministic function of the wavelength. Energy at different wave-
lengths is forced to travel along different paths. In this case, one
of the following strategies must be used:

Strategy 1: Degradation. Transport light energy using a clus-
ter, but if a specular refraction is encountered, discard all
but one of the wavelengths (chosen randomly) and con-
tinue as with the naive single-wavelength approach.

Strategy 2: Splitting. If dispersion forces a change in direc-
tion directly dependent on wavelength, then continue trac-

ing a set of single wavelength paths from the point of dis-
persion [1].

Strategy 3: Deferral. Compute only power transfer for a sin-
gle “primary” wavelength while generating the path. If no
specular dispersive interaction is found, generate a cluster
and compute power transfers at other wavelengths.

Note that all these approaches degrade performance to that of
the direct Monte Carlo approach, but only in the difficult case of
specular dispersion, and only for paths that encounter a specular
interface on an object made of a material with a wavelength
dependent refractive index.
In the case of specular dispersion, the visual effects

(increased colour saturation and monochromaticity) tend to
counter the increased amortized cost of only using one wave-
length per path.
However, the strategies differ in their practical implications.

Degradation throws away some information, but does not have
to go back and do any extra computation afterwards if there is
no specular dispersion. It will be the most successful if spec-
ular dispersion is rare. Splitting will result in many correlated
samples with low power transfer, but does not waste any com-
putation. It will be most successful when computing surface
intersections is relatively expensive, and we are not supersam-
pling heavily anyways. Deferral will unfortunately incur sig-
nificant overhead, invoking reflectance computations twice for
what we assume will be the most common case, non-dispersive
reflection. This will reduce the potential for reuse of computa-
tion and will increase the marginal cost.
Splitting is unbiased since the cluster can just be interpreted

as an optimization for carrying along many paths at once in
the absence of dispersion. Degradation is unbiased because
it is mathematically equivalent to a discrete approximation of
splitting. Instead of continuing all K wavelengths through the
scene, the summation of the split wavelengths is approximated
by chosing one of the wavelengths at random with a probability
of 1/K (thereby increasing its weight by a factor of K). Effec-
tively, the accuracy of the spectral estimator is decreased during
dispersive interactions.
Finally, deferral is unbiased if degradation is, we’ve just re-

ordered the operations and avoided rather than discarded com-
putations.
Effectively, degradation and deferral change the accuracy of

the spectral estimator by increasing or decreasing the number of
strata. Different estimators of the same value can be combined
in an affine combination to produce an unbiased estimator [19].
Note as well if wavelength-dependent importance functions

are used, for example to choose sampling directions for glossy
reflections, that one sample in the cluster, the “primary wave-
length”, should be chosen at random to be representative of the
cluster. This representative sample will have the same proba-
bility distribution with respect to wavelength as the rest of the
cluster.

5 Bidirectional Path Tracing
We have modified a bidirectional path tracer [19] to use strati-
fied wavelength clusters. One of our goals was to incorporate



spectral rendering into a global illumination framework, since
indirect illumination can cause a wide variety of spectra to be
generated in the scene. When paths are shot from the light
source and from the eye, naturally both paths must use the same
wavelength(s) in order for a “join” to be made.
We assume specular dispersion will be rare in real scenes and

so we used degradation, rather than splitting or deferral.
Importance sampling was used for wavelength selection from

the light sources (using their power spectra) and reflection di-
rection selection (using a Phong approximation to the BRDF as
an importance function). One “primary wavelength” was cho-
sen at random from each cluster and used for BRDF importance
calculations as well as for Russian roulette path termination.
Antialiasing was implemented by integration over the sup-

port of a filter function centered at each pixel. The balance
heuristic was used to combine samples from multiple estima-
tors [20]. Depth of field and area sources were not used in our
test images. Adaptive sampling was not used, nor were the im-
ages shown here postprocessed to reduce noise.
We implemented the following four variations for compari-

son purposes:

CMC: Crude Monte Carlo. A pseudorandom number gener-
ator was used (drand��) to generate Monte Carlo param-
eters. Jittering was used to stratify subpixel positioning.

