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Abstract Previous work on this problem has suggested select-

This paper describes a texture generation technique thig N visual featurese(g., spatial location, hue, lumi-
combines orientation and luminance to support th&'@nce, size, contrast, directionality, or motion) to
simultaneous display of multiple overlapping scalar€Present each of the attributes embedded in the
fields. Our orientations and luminances are selectef@t@set. Although this technique can work well in prac-
based on psychophysical experiments that studied hoflf€: & number of limitations need to be considered:

the low-level human visual system perceives these* dimensionality:as the number of attributesin the
visual features. The result is an image that allows view- dataset grows, it becomes more and more difficult to
ers to identify data values in an individual field, while at  find additional visual features to represent them.

the same time highlighting interactions between differ- ® interference: different visual features will often
ent fields. Our technique supports datasets with both interact with one another, producing visual interfer-
smooth and sharp boundaries. It is stable in the presence ence; these interference effects must be controlled or
of noise and missing values. Images are generated in eliminated to guarantee effective exploration and
real-time, allowing interactive exploration of the under-  analysis.

lying data. Our technique can be combined with existinge attribute-feature matchingdifferent visual features
methods that use perceptual colours or perceptual tex- are best suited to a particular type of attribute and
ture dimensions, and can therefore be seen as an exten-analysis task; an effective visualization technique
sion of these methods to further assist in the exploration needs to respect these preferences.

and analysis of large, complex, multidimensional

The weather dataset (and numerous other practical
datasets.

applications) can be viewed as a collectiomafcalar
Keywords: computer graphics, human vision, lumi-fields that overlap spatially with one another. Rather
nance, multidimensional, orientation, perception, tex-than usingn visual features to represent these fields, we

ture, scientific visualization. use only two: orientation and luminance. For each scalar
. field (representing attribut®, ) we select a constant ori-
1 Introduction entationo, ; at various spatial locations where a value

This paper describes a new texture generation technique” A, exXists, we place a correspondisigver texture
designed to allow rapid visual exploration and analysi®riented ato; . The luminance of the sliver texture
of multiple overlapping scalar fields. Our technique fallsdepends ong; : the maximuma,,,0A  produces a
in the area obcientific visualizationthe conversion of White (full luminance) sliver, while the minimum
collections of strings and numbers (called datasets) int&min C A; Produces a black (zero luminance) sliver. A
images that viewers can use to “see” values, structureBerceptually-balanced luminance scale running from
and relationships embedded in their datanditidimen- ~ black to white is used to select a luminance for an inter-
sional datasetontains a large number of data elementsimediate values; a,,<a <an,, (this scale was built
where each element encodes separate attributes to correct for the visual system’s approximately loga-
A,, ..., A,. For example, a weather dataset is made up dfthmic response to variations in luminance [8]).

data elements representing weather station readings. Figure 1a shows a uniformly-sampled= 20 patch
Each element encodes a latitude, longitude, and elevd#0m a hypothetical scalar field. Values in the field are
tion, a time and date readings were taken, and envirofiepresented as greyscale swatches in Figure 1b. A con-
mental conditions like temperature' pressure, humiditﬁtant orientation of 0° is used to represent values in the
precipita’[ion, wind Speed, and wind direction. An Openﬁeld (S"VETS rotated 0° are placed at the spatial locations
problem in scientific visualization is the construction offor each reading in the field, shown in Figure 1c).
techniques to display data in a multidimensional datasd?lending these two representations together produces
in a manner that supports effective exploration and anathe final image (Figure 1d), a layer of variable-lumi-
ysis [14, 20].
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Figure 2. (a,b) two scalar fields represented with 0° and 90°,
respectively; (c) both fields displayed in a single image,
overlapping values show as elements that look like plus signs

(b) © viewer to locate values in each individual field, while at

| the same time identifying important interactions
between the fields. The use of thin, well separated sliv-
ers is key to allowing values from multiple fields to
show through in a common spatial location. A viewer
can use these images to:

¢ determine which fields are prominent in a region,

¢ determine how strongly a given field is present,

¢ estimate the relative weights of the field values in the
region, and

* |ocate regions where all the fields have low, medium,
or high values.

