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Abstract

 

This paper describes a texture generation technique that
combines orientation and luminance to support the
simultaneous display of multiple overlapping scalar
fields. Our orientations and luminances are selected
based on psychophysical experiments that studied how
the low-level human visual system perceives these
visual features. The result is an image that allows view-
ers to identify data values in an individual field, while at
the same time highlighting interactions between differ-
ent fields. Our technique supports datasets with both
smooth and sharp boundaries. It is stable in the presence
of noise and missing values. Images are generated in
real-time, allowing interactive exploration of the under-
lying data. Our technique can be combined with existing
methods that use perceptual colours or perceptual tex-
ture dimensions, and can therefore be seen as an exten-
sion of these methods to further assist in the exploration
and analysis of large, complex, multidimensional
datasets.

 

Keywords: computer graphics, human vision, lumi-
nance, multidimensional, orientation, perception, tex-
ture, scientific visualization.

 

1  Introduction

 

This paper describes a new texture generation technique
designed to allow rapid visual exploration and analysis
of multiple overlapping scalar fields. Our technique falls
in the area of 

 

scientific visualization,

 

 the conversion of
collections of strings and numbers (called datasets) into
images that viewers can use to “see” values, structures,
and relationships embedded in their data. A 

 

multidimen-
sional dataset

 

 contains a large number of data elements,
where each element encodes 

 

n

 

 separate attributes
. For example, a weather dataset is made up of

data elements representing weather station readings.
Each element encodes a latitude, longitude, and eleva-
tion, a time and date readings were taken, and environ-
mental conditions like temperature, pressure, humidity,
precipitation, wind speed, and wind direction. An open
problem in scientific visualization is the construction of
techniques to display data in a multidimensional dataset
in a manner that supports effective exploration and anal-
ysis [14, 20].

Previous work on this problem has suggested select-
ing 

 

n

 

 visual features (

 

e.g.,

 

 spatial location, hue, lumi-
nance, size, contrast, directionality, or motion) to
represent each of the 

 

n

 

 attributes embedded in the
dataset. Although this technique can work well in prac-
tice, a number of limitations need to be considered:

 

•

 

dimensionality:

 

 as the number of attributes 

 

n

 

 in the
dataset grows, it becomes more and more difficult to
find additional visual features to represent them.

 

•

 

interference:

 

 different visual features will often
interact with one another, producing visual interfer-
ence; these interference effects must be controlled or
eliminated to guarantee effective exploration and
analysis.

 

•

 

attribute-feature matching: 

 

different visual features
are best suited to a particular type of attribute and
analysis task; an effective visualization technique
needs to respect these preferences.

The weather dataset (and numerous other practical
applications) can be viewed as a collection of 

 

n

 

 scalar
fields that overlap spatially with one another. Rather
than using 

 

n

 

 visual features to represent these fields, we
use only two: orientation and luminance. For each scalar
field (representing attribute ) we select a constant ori-
entation ; at various spatial locations where a value

 exists, we place a corresponding

 

 sliver texture

 

oriented at . The luminance of the sliver texture
depends on : the maximum  produces a
white (full luminance) sliver, while the minimum

 produces a black (zero luminance) sliver. A
perceptually-balanced luminance scale running from
black to white is used to select a luminance for an inter-
mediate value ,  (this scale was built
to correct for the visual system’s approximately loga-
rithmic response to variations in luminance [8]).

Figure 1a shows a uniformly-sampled  patch
from a hypothetical scalar field. Values in the field are
represented as greyscale swatches in Figure 1b. A con-
stant orientation of 0º is used to represent values in the
field (slivers rotated 0º are placed at the spatial locations
for each reading in the field, shown in Figure 1c).
Blending these two representations together produces
the final image (Figure 1d), a layer of variable-lumi-
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nance slivers showing the positions and values of all the
data in the original field.