QMC: Quasi Monte Carlo. AHalton sequence generator was
used rather than a pseudorandom number generator. The
primes used to generate the sequence were permuted from
pixel to pixel, to avoid structured aliasing artifacts.

The first few dimensions of a Halton sequence are more
effective at lower sampling rates. As with stratification,
above 10 dimensions or so Halton sequences have effec-
tively the same convergence rate as crude Monte Carlo
[12], and so we only use Halton sequences for the most
important dimensions.

After the selection of a wavelength and subpixel position,
the remaining odd dimensions were used for reflectance
directions on the way from the light source, and the even
dimensions were used for reflections on the way from the
eye.

CMC with SWC: As above, but with stratified wavelength
clusters. Jittered wavelengths were chosen to represent
a spectrum, using the cumulative spectral power distribu-
tion of the illuminant of the light source to perform spec-
tral importance sampling.

If a wavelength dependent specular interaction with a sur-
face occurs, only power transfer for the primary wave-
length is carried forward (i.e. the algorithm degrades to
CMC).

QMC with SWC: As above, but with a Halton sequence gen-
erator rather than a pseudorandom number generator.

However, we found that use of Halton sequences for gen-
erating wavelengths did not work very well, as almost all
the useful dimensions of the Halton sequence would be
used up in the generation of the wavelength cluster, since
each sample in the cluster would require a new dimension.

Instead, a pseudorandom number generator was used to
generate the cluster, which was stratified in the usual way.

Unfortunately, the bidirectional path tracing algorithm has
a flaw: some of the interesting direct and indirect spectral ef-
fects we would like to observe cannot be generated. Specifi-
cally, since the path segments joining the eye and light subpaths
must be deterministically generated, power transfer along these
segments can only be computed between two non-specular sur-
faces. Even light tracing requires that a deterministic (next-
event) ray be shot towards the eye.
Certain effects we would like to observe cannot be generated

with only point sources. For example, the “fire” observed in di-
amonds is the result of specular dispersion, but the path through
the diamond to a point source is entirely specular [22, 18]. An
area source or indirect illumination would permit the genera-
tion of fire, but the specular paths that hit the light source would
still be generated with low probability. This is not a problem
unique to our algorithm; Thomas’ algorithm suffers from a sim-
ilar problem and will have similarily low efficiency if the solid
angle subtended by the light source is small.
On the other hand, we were able to generate spectral caus-

tics, indirect illumination due to these caustics, and chromatic
abberation of nonspecular objects when seen through dispersive
materials.

6 Results
Figures 3, 4, 5, and 6 were four of the scenes we used for testing.
Figure 3 (Scene 1) compares direct lighting vs. global illumi-

nation. Most lighting in this scene is indirect. Colour bleeding
can be seen off the red wall to the right; the yellow colour of the
ceiling is due to the green reflectance of the lamp shades com-
bined with the spectral power distribution of the light source.
The sphere is rendered with an HTSG model of gold, using a
spectrally dependent complex refractive index.
Figure 4 (Scene 2) has only diffuse surfaces. The figure com-

pares the results with and without stratified wavelength clusters,
using CMC sampling. On the top row, we see that at low sam-
pling rates wavelength clusters greatly improve colour coher-
ence. On the bottom rowwe see that clusters improve efficiency,
obtaining much lower RMS error for the same rendering time.
Figure 5 (Scene 3) has mostly diffuse surfaces, although the

glass ball is specular, slightly dispersive, and has a wavelength
dependent absorption function.
In Figure 6 (Scene 4) we demonstrate some of the caustic ef-

fects possible with a spectral renderer. Prisms built with wave-
length dependent glass can be used to cast rainbows on walls,
given a suitably broadband and collimated light source. Like-
wise, although we have not implemented this, rainbows in par-
ticipating media could be produced by simply using the correct
wavelength dependent phase (scattering) function.
This particular scene is somewhat unnatural in that almost all

the light transport paths pass through objects that are specular
and dispersive, since the light source is narrowly collimated.
This scene is a worst case; almost all paths were degraded to
a single wavelength, and some of the effects were sampled by
only a small number of paths. The result is unfortunately rather
noisy.