(d)

We continue with a discussion of related work, focusing
Figure 1. (a) @20x 20 patch of values from a scalar field; (b)in particular on the use of texture patterns for multidi-
th_e patch_ represented by greyscale swatches; (c) a collection gfensional data display. Next, we describe the psycho-
slivers orlepted 0° at each.data value location; (d) thg greysc ysical experiments we used to determine how to
map and slivers are combined to produce the final sliver laye select perceptually salient orientations. Although our
visualization technique is applicable to a wide range of
nance slivers showing the positions and values of all thgractical applications, we were originally motivated by a
data in the original field. specific problem: the display of multiple atomic surface
Multiple scalar fields are displayed by compositingproperties measured with a scanning electron micro-
their sliver layers together. Figure 2a-b shows two sepacope. We conclude by showing how our technique can
rate sliver layers representing two scalar fields. The firdbe used to visualize datasets from this domain.
field uses slivers oriented 0°; the second uses slivers ori-
ented 90°. When a viewer visualizes both fields simulta?2 Related Work

neously, the sliver layers are overlayed to produce thgeveral techniques exist for displaying multidimen-
single image shown in Figure 2c. This image allows thgjona| datasets on an underlying surface or height field.



A good overview of some of these techniques is predimensional visualization. van Wijk [25], Cabral and
sented in Keller and Keller [10]. Our work is most simi- Leedom [1], and Interrante and Grosch [7] used spot
lar to methods that use textures or glyphs to represenbise and line integral convolution to generate texture
multiple attribute values at a single spatial location. Wepatterns to represent an underlying flow field. Finally,
therefore focus our study of previous work on this broad.aidlaw described painterly methods for visualizing
area. multidimensional datasets with up to seven values at
Texture has been studied extensively in the computezach spatial location [11, 12].
vision, computer graphics, and cognitive psychology Our technique is perhaps most similar to the stick-
communities. Although each group focuses on separat@an method used in EXVIS [2], or to the pexels (per-
tasks €.g., texture segmentation and classification,ceptual texture elements) of Healey and Enns [4, 5].
information display, or modelling the human visual sys-EXVIS shows areas of coherence among multiple
tem), they each need ways to describe precisely the teattributes by producing characteristic texture patterns in
tures being identified, classified, or displayed. Statisticalhese areas. We extend this technique by allowing a
methods and perceptual techniques are both used wewer to estimate relative values within an individual
analyse texture [19]. Our focus in this paper is on identifield, while still producing the characteristic textures
fying and harnessing the perceptual features that makeeeded to highlight interactions between different fields.
up a texture pattern. Experiments conducted by Julész . . )
led to the texton theory [9], which suggests that early3 Orientation Categories

vision detects three types of texture features (or texm order to effectively represent multiple scalar fields
tons): elongated blobs with specific visual propertiesyith different orientations, we need to know how the
(e.g colour or orientation), ends of line segments, andjisual system distinguishes between orientations. In
crossings of line segments. Tamura et al. [21] and Ragimple terms, we want to determine whether the visual
and Lohse [18] identified texture dimensions by consystem differentiates orientation using a collection of
ducting experiments that asked subjects to divide picperceptual orientation categories. If these categories
tures depicting different types of textures (Brodatzexist, it might suggest that the low-level visual system
images) into groups. Tamura et al. used their results tgan rapidly distinguish between orientations that lie in
propose methods for measuring coarseness, contragifferent categories.
directionality, line-likeness, regularity, and roughness. Psychophysica| research on this prob|em has pro-
Rao and Lohse applied multidimensional scaling tojuced a number of interesting yet incomplete conclu-
identify the primary texture dimensions used by theirsijons. Some researchers believe only three categories of
subjects to group images: regularity, directionality, anchrientation exist: flat, tilted, and upright [27]. Others
complexity. Haralick et al. [3] built greyscale spatial suggest a minimum rotational differendés necessary
dependency matrices to identify features like homogeto perceive a spatial collection of target elements ori-
neity, contrast, and linear dependency. Liu and Picar@ntedtg in a field of background elements orientegl
[13] used Wold features to synthesize texture patterns. fi.e. d = |tg— bg ). More recent work has shown that
Wold decomposition divides a 2D homogeneous patteris dependent obg [15, 16]. For example, if the back-
(e.g.,a texture pattern) into three mutually orthogonalground elements are oriented D&.( horizontal or flat),
components with perceptual properties that roughly coronly a small rotation may be needed to differentiate a
respond to periodicity, directionality, and randomness. group of target elements.(.,tg = 10° andd = tg - bg =
Work in computer graphics has studied methods fonge). On the other hand, a much larger rotational differ-
using texture patterns to display information duringence might be necessary to distinguish a target group in
visualization. Grinstein et al. [2] built “stick-men” icons a sea of background elements oriented 2P ,(tg: 40°
to produce texture patterns that show spatial coherenggdd =tg - bg = 20°). Based on these results, we seek to
in a multidimensional dataset. Ware and Knight [26]construct a functiof(bg) that will report the amount of
used Gabor filters to construct texture patternsiotational differencel needed to perceive a group of tar-

