
Triangle Strip Compression

Martin Isenburg

University of North Carolina at Chapel Hill
isenburg@cs.unc.edu

Abstract
In this paper we introduce a simple and efficient scheme
for encoding the connectivityand the stripificationof a tri-
angle mesh. Since generating a good set of triangle strips
is a hard problem, it is desirable to do this just once and
store the computed strips with the triangle mesh. How-
ever, no previously reportedmesh encoding scheme is de-
signed to include triangle strip information into the com-
pressed representation. Our algorithm encodes the strip-
ification and the connectivity in an interwoven fashion,
that exploits the correlation existing between the two.

Key words: Mesh compression, connectivity encoding,
triangle strips, triangle fans, stripification.

1 Introduction

Encoding the connectivity of trianglemeshes has recently
been the subject of intense study and many representa-
tions have been proposed [10, 11, 3, 7, 5]. The sudden in-
terest in this area is fueled by the emerging demand for
interactive visualization of 3D data sets in a networked
environment (e.g. VRML over the Internet). Since trans-
mission bandwidth across wide-area networks is a scarce
resource, compact encodings for 3D models are needed.
For interactive visualization not only the speed at

which a triangle mesh can be received is important, but
also the speed at which it can be displayed. Here the bot-
tleneck is the rate at which this data can be sent to the ren-
dering engine. Each triangle of the mesh can be rendered
individually by sending its three vertices to the graphics
hardware. Then every mesh vertex is processed about six
times, which involves passing its three coordinates and
optional normal, colour, and texture information from the
memory to and through the graphics pipeline.
A common technique to reduce the number of times

this data needs to be transmitted is to send long runs of
adjacent triangles. Such triangle strips [2, 15] are widely
supported by today’s graphics hardware. Here two ver-
tices from a previous triangle are re-used for all but the
first triangle of every strip. Depending on the quality of
the triangle strips this can potentially reduce the number
of vertex repetitions by a factor of three.
For rendering purposes, an optimal stripification cov-

ers the mesh with as few strips using as few swaps [2] as

possible. Computing an optimal set of triangle strips is
NP-complete [1]. Various heuristics for generating good
triangle strips have been proposed by Evans et al. [2],
Speckmann and Snoeyink [8], and Xiang et al. [16].
Given the difficulty of generating good triangle strips it

would be desirable to do this just once and store the com-
puted stripification together with themesh. Especially for
data setswith a large distribution(such as themodels from
theViewpointDatalabs collection [13]) it is worthwhile to
provide a good pre-computed stripification.
Currently available mesh compression techniques do

not support the encoding of stripified meshes. Obviously
one can enhance any existing compression method by en-
coding the stripification separately and concatenating the
results. However, such a two-pass technique adds unnec-
essary overhead—it does not exploit the correlation be-
tween the connectivity and the stripification of a mesh.
In this paper we introducea simple and efficient scheme

for encoding the connectivity and the stripification of a
triangle mesh. Enhancing Triangle Fixer, our edge-based
connectivity compression algorithm[4], we compress this
information in an interwoven fashion, that fully exploits
the existing correlation.

2 Connectivity Compression Techniques

Most efficient connectivity compression schemes for tri-
angle meshes [10, 11, 3, 7] follow the same pattern: They
encode the mesh through a compact and often interwo-
ven representation of a vertex spanning tree and its cor-
responding dual, a triangle spanning tree. This is based
on Turan’s observation [12] that planar graphs can be en-
coded with a constant number of bits per vertex (bpv)
when represented as a pair of spanning trees. Indexed
triangle sets— the standard representation for triangle
meshes— use at least � logn bpv for the connectivity.
The Topological Surgerymethod [10] traverses the ver-

tices of a mesh in a deterministic fashion (e.g. breadth or
depth first search) and encodes the corresponding vertex
and its dual triangle spanning tree separately. Run-length
encoding both trees results in bit-rates around 4 bpv.
Touma and Gotsman’s Triangle Mesh Compression

scheme [11] records the degree of each vertex along a spi-
raling vertex tree. For branches in the tree they need an



additional split code. This technique implicitly encodes
the triangle spanning tree. They compress the resulting
code sequence using a combination of run-length and en-
tropy encoding and achieve bit-rates as low as 0.2 bvp for
very regular meshes and between 2 and 3 bpv otherwise.
Both the Cut-Border Machine [3] and the Edgebreaker

scheme [7] include triangle after triangle into a bound-
ary while traversing a spiraling triangle spanning tree. At
each step they record the adjacency relation between the
included triangle and the boundary, which implicitly en-
codes the vertex spanning tree. Follow-up work by King
and Rossignac [6] establishes the currently lowest known
worst case bound of 3.67 bpv.
Inspired by Rossignac’s Edgebreaker scheme [7], we

propose an edge-based approach for connectivity com-
pression, which—as we will see later—has a simple and
natural extension towards the compression of triangle
strips. This is accomplished by a design choice that is the
crucial difference between our Triangle Fixer scheme and
previous approaches [3, 7]. Our method slightly uncou-
ples the traversal of the triangle spanning tree from the
traversal of its corresponding vertex spanning tree. Tri-
angles are included into a boundary without immediately
specifying their adjacency relation.