Multiple scalar fields are displayed by compositing
their sliver layers together. Figure 2a-b shows two sepa-
rate sliver layers representing two scalar fields. The first
field uses slivers oriented 0º; the second uses slivers ori-
ented 90º. When a viewer visualizes both fields simulta-
neously, the sliver layers are overlayed to produce the
single image shown in Figure 2c. This image allows the

viewer to locate values in each individual field, while at
the same time identifying important interactions
between the fields. The use of thin, well separated sliv-
ers is key to allowing values from multiple fields to
show through in a common spatial location. A viewer
can use these images to:

 

•

 

determine which fields are prominent in a region,

 

•

 

determine how strongly a given field is present,

 

•

 

estimate the relative weights of the field values in the
region, and

 

•

 

locate regions where all the fields have low, medium,
or high values.

We continue with a discussion of related work, focusing
in particular on the use of texture patterns for multidi-
mensional data display. Next, we describe the psycho-
physical experiments we used to determine how to
select perceptually salient orientations. Although our
visualization technique is applicable to a wide range of
practical applications, we were originally motivated by a
specific problem: the display of multiple atomic surface
properties measured with a scanning electron micro-
scope. We conclude by showing how our technique can
be used to visualize datasets from this domain.

 

2  Related Work

 

Several techniques exist for displaying multidimen-
sional datasets on an underlying surface or height field.

 

Figure 1. (a) a  patch of values from a scalar field; (b)
the patch represented by greyscale swatches; (c) a collection of
slivers oriented 0º at each data value location; (d) the greyscale
map and slivers are combined to produce the final sliver layer
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Figure 2. (a,b) two scalar fields represented with 0º and 90º,
respectively; (c) both fields displayed in a single image,
overlapping values show as elements that look like plus signs

(c)
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A good overview of some of these techniques is pre-
sented in Keller and Keller [10]. Our work is most simi-
lar to methods that use textures or glyphs to represent
multiple attribute values at a single spatial location. We
therefore focus our study of previous work on this broad
area.

Texture has been studied extensively in the computer
vision, computer graphics, and cognitive psychology
communities. Although each group focuses on separate
tasks (

 

e.g.,

 

 texture segmentation and classification,
information display, or modelling the human visual sys-
tem), they each need ways to describe precisely the tex-
tures being identified, classified, or displayed. Statistical
methods and perceptual techniques are both used to
analyse texture [19]. Our focus in this paper is on identi-
fying and harnessing the perceptual features that make
up a texture pattern. Experiments conducted by Julész
led to the texton theory [9], which suggests that early
vision detects three types of texture features (or tex-
tons): elongated blobs with specific visual properties
(

 

e.g

 

, colour or orientation), ends of line segments, and
crossings of line segments. Tamura et al. [21] and Rao
and Lohse [18] identified texture dimensions by con-
ducting experiments that asked subjects to divide pic-
tures depicting different types of textures (Brodatz
images) into groups. Tamura et al. used their results to
propose methods for measuring coarseness, contrast,
directionality, line-likeness, regularity, and roughness.
Rao and Lohse applied multidimensional scaling to
identify the primary texture dimensions used by their
subjects to group images: regularity, directionality, and
complexity. Haralick et al. [3] built greyscale spatial
dependency matrices to identify features like homoge-
neity, contrast, and linear dependency. Liu and Picard
[13] used Wold features to synthesize texture patterns. A
Wold decomposition divides a 2D homogeneous pattern
(

 

e.g.,

 

 a texture pattern) into three mutually orthogonal
components with perceptual properties that roughly cor-
respond to periodicity, directionality, and randomness.