attributes in an underlying dataset are used to modify thget elements oriented = bg + d in a sea of background
orientation, size, and contrast of the Gabor elementglements orientebg.

during visualization. Turk and Banks [24] described an . .

iterated method for placing streamlines to visualize tvvo—?"1 Experiment Design

dimensional vector fields. Interrante [6] displayed tex-We began our investigation by attempting to construct a
ture strokes to help show three-dimensional shape ardiscrete functiorf(bg) for 19 different background ori-
depth on layered transparent surfaces. Healey and Engstations of 0, 5, 10, ..., 90°. The functfaeturns rota-

[4, 5] described perceptual methods for measuring antional differences in 5° intervale.¢.,d = 5°,d = 10°,d =

controlling perceptual texture dimensions during multi-
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Figure 3. An example of three experiment displays: (a) a 10° target in a 0° background (target is five steps right apsl @fght ste
from the lower left corner of the array); (b) a 30° background with no target; (c) a 65° target in a 55° backgroundsitestggids
left and seven steps up from the lower right corner of the array)

15°, and so on). Our experiment was designed to answeas randomly jittered to introduce a measure of irregu-
the following questions: larity. Three trials for each background/target pair con-

e In a sea of background elements oriertsed how tained a_12>< 2 targ(_et pa_ltch (as in Figure 3a, c); the other
much counterclockwise rotatiod,.,  is needed tothree did not (as in Figure 3b). Twenty undergraduate

differentiate a group of target elements orierited psychology students were randomly selected to partici-
bg+d,..? pate during the experiment (ten for the 0—45° experi-

How much clockwise rotatiod is needed to dif- Ment and ten for the 45-90° experiment). Subjects were
ferentiate a group of target elé:;]vwents orienged bg asked to answer whether a target patch with an orienta-
-d. 2 tion different from the background elements was present
For & given backgrouniog, do d or absent in each trial. They were told that half the trials
’ ce would contain a target patch, and half would not. Sub-

significantly? ; _ . .
Do certain backgrounde.g.,the cardinal directions 18CtS Were instructed to answer as quickly as possible,

0, 45, and 90°) have significantly lowsr, aQ, »while still trying to maintain an accuracy rate of 90% or
V\,/hat’ is the maximum number of r;V;Jidly distin- Petter. Feedback was provided after each trial to inform

. . . ) subjects whether their answer was correct. The entire
guishable orientations we can construct in the range : .
experiment took approximately one hour to complete.
0-90°? . .

o _ o . Subject accuracies (1 for a correct answer, 0 for an
The initial experiment was divided into two parts: one toincorrect answer) and response times (automatically
test background orientations from 0-45°, the other tgecorded based on the vertical refresh rate of the moni-
test background orientations 45-90°. We describe trialgyr) were recorded after each trial for later analysis.
in the 0—45° experiment. Apart from the specific orienta-
tions used, the design of the 45-90° experiment Wa§ B
identical. Mean subject response timgsand mean subject error

During the experiment the background orientationratese were used to measure performance. A combina-
was increased in 5° steps from 0° to 45°. This resulted fion of multi-factor analysis of variance (ANOVA) and
10 different background subsections (0, 5, 10, ..., 45°)east-squares line fitting showed:

Every possible target orientation was tested for each A target orientedi = +15°  or more from its back-

separate background. For example, targets oriented S, ground elements resulted in the highest accuracies
10, 15, 20, 25, 30, 35, 40, and 45° were tested in a sea of 4 the fastest response times, regardless of back-

background elements oriented 0°. Targets oriented 0, 5, ground orientation.