            

Figure 1: Relative efficiency. RMS error versus rendering time
for the scenes presented here, on log-log scales. The slope of
the line on a log-log graph is an estimate of the exponent e of the
asymptotic convergence in the form O�Ne�. Note the change
of scale for Scene 4 (which is a worst case).

Graphs of the average RMS error vs. CPU time for each of
these scenes is shown in Figure 1. For Scenes 1 and 2 the best
algorithm by far was quasi Monte Carlo sampling combined
with stratified wavelength clusters. Eventually plain (single-
wavelength per path) QMC catches up, but only at unreasonably
high sampling rates. At low sampling rates, the majority of the
reduction in the RMS error can be attributed to the introduction
of wavelength clustering.
Scenes 3 and 4 test the degradation of the clustering algo-

rithm in the presence of specular and dispersive materials. In
Scene 3, the degradation is slight because most paths are not
degraded to a single wavelength.
In Scene 4, however, simple QMC is the winner, and Crude

Monte Carlo actually beats the algorithm with clusters, since
the overhead of degradation does not occur.
It would be possible to automatically switch to one of the

alternative strategies as needed. For example, if a pilot sam-
ple shows that most paths are specularly dispersive, then simple
single-wavelength QMC can be used, or deferral. Likewise, if
more complex scenes are used and it is found that computing
surface intersections is much more time-consuming than com-
puting reflectances, then the splitting strategy can be used.
We have also experimented with different numbers of wave-

lengths in a cluster. As shown in Figure 2, for Scenes 1 and 2
most of the improvement in performance was for the first three

wavelengths. There was very little benefit beyond nine wave-
lengths, and beyond fifteen wavelengths efficiency started de-
creasing. Most other scenes we tested had almost identical be-
haviour, except for Scene 4, in which a cluster size of one was
optimal. An optimal cluster size of eight or nine is in agreement
with previous observations that eight or nine spectral point sam-
ples can capture most spectral effects. However, our technique
avoids aliasing, since all wavelength samples are also random-
ized.

7 Conclusions
A strategy for incorporating spectral phenomena into Monte
Carlo renderers has been presented. This technique has little im-
pact on performance when geometric and spectral phenomena
are not deterministically related (for example, in the absence of
specular dispersion), but improves colour accuracy.
AMonte Carlo global illumination algorithm such as bidirec-

tional path tracing can split or degrade wavelength clusters only
when needed to render spectral caustics, chromatic abberation,
and other dispersive phenomena. The performance degradation
is therefore proportional to the fraction of paths that encounter
the dispersive material. However, the decrease in path gener-
ation efficiency is offset by the colour coherency (and lower
source variance) typically generated by dispersion.
The clustering technique is applicable not only to bidirec-

tional path tracers, but can also be applied easily to Monte
Carlo ray tracers and potentially extended to other Monte Carlo
global illumination algorithms. A renderer using Metropolis’
light transport algorithm [21] could mutate one wavelength in
a cluster at a time, or could mutate a cluster by warping it,
for example. This would be particularly interesting in the case
of “spiky” reflectance functions; by importance sampling using
only illumination spectra, we implicitly assume that reflectance
spectra are smooth.
In a naive extension of the photon map approach proposed by

Jensen and Christensen [9], the bundle of wavelengths carried
by a cluster would have to be stored for every hit. A k-nearest
neighbour density estimation could be performed in the spectral
domain as well as the spatial domain during the gather pass.
Unfortunately, storing this amount of data might be infeasible.

            

Figure 2: RMS error vs. cluster size for Scenes 1 and 2, on a
linear scale.



Projection onto a fixed set of basis functions might be a more
suitable approach in this circumstance.
More research needs to be done to determine how to imple-

ment spectral rendering effectively in these classes of rendering
algorithms.
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Figure 4: Scene 2: Diffuse environ-
ment, indirect illumination.

            

            

Figure 3: Scene 1: Raytracing vs. bidi-
rectional path tracing.
            

            

Figure 5: Scene 3: Dispersion and ab-
sorption.

            

            

            

            

Figure 6: Scene 4: Spectral caustics
cast by a prism and a sphere from a
collimated broadband light source.