Work in computer graphics has studied methods for
using texture patterns to display information during
visualization. Grinstein et al. [2] built “stick-men” icons
to produce texture patterns that show spatial coherence
in a multidimensional dataset. Ware and Knight [26]
used Gabor filters to construct texture patterns;
attributes in an underlying dataset are used to modify the
orientation, size, and contrast of the Gabor elements
during visualization. Turk and Banks [24] described an
iterated method for placing streamlines to visualize two-
dimensional vector fields. Interrante [6] displayed tex-
ture strokes to help show three-dimensional shape and
depth on layered transparent surfaces. Healey and Enns
[4, 5] described perceptual methods for measuring and
controlling perceptual texture dimensions during multi-

dimensional visualization. van Wijk [25], Cabral and
Leedom [1], and Interrante and Grosch [7] used spot
noise and line integral convolution to generate texture
patterns to represent an underlying flow field. Finally,
Laidlaw described painterly methods for visualizing
multidimensional datasets with up to seven values at
each spatial location [11, 12].

Our technique is perhaps most similar to the stick-
man method used in EXVIS [2], or to the pexels (per-
ceptual texture elements) of Healey and Enns [4, 5].
EXVIS shows areas of coherence among multiple
attributes by producing characteristic texture patterns in
these areas. We extend this technique by allowing a
viewer to estimate relative values within an individual
field, while still producing the characteristic textures
needed to highlight interactions between different fields.

 

3  Orientation Categories

 

In order to effectively represent multiple scalar fields
with different orientations, we need to know how the
visual system distinguishes between orientations. In
simple terms, we want to determine whether the visual
system differentiates orientation using a collection of
perceptual orientation categories. If these categories
exist, it might suggest that the low-level visual system
can rapidly distinguish between orientations that lie in
different categories.

Psychophysical research on this problem has pro-
duced a number of interesting yet incomplete conclu-
sions. Some researchers believe only three categories of
orientation exist: flat, tilted, and upright [27]. Others
suggest a minimum rotational difference 

 

d

 

 is necessary
to perceive a spatial collection of target elements ori-
ented 

 

tg

 

 in a field of background elements oriented 

 

bg

 

(

 

i.e.,

 

 ). More recent work has shown that 

 

d

 

is dependent on 

 

bg

 

 [15, 16]. For example, if the back-
ground elements are oriented 0º (

 

i.e.

 

, horizontal or flat),
only a small rotation may be needed to differentiate a
group of target elements (

 

e.g.,

 

 

 

tg

 

 = 10º and 

 

d

 

 = 

 

tg

 

 - 

 

bg

 

 =
10º). On the other hand, a much larger rotational differ-
ence might be necessary to distinguish a target group in
a sea of background elements oriented 20º (

 

e.g., tg

 

 = 40º
and 

 

d

 

 = 

 

tg

 

 - 

 

bg

 

 = 20º). Based on these results, we seek to
construct a function 

 

f(bg)

 

 that will report the amount of
rotational difference 

 

d

 

 needed to perceive a group of tar-
get elements oriented 

 

tg

 

 = 

 

bg

 

 + 

 

d

 

 in a sea of background
elements oriented 

 

bg

 

.

 

3.1  Experiment Design

 

We began our investigation by attempting to construct a
discrete function

 

 f(bg)

 

 for 19 different background ori-
entations of 0, 5, 10, ..., 90º. The function 

 

f

 

 returns rota-
tional differences in 5º intervals (

 

e.g.,

 

 

 

d

 

 = 5º, 

 

d

 

 = 10º, 

 

d

 

 =

d tg bg–=



 

15º, and so on). Our experiment was designed to answer
the following questions:

 

•

 

In a sea of background elements oriented 

 

bg

 

, how
much counterclockwise rotation  is needed to
differentiate a group of target elements oriented 

 

tg

 

 =

 

bg

 

 + ?

 

•

 

How much clockwise rotation  is needed to dif-
ferentiate a group of target elements oriented 

 

tg

 

 = 

 

bg

 

- ?

 

•

 

For a given background 

 

bg

 

, do  and  differ
significantly?

 

•

 

Do certain backgrounds (

 

e.g.,

 

 the cardinal directions
0, 45, and 90º) have significantly lower  or ?