10, 20, 25, 30, 35, 40, and 45° were tested in a sea 9f & for backgrounds oriented 0 or 90° was significantly
background elements oriented 15°. . lower than for the other backgrounds.

A total of 540 trials were run during the experiment3 g for targets oriented 0° or 90° was significantly
(six for each of the 90 different background/target pigher than for the other targets, suggesting an asym-

pairs). Each trial contained a total of 400 rectangles metry (good as a background, bad as a target) for
arrayed on &0x 20 grid. The position of each rectangle ihese orientations.

andd,,, differ

w

.2 Results



(b)

Figure 4. (a) results for the 0-45° experiment, one strip for each background/target pair; the height of the strip edpalsents
for more errors), the brightness of the strip representbrighter for longer response times); locations whege= tg (the
diagonals on each graph) represent target absent trials; (b) results for the 45-90° experiment

4. There were no systematic differences in eigharrt response times between the two experiments is identi-
between clockwise and counterclockwise rotationscal, we believe this result is due to a difference between
about any background orientation. subjects i(e., subjects in the 45-90° experiment simply

5. There was no significant differencedibetween the needed more time to feel comfortable about the answers
0-45° and the 45-90° experiments for correspondinthey gave). Even if the results are significant for all
background/target pairs, however, within theviewers, the small differences we encountered would
d = +10° rangert was slower during the 45-90° not be important for applications that allow a viewer to
experiment, compared to the 0—-45° experiment. spend time exploring an image. However, these differ-

Regardless of the specific background orientation beingnc_eS could be important in real-time environments or
displayed, any target orienteti= +15° or more fromauring long viewing sessions. Additional _experlment_s
the background produced near-perfect accuracy and fa&f¢ needed to determine if any real differences in
response times(1, 90) = 8.06p < 0.01 and~(1, 90) =  'esponse times exist. o
2.96,p < 0.05 fore andrt, respectively, in thel = +15° Two additional findings allow us to simplify our

range). This suggests that any target with an absolufi€lection of orientations. First, there were no systematic
rotational difference of 15° or more from the back-differences in eithegorrt between clockwise and coun-

ground can be rapidly and accurately perceived. terclockwise rotations about any background orienta-

When background elements were oriented 0 or 9odion- In three cases (backgrounds of 55, 65, and 70°)

targets were detected more accurate(9(810) = clockwise rotations were significantly faster; in two
12.82,p < 0.001 ad = 5°). On the other hand, targets other cases (backgrounds of 25 and 30°) counterclock-

oriented 0 or 90° were detected less accurately, 4 wise rotations were significantly faster. Since subjects
90° target in a background of elements rotated 85’ or godid not exhibit a consistent preference for either direc-

or a 0° target in a background of elements rotated 5 d{on: e concluded that we can rotate the same amount
10% F(1, 162) = 48.02p < 0.001 ad = 5% F(1,162) = N either direction to make a target patch salient from its

29.91,p < 0.001 ad = 10°). This orientation asymmetry Packground elements. Finally, thsre was no significant
is documented in the psychophysical literature [22, 23](_:i|ffere(rjlce ine between the_0—45 experiment and the
In terms of visualization, it suggests we should treat th4>—90° experimen#(1, 18) = 0.157p = 0.6893). This

cardinal directions 0 and 90° carefully; although theyM€ans that, given a reasonable amount of time to search,
produce less visual interferendee(, they act well as accuracy in each set of backgrounds is statistically

background orientations), they can be significantly mor&dual, and the two ranges can be considered mirror
difficult to detect i(e., they act poorly as target orienta- Mages of one another.

tions). We conclude by noting that our experiments investi-
We found a small but statistically significant gated how talistinguishmultiple orientations from one
increase it during the 45-90° experimerf((, 90) = another. This is a first step towards determining how