 

•

 

What is the maximum number of rapidly distin-
guishable orientations we can construct in the range
0–90º?

The initial experiment was divided into two parts: one to
test background orientations from 0–45º, the other to
test background orientations 45–90º. We describe trials
in the 0–45º experiment. Apart from the specific orienta-
tions used, the design of the 45–90º experiment was
identical.

During the experiment the background orientation
was increased in 5º steps from 0º to 45º. This resulted in
10 different background subsections (0, 5, 10, ..., 45º).
Every possible target orientation was tested for each
separate background. For example, targets oriented 5,
10, 15, 20, 25, 30, 35, 40, and 45º were tested in a sea of
background elements oriented 0º. Targets oriented 0, 5,
10, 20, 25, 30, 35, 40, and 45º were tested in a sea of
background elements oriented 15º.

A total of 540 trials were run during the experiment
(six for each of the 90 different background/target
pairs). Each trial contained a total of 400 rectangles
arrayed on a  grid. The position of each rectangle

was randomly jittered to introduce a measure of irregu-
larity. Three trials for each background/target pair con-
tained a  target patch (as in Figure 3a, c); the other
three did not (as in Figure 3b). Twenty undergraduate
psychology students were randomly selected to partici-
pate during the experiment (ten for the 0–45º experi-
ment and ten for the 45–90º experiment). Subjects were
asked to answer whether a target patch with an orienta-
tion different from the background elements was present
or absent in each trial. They were told that half the trials
would contain a target patch, and half would not. Sub-
jects were instructed to answer as quickly as possible,
while still trying to maintain an accuracy rate of 90% or
better. Feedback was provided after each trial to inform
subjects whether their answer was correct. The entire
experiment took approximately one hour to complete.
Subject accuracies (1 for a correct answer, 0 for an
incorrect answer) and response times (automatically
recorded based on the vertical refresh rate of the moni-
tor) were recorded after each trial for later analysis.

 

3.2  Results

 

Mean subject response times 

 

rt

 

 and mean subject error
rates 

 

e

 

 were used to measure performance. A combina-
tion of multi-factor analysis of variance (ANOVA) and
least-squares line fitting showed:

1. A target oriented  or more from its back-
ground elements resulted in the highest accuracies
and the fastest response times, regardless of back-
ground orientation.

2.

 

e

 

 for backgrounds oriented 0 or 90º was significantly
lower than for the other backgrounds.

3.

 

e

 

 for targets oriented 0º or 90º was significantly
higher than for the other targets, suggesting an asym-
metry (good as a background, bad as a target) for
these orientations.
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Figure 3. An example of three experiment displays: (a) a 10º target in a 0º background (target is five steps right and eight steps up
from the lower left corner of the array); (b) a 30º background with no target; (c) a 65º target in a 55º background (target is six steps
left and seven steps up from the lower right corner of the array)



4. There were no systematic differences in either e or rt
between clockwise and counterclockwise rotations
about any background orientation.

5. There was no significant difference in e between the
0–45º and the 45–90º experiments for corresponding
background/target pairs, however, within the

 range rt was slower during the 45–90º
experiment, compared to the 0–45º experiment.

Regardless of the specific background orientation being
displayed, any target oriented  or more from
the background produced near-perfect accuracy and fast
response times (F(1, 90) = 8.06, p < 0.01 and F(1, 90) =
2.96, p < 0.05 for e and rt, respectively, in the 
range). This suggests that any target with an absolute
rotational difference of 15º or more from the back-
ground can be rapidly and accurately perceived.

When background elements were oriented 0 or 90º,
targets were detected more accurately (F(9, 810) =
12.82, p < 0.001 at d = 5º). On the other hand, targets
oriented 0 or 90º were detected less accurately (e.g, a
90º target in a background of elements rotated 85 or 80º,
or a 0º target in a background of elements rotated 5 or
10º; F(1, 162) = 48.02, p < 0.001 at d = 5º; F(1, 162) =
29.91, p < 0.001 at d = 10º). This orientation asymmetry
is documented in the psychophysical literature [22, 23].
In terms of visualization, it suggests we should treat the
cardinal directions 0 and 90º carefully; although they
produce less visual interference (i.e., they act well as
background orientations), they can be significantly more
difficult to detect (i.e., they act poorly as target orienta-
tions).

We found a small but statistically significant
increase in rt during the 45–90º experiment (F(1, 90) =
6.08, p < 0.05 over the  range, shown by
brighter strips in Figure 4b). Since the overall pattern of

response times between the two experiments is identi-
cal, we believe this result is due to a difference between
subjects (i.e., subjects in the 45–90º experiment simply
needed more time to feel comfortable about the answers
they gave). Even if the results are significant for all
viewers, the small differences we encountered would
not be important for applications that allow a viewer to
spend time exploring an image. However, these differ-
ences could be important in real-time environments or
during long viewing sessions. Additional experiments
are needed to determine if any real differences in
response times exist.

Two additional findings allow us to simplify our
selection of orientations. First, there were no systematic
differences in either e or rt between clockwise and coun-
terclockwise rotations about any background orienta-
tion. In three cases (backgrounds of 55, 65, and 70º)
clockwise rotations were significantly faster; in two
other cases (backgrounds of 25 and 30º) counterclock-
wise rotations were significantly faster. Since subjects
did not exhibit a consistent preference for either direc-
tion, we concluded that we can rotate the same amount
in either direction to make a target patch salient from its
background elements. Finally, there was no significant
difference in e between the 0–45º experiment and the
45–90º experiment (F(1, 18) = 0.157, p = 0.6893). This
means that, given a reasonable amount of time to search,
accuracy in each set of backgrounds is statistically
equal, and the two ranges can be considered mirror
images of one another.

We conclude by noting that our experiments investi-
gated how to distinguish multiple orientations from one
another. This is a first step towards determining how
many orientations the visual system can identify simul-
taneously (i.e., the ability to identify the presence or
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Figure 4. (a) results for the 0–45º experiment, one strip for each background/target pair; the height of the strip represents e (taller
for more errors), the brightness of the strip represents rt (brighter for longer response times); locations where bg = tg (the
diagonals on each graph) represent target absent trials; (b) results for the 45–90º experiment
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absence of a sliver with a specific orientation). Our
results provide a solid foundation from which to build
future experiments that study the question “How many
different orientations can I identify from one another?”

3.3  Emergent Features

An overlap between high-value regions in different sca-
lar fields appears as a collection of slivers sharing com-
mon spatial locations. The overlapping slivers form
shapes like plus, X, or star. It is often critical for viewers
to be able to identify these overlapping regions.
Although we did not conduct experiments on the per-
ceptual salience of each type of overlap, the shapes they
form fall into the broad category of emergent features
[17]. An emergent feature is created by grouping several
simpler shapes together. Although emergent features
cannot always be predicted by examining the simpler
shapes in isolation, they result in perceptually salient
visual properties like intersection, closure, and shape (or
curvature). We believe that all of the overlapping sliver
types will produce at least one emergent feature (e.g.,
every overlap will produce an intersection between the
slivers). The emergent features make the locations of the
overlapping regions salient from neighbouring, non-
overlapping areas.

4  Implementation
Figure 1 shows the general process for creating one
sliver layer. The slivers in Figure 1 are positioned on an
underlying regular grid. In practice, however, we must
jitter the placement of each sliver. This helps to prevent
the technique from imposing any strong artificial struc-
ture on the data. Separating the slivers is also necessary
to allow multiple slivers with different orientations to
show through at common spatial locations. The base
texture used to make the images in this paper is 10%
sliver, 90% empty. We employed the image-guided
streamline placement package of Turk and Banks [24]
on a constant vector field to generate the base texture.
Since we viewed this as a pre-processing step, the time
used to build the base texture was not a critical concern.