6.08, p < 0.05 over thed = +10° range, shown b many orientations the visual system aeaentify simul-
brighter strips in Figure 4b). Since the overall pattern ofan€ously ie., the ability to identify the presence or



absence of a sliver with a specific orientation). Our Once an easily distinguishable orientation is
results provide a solid foundation from which to build assigned to each scalar field, the sliver layers can be
future experiments that study the question “How manyconstructed. The values in each field modulate the inten-
different orientations can | identify from one another?” sity of the slivers in the field’s layer. In order to avoid an
obvious artifact in the center of the final image, the cen-
ters of rotation for every layer are different. We accom-
An overlap between high-value regions in different scapjish this by translating each layer’s texture centers to
lar fields appears as a collection of slivers sharing comyifrerent points on a uniform grid. The layers are then
mon spatial locations. The overlapping slivers formgyeriayed on top of one another. The final texture is the
shapes like plus, X, or star. It is often critical for viewersper_pixe| maximum of the overlapping sliver layers
to be able to identify these overlapping regions.(using the maximum avoids highlights produced by
Although we did not conduct experiments on the P€raveraging or summing overlapping luminances values).
ceptual salience of each type of overlap, the shapes they \ve create only one base texture, rotating and trans-
form fall into the broad category efmergent features |ating it to form the other orientations. Alternatively, we
[17]. An emergent feature is created by grouping severaloy g produce a separate base texture for each scalar
simpler shapes together. Although emergent featurege|d. The use of multiple base textures would prevent
cannot always be predicted by examining the simplefhe appearance of regions with similar orientation-inde-
shapes in isolation, they result in perceptually salienpendent structures. Since we did not notice this phenom-
visual properties like intersection, closure, and shape (¥na in practice, we chose not to address this problem.
curvature). We believe that all of the overlapping inverUsmg a single base texture allows our technique to gen-
types will produce at least one emergent featerg..( erate a2s6x 256 image with nine scalar fields at nine

every overlap will produce an intersection between thggmes per second on a workstation with eight R10000
slivers). The emergent features make the locations of thgocessors.

overlapping regions salient from neighbouring, non-
overlapping areas. 5 Practical Applications

4 Implementation The applica_ltion for_which this teghnique was originally

) ) developed is the display of multiple data fields from a
Figure 1 shows the general process for creating ongcanning electron microscope (SEM). Each field repre-
sliver layer. The slivers in Figure 1 are positioned on aents the concentration of a particular element (oxygen,
underlying regular grid. In practice, however, we mustsjjicon, carbon, and so on) across a surface. Physicists
jitter the placement of each sliver. This helps to preveny,gying mineral samples need to determine what ele-
the technique from imposing any strong artificial struc-ments make up each part of the surface and how those
ture on the data. Separating the slivers is also necess&Mments mix. By allowing the viewer to see the relative
to allow multiple slivers with different orientations to concentrations of the elements in a given area, our tech-
show through at common spatial locations. The basgique enables recognition of composites more easily
texture used to make the images in this paper is 10%an side-by-side comparison, especially for situations
sliver, 90% empty. We employed the image-guidedynere there are complex amalgams of materials.
streamline placement package of Turk and Banks [24] Figyre 5a shows sliver layers representing eight sep-
on a constant vector field to generate the base texturgeate elements: calcium (15°), copper (30°), iron (60°),
Since we viewed this as a pre-processing step, the ti”iﬁagnesium (75°), manganese (105°), oxygen (120°),
used to build the base texture was not a critical conceryyiphur (150°), and silicon (165°). The orientations for

Next, we assign an orientation to each scalar field iggch layer were chosen to ensure no two layers have an

the dataset. Since slivers oriented 0-180° are MirQyientation difference of less than 15°. Figure 5b shows
images of slivers rotated 180-360°, we restricted OUfhe eight layers blended together to form a single image.
selections to the 0-180° range. During implementatiofrjgyre 5¢ changes the orientations of silicon and oxygen
we assumed the experimental results from our 0-9G% gge and 180, respectively, to investigate a potential
range were identical for orientations covering 90-180%nteraction between the two (the presence of silicon

separate orientations by simply using a constant differ-

enced = 15°. If we choose to treat the cardinal directiond®d Conclusions and Future Work
0° and 180° as special background cases that on
require targets with 5° of rotational difference, we cal
increase the number of separate orientations to 15.