Next, we assign an orientation to each scalar field in
the dataset. Since slivers oriented 0–180º are mirror
images of slivers rotated 180–360º, we restricted our
selections to the 0–180º range. During implementation
we assumed the experimental results from our 0–90º
range were identical for orientations covering 90–180º.
Anecdotal findings during the use of our system suggest
this assumption is valid. We can immediately obtain 13
separate orientations by simply using a constant differ-
ence d = 15º. If we choose to treat the cardinal directions
0º and 180º as special background cases that only
require targets with 5º of rotational difference, we can
increase the number of separate orientations to 15.

Once an easily distinguishable orientation is
assigned to each scalar field, the sliver layers can be
constructed. The values in each field modulate the inten-
sity of the slivers in the field’s layer. In order to avoid an
obvious artifact in the center of the final image, the cen-
ters of rotation for every layer are different. We accom-
plish this by translating each layer’s texture centers to
different points on a uniform grid. The layers are then
overlayed on top of one another. The final texture is the
per-pixel maximum of the overlapping sliver layers
(using the maximum avoids highlights produced by
averaging or summing overlapping luminances values).

We create only one base texture, rotating and trans-
lating it to form the other orientations. Alternatively, we
could produce a separate base texture for each scalar
field. The use of multiple base textures would prevent
the appearance of regions with similar orientation-inde-
pendent structures. Since we did not notice this phenom-
ena in practice, we chose not to address this problem.
Using a single base texture allows our technique to gen-
erate a  image with nine scalar fields at nine
frames per second on a workstation with eight R10000
processors.

5  Practical Applications
The application for which this technique was originally
developed is the display of multiple data fields from a
scanning electron microscope (SEM). Each field repre-
sents the concentration of a particular element (oxygen,
silicon, carbon, and so on) across a surface. Physicists
studying mineral samples need to determine what ele-
ments make up each part of the surface and how those
elements mix. By allowing the viewer to see the relative
concentrations of the elements in a given area, our tech-
nique enables recognition of composites more easily
than side-by-side comparison, especially for situations
where there are complex amalgams of materials.

Figure 5a shows sliver layers representing eight sep-
arate elements: calcium (15º), copper (30º), iron (60º),
magnesium (75º), manganese (105º), oxygen (120º),
sulphur (150º), and silicon (165º). The orientations for
each layer were chosen to ensure no two layers have an
orientation difference of less than 15º. Figure 5b shows
the eight layers blended together to form a single image.
Figure 5c changes the orientations of silicon and oxygen
to 90º and 180º, respectively, to investigate a potential
interaction between the two (the presence of silicon
oxide in the upper right, upper left, and lower left where
regions of “plus sign” textures appear).

6  Conclusions and Future Work
This paper describes a technique for using orientation
and luminance to visualize multiple overlapping scalar
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fields simultaneously in a single image. Values in each
field are represented by sliver textures oriented at a fixed
rotation . A sliver’s luminance is selected based on the
relative strength of the scalar field at the sliver’s spatial
location. We conducted psychophysical experiments to
study how the low-level human visual system perceives
differences in orientation. This knowledge was used to
choose orientations for each field that were easy to dis-
tinguish. Our results suggest up to 15 orientations in the
0–180º range can be rapidly and accurately differenti-
ated. The greyscale ramp used to assign a luminance to
each sliver was also constructed to be perceptually lin-
ear. The result is an image that shows data values in each
individual field, while at the same time highlighting
important interactions between the fields.

Our technique varies a sliver’s luminance, leaving
chromaticity (hue and saturation) free for other uses. For
example, an isoluminant, medium-intensity colour back-
ground will highlight slivers with high or low field val-
ues. If many fields have common values in the same
spatial region, we can help to identify their individual
boundaries by displaying some of the fields using

colour. Important fields can be shown in colour rather
than greyscale to further enhance their distinguishabil-
ity. Recent work in our laboratory has successfully com-
bined sliver textures with perceptual colour selection
techniques, thereby increasing the amount of informa-
tion we can represent in a single display.

Orientation has been identified as a perceptual tex-
ture dimension, a fundamental property of an overall
texture pattern. We can vary other perceptual texture
dimensions of each sliver (e.g., their size or density) to
encode additional data values. We want to note that we
are forming a single texture pattern by varying its under-
lying texture dimensions. It is not possible to overlay
multiple texture patterns (e.g., spot noise and slivers) to
visualize multiple data attributes; in fact, the inability to
analyse texture patterns displayed on top of one another
was one of the original motivations for this work.

Finally, this paper focuses on 2D orientation. Future
work will study the use of 3D orientation. The first ques-
tion of interest is: “Which 3D orientation properties are
perceptually salient from one another?” Research in the
psychophysical community has started to address

oi
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Figure 5. (a) eight sliver layers representing calcium (15º), copper (30º), iron (60º), magnesium (75º), manganese (105º), oxygen
(120º), sulphur (150º), and silicon (165º); (b) all eight layers blended into a single image; (c) silicon and oxygen re-oriented at 90º
and 180º, respectively, to highlight the presence of silicon oxide (as a “plus sign” texture) in the upper right, upper left, and lower
left corners of the image



exactly this question. Once these properties are identi-
fied, we can conduct experiments to test their ability to
encode information, both in isolation and in combina-
tion with one another. Three-dimensional orientation
properties may allow us to represent 3D scalar volumes
as clouds of oriented slivers in three-space. As with 2D
slivers, we want to investigate the strengths and limita-
tions of this type of technique vis-a-vis traditional meth-
ods of volume rendering and volume visualization.

References
[1] CABRAL, B. AND LEEDOM, L. C. Imaging vector fields

using line integral convolution. In SIGGRAPH ’93 Con-
ference Proceedings (Anaheim, California, 1993), pp.
263–270. 

[2] GRINSTEIN, G., PICKETT, R., AND WILLIAMS , M. EXVIS:
An exploratory data visualization environment. In Pro-
ceedings Graphics Interface ’89 (London, Canada,
1989), pp. 254–261.

[3] HARALICK , R. M., SHANMUGAM , K., AND DINSTEIN, I.
Textural features for image classification. IEEE Transac-
tions on System, Man, and Cybernetics SMC-3, 6 (1973),
610–621.

[4] HEALEY, C. G. AND ENNS, J. T. Building perceptual tex-
tures to visualize multidimensional datasets. In Proceed-
ings Visualization ’98 (Research Triangle Park, North
Carolina, 1998), pp. 111–118.

[5] HEALEY, C. G. AND ENNS, J. T. Large datasets at a
glance: Combining textures and colors in scientific visu-
alization. IEEE Transactions on Visualization and Com-
puter Graphics 5, 2 (1999), 145–167.

[6] INTERRANTE, V. Illustrating surface shape in volume
data via principle direction-driven 3D line integral con-
volution. In SIGGRAPH ’97 Conference Proceedings
(Los Angeles, California, 1997), pp. 109–116.

[7] INTERRANTE, V. AND GROSCH, C. Visualizing 3D flow.
IEEE Computer Graphics & Applications 18, 4 (1998),
49–53.

[8] INTERRANTE, V., FERWERDA, J., GOSSWEILER, R., HEA-

LEY, C. G. AND RHEINGANS, P. Applications of Visual
Perception in Computer Grpahics. SIGGRAPH 98
Course 32 (Orlando, Florida, 1992).

[9] JULÉSZ, B. A brief outline of the texton theory of human
vision. Trends in Neuroscience 7, 2 (1984), 41–45.

[10] KELLER, P. AND KELLER, M. Visual cues: Practical data
visualization. IEEE Computer Society Press, Los Alami-
tos, California, 1991.