3.3 Emergent Features

lP’his paper describes a technique for using orientation
"hnd luminance to visualize multiple overlapping scalar



Figure 5. (a) eight sliver layers representing calcium (15°), copper (30°), iron (60°), magnesium (75°), manganese (@05°), oxyg

(1200), sulphur (150°), and silicon (165°); (b) all eight layers blended into a single image; (c) silicon and oxygendexbééhte
and 180°, respectively, to highlight the presence of silicon oxide (as a “plus sign” texture) in the upper right, uppktdetty a
left corners of the image

fields simultaneously in a single image. Values in eacleolour. Important fields can be shown in colour rather
field are represented by sliver textures oriented at a fixetthan greyscale to further enhance their distinguishabil-
rotationo; . A sliver’s luminance is selected based on théty. Recent work in our laboratory has successfully com-
relative strength of the scalar field at the sliver's spatiabined sliver textures with perceptual colour selection
location. We conducted psychophysical experiments téechniques, thereby increasing the amount of informa-
study how the low-level human visual system perceivesion we can represent in a single display.
differences in orientation. This knowledge was used to Orientation has been identified as a perceptual tex-
choose orientations for each field that were easy to digure dimension, a fundamental property of an overall
tinguish. Our results suggest up to 15 orientations in theexture pattern. We can vary other perceptual texture
0-180° range can be rapidly and accurately differentidimensions of each slivee.g.,their size or density) to
ated. The greyscale ramp used to assign a luminance émcode additional data values. We want to note that we
each sliver was also constructed to be perceptually linare forming a single texture pattern by varying its under-
ear. The result is an image that shows data values in ealgting texture dimensions. It is not possible to overlay
individual field, while at the same time highlighting multiple texture patterns(g.,spot noise and slivers) to
important interactions between the fields. visualize multiple data attributes; in fact, the inability to
Our technique varies a sliver's luminance, leavinganalyse texture patterns displayed on top of one another
chromaticity (hue and saturation) free for other uses. Fowvas one of the original motivations for this work.
example, an isoluminant, medium-intensity colour back-  Finally, this paper focuses on 2D orientation. Future
ground will highlight slivers with high or low field val- work will study the use of 3D orientation. The first ques-
ues. If many fields have common values in the sam#on of interest is: “Which 3D orientation properties are
spatial region, we can help to identify their individual perceptually salient from one another?” Research in the
boundaries by displaying some of the fields usingosychophysical community has started to address



exactly this question. Once these properties are identf13] Liu, F. AND PICARD, R. W. Periodicity, directionality,
fied, we can conduct experiments to test their ability to
encode information, both in isolation and in combina-
tion with one another. Three-dimensional orientation

properties may allow us to represent 3D scalar volume
as clouds of oriented slivers in three-space. As with 2

4]

slivers, we want to investigate the strengths and limita-
tions of this type of technique vis-a-vis traditional meth-[15]

ods of volume rendering and volume visualization.

References

[1] CaBRAL, B. AND LEEDOM, L. C. Imaging vector fields
using line integral convolution. IBIGGRAPH '93 Con-
ference Proceeding§Anaheim, California, 1993), pp.
263-270.

[2] GRINSTEIN, G., RCKETT, R.,AND WILLIAMS , M. EXVIS:
An exploratory data visualization environment.Rro-
ceedings Graphics Interface '89London, Canada,
1989), pp. 254-261.

[3] HARALICK, R. M., S4ANMUGAM, K., AND DINSTEIN, I.
Textural features for image classificatitBEE Transac-
tions on System, Man, and Cybernetics SM&{3973),
610-621.

[4] HEALEY, C. G.AND ENNS, J. T. Building perceptual tex-
tures to visualize multidimensional datasetsPtaceed-

(16]

(17]

(18]

(19]

ings Visualization '98(Research Triangle Park, North [20]

Carolina, 1998), pp. 111-118.

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

HEALEY, C. G.AND ENNS, J. T. Large datasets at a
glance: Combining textures and colors in scientific visu-
alization.|IEEE Transactions on Visualization and Com-
puter Graphics 52 (1999), 145-167.

INTERRANTE, V. lllustrating surface shape in volume
data via principle direction-driven 3D line integral con-
volution. In SIGGRAPH '97 Conference Proceedings
(Los Angeles, California, 1997), pp. 109-116.
INTERRANTE, V. AND GROSCH C. Visualizing 3D flow.
IEEE Computer Graphics & Applications 18,(1998),
49-53.