[11] KIRBY, R. M., MARMANIS, H., AND LAIDLAW , D. H.
Visualizing multivalued data from 2D incompressible
flows using concepts from painting. In Proceedings Visu-
alization ’99 (San Francisco, California, 1999), pp. 333–
340.

[12] LAIDLAW , D. H., AHRENS, E. T., KREMERS, D., AWA-

LOS, M. J., JACOBS, R. E., AND READHEAD, C. Visualiz-
ing diffuse tensor images of the mouse spinal cord. In
Proceedings Visualization ’98 (Research Triangle Park,
North Carolina, 1998), pp. 127–134.

[13] LIU, F. AND PICARD, R. W. Periodicity, directionality,
and randomness: Wold features for perceptual pattern
recognition. In Proceedings 12th International Confer-
ence on Pattern Recognition (Jerusalem, Israel, 1994),
pp. 1–5.

[14] MCCORMICK, B. H., DEFANTI, T. A., AND BROWN, M.
D. Visualization in scientific computing—A synopsis.
Computer Graphics & Applications 7, 7 (1987), 61–70.

[15] NOTHDURFT, H-C. Orientation sensitivity and texture
segmentation in patterns with different line orientations.
Vision Research 25 (1985), 551–560.

[16] NOTHDURFT, H-C. Texture segmentation and pop-out
from orientation contrast. Vision Research 31, 6 (1991),
1073–1078.

[17] POMERANTZ, J. R. AND PRISTACH, E. A. Emergent fea-
tures, attention, and perceptual glue in visual form atten-
tion. Journal of Experimental Psychology: Human
Perception & Performance 15, 4 (1989), 635–649.

[18] RAO, A. R. AND LOHSE, G. L. Identifying high level fea-
tures of texture perception. Computer Vision, Graphics,
and Image Processing: Graphical Models and Image
Processing 55, 3 (1993), 218–233.

[19] REED, T. R. AND HANS DU BUF, J. M. A review of recent
texture segmentation and feature extraction techniques.
Computer Vision, Graphics, and Image Processing:
Image Understanding 57, 3 (1993), 359–372.

[20] SMITH, P. H. AND VAN ROSENDALE, J. Data and visual-
ization corridors report on the 1998 CVD workshop
series. Technical Report CACR-164 (sponsored by DOE
and NSF), Center for Advanced Computing Research,
California Institute of Technology, 1998.

[21] TAMURA, D., MORI, S., AND YAMAWAKI , T. Textural
features corresponding to visual perception. IEEE Trans-
actions on Systems, Man, and Cybernetics SMC-8, 6
(1978), 460–473.

[22] TRIESMAN, A. AND GORMICAN, S. Feature analysis in
early vision: evidence from search asymmetries. Psycho-
logical Review 95, 1 (1988), 15–48.

[23] TRIESMAN, A. Search, similarity, and integration of fea-
tures between and within dimensions. Journal of Experi-
mental Psychology: Human Perception & Performance
17, 3 (1991), 652–676.

[24] TURK, G. AND BANKS. D. Image-guided streamline
placement. In SIGGRAPH ’96 Conference Proceedings
(New Orleans, Louisiana, 1996), pp. 453–460.

[25] VAN WIJK, J.J. Spot noise, texture synthesis for data
visualization. In SIGGRAPH ’91 Conference Proceed-
ings (Las Vegas, Nevada, 1991), pp. 309–318.

[26] WARE, C. AND KNIGHT, W. Using visual texture for
information display. ACM Transactions on Graphics 14,
1 (1995), 3–20.

[27] WOLFE, J. M., FRIEDMAN-HILL , S. R., STEWART, M. I.,
AND O’CONNELL, K. M. The role of categorization in
visual search for orientation. Journal of Experimental
Psychology: Human Perception & Performance 18, 1
(1992), 39–49.