INTERRANTE, V., FERWERDA, J., G®SSWEILER R., HEA-
LEY, C. G.AND RHEINGANS, P. Applications of Visual
Perception in Computer GrpahicSIGGRAPH 98
Course 320Orlando, Florida, 1992).

JULESZ, B. A brief outline of the texton theory of human
vision. Trends in Neuroscience Z,(1984), 41-45.
KELLER, P.AND KELLER, M. Visual cues: Practical data
visualization.|EEE Computer Society Press, Los Alami-
tos, California, 1991.

KIrRBY, R. M., MARMANIS, H., AND LAIDLAW, D. H.
Visualizing multivalued data from 2D incompressible
flows using concepts from painting. Pmoceedings Visu-

alization '99(San Francisco, California, 1999), pp. 333- [27]

340.

LADLAW, D. H., AHRENS E. T., KREMERS D., AWA-
LOS, M. J., AcoBs, R. E.,AND READHEAD, C. Visualiz-

ing diffuse tensor images of the mouse spinal cord. In
Proceedings Visualization '98Research Triangle Park,
North Carolina, 1998), pp. 127-134.

(21]

(22]

—
N

(24]

(25]

(26]

and randomness: Wold features for perceptual pattern
recognition. InProceedings 12th International Confer-
ence on Pattern Recognitia@derusalem, Israel, 1994),
pp. 1-5.

McCoRMICK, B. H., DEFANTI, T. A., AND BROWN, M.

D. Visualization in scientific computing—A synopsis.
Computer Graphics & Applications 7,(1987), 61-70.
NOTHDURFT, H-C. Orientation sensitivity and texture
segmentation in patterns with different line orientations.
Vision Research 261985), 551-560.

NOTHDURFT, H-C. Texture segmentation and pop-out
from orientation contrasWision Research 316 (1991),
1073-1078.

POMERANTZ, J. R.AND PRISTACH, E. A. Emergent fea-
tures, attention, and perceptual glue in visual form atten-
tion. Journal of Experimental Psychology: Human
Perception & Performance 18 (1989), 635-649.

RAO, A. R.AND LOHSE G. L. Identifying high level fea-
tures of texture perceptio@omputer Vision, Graphics,
and Image Processing: Graphical Models and Image
Processing 553 (1993), 218-233.

ReeD, T. R.AND HANS Du BUF, J. M. A review of recent
texture segmentation and feature extraction techniques.
Computer Vision, Graphics, and Image Processing:
Image Understanding 53, (1993), 359-372.

SMITH, P. H.AND VAN ROSENDALE, J.Data and visual-
ization corridors report on the 1998 CVD workshop
series.Technical Report CACR-164 (sponsored by DOE
and NSF), Center for Advanced Computing Research,
California Institute of Technology, 1998.

TAMURA, D., MORI, S., AND YAMAWAKI, T. Textural
features corresponding to visual perceptl&kEE Trans-
actions on Systems, Man, and Cybernetics SME-8,
(1978), 460-473.

TRIESMAN, A. AND GORMICAN, S. Feature analysis in
early vision: evidence from search asymmetiRsy.cho-
logical Review 95] (1988), 15-48.

TRIESMAN, A. Search, similarity, and integration of fea-
tures between and within dimensiodsurnal of Experi-
mental Psychology: Human Perception & Performance
17, 3 (1991), 652-676.

TURK, G. AND BANKS. D. Image-guided streamline
placement. I'SIGGRAPH ’'96 Conference Proceedings
(New Orleans, Louisiana, 1996), pp. 453—-460.

VAN WK, J.J. Spot noise, texture synthesis for data
visualization. INSIGGRAPH '91 Conference Proceed-
ings(Las Vegas, Nevada, 1991), pp. 309-318.

WARE, C. AND KNIGHT, W. Using visual texture for
information displayACM Transactions on Graphics 14,
1 (1995), 3—-20.

WOLFE, J. M., RIEDMAN-HILL, S. R., $SEWART, M. |,
AND O’CONNELL, K. M. The role of categorization in
visual search for orientationlournal of Experimental
Psychology: Human Perception & Performance, 18
(1992), 39-49.