3 Triangle Fixer

The Triangle Fixer scheme expects the input mesh to be
a 2-manifold surface with boundary composed of consis-
tently oriented triangles. This means that the neighbour-
hood of each vertex can bemapped to a disk or a half-disk.
The input mesh might consist of several connected com-
ponents and can have multiple holes or handles.
The connectivity of the input mesh is encoded as a se-

quence of labels T, R, L, S, E, H, and M. The total num-
ber of labels equals the number of mesh edges. For every
triangle there is a label of type T, for every hole there is
a label of type H, and for every handle there is a label of
typeM. The remaining labels R, L, S, and E describe how
to ‘fix’ triangles and holes together.
Subsequently this sequence of labels can be com-

pressed into a compact bit-stream by assigning a unique
bit-pattern to every label. The correlation among subse-
quent labels can be exploited formore compact encodings
with a simple order-3 adaptive arithmetic coder [14].

3.1 Encoding
The encoding process defines an active boundary in
clockwise orientation around an arbitrary edge of the
mesh. This initial boundary has two boundary edges; one
of thembecomes the gate of the boundary. The gate of the
active boundary is the active gate.
In every step of the encoding process the active gate is

labeled with either T, R, L, S, E, H, or M.Which label the

offset1

offset2

size

����� �

����� �

����� �

����� 	

����� 


����� �

����� �

gate popped
from stack

gate pushed
on stack

gate removed
from stack

Figure 1: The labels T, R, L, S, E, H, and M. The black arrow
denotes the active gate, the grey arrows denote gates in the stack.



active gate is given depends on its adjacency relation to
the boundary. After recording the label, the boundary is
updated and a new active gate is selected. Depending on
the label the boundary expands (T and H), shrinks (R and
L), splits (S), ends (E), or merges (M). An initially empty
stack of boundaries is used to temporarily buffer bound-
aries. The encoding process terminates after exactly e it-
erations where e is the number of mesh edges.
In Figure 1we illustrate for all seven labels the situation

in which they apply and the respective updates for gate
and boundary that they imply. They are as follows:

label T The active gate is not adjacent to any other boundary
edge, but to an unprocessed triangle. The active boundary
is extended around this triangle. The new active gate is the
right edge of the included triangle.

label R The active gate is adjacent to the next edge along the
active boundarywith which it is ‘fixed’ together. The new
active gate is the previous edge along the active boundary.

label L The active gate is adjacent to the previous edge along
the active boundary with which it is ‘fixed’ together. The
new active gate is the next edge along the active boundary.

label S The active gate is adjacent to an edge of the active
boundary which is neither the next nor the previous. ‘Fix-
ing’ the two edges together splits the active boundary. The
previous and the next edge along the active boundary be-
come gates for the two resulting boundaries. The first is
pushed on the stack and encoding continues on the latter.

label E The active gate is adjacent to an edge of the active
boundary which is both, the next edge and the previous
edge. Then the active boundary consists of only two edges
which are ‘fixed’ together. If the boundary stack is empty
the encoding process terminates. Otherwise it continues
on the gate of the boundary that is popped from the stack.

label Hn The active gate is not adjacent to any other boundary
edge, but to an unprocessed hole. The active boundary is
extended around this hole. Its size n (e.g. the number of
edges around the hole) is stored with the label. The new
active gate is the rightmost edge of the included hole.

label Mi�k�l The active gate is adjacent to a boundary edge
which is not from the active boundary, but from a bound-
ary in the stack. ‘Fixing’ the two edges togethermerges the
two boundaries. The boundary is removed from the stack.
Its former position i in the stack and two offset values k
and l (see Figure 1) are stored with the label. The new ac-
tive gate is the previous edge along the stack boundary.

We use a simple half-edge data structure during encod-
ing and decoding to store the mesh connectivity and to
maintain the boundaries. Besides pointers to the origin,
to the next half-edge around the origin, and to the inverse
half-edge, we have two pointers to reference a next and a
previous boundary edge. This way we organize all edges
of the same boundary into a cyclic doubly-linked list.

3.2 Decoding
The recorded information (e.g. the sequence of labels) is
sufficient to uniquely invert each boundary and gate up-
date that was performed during encoding. We decode the
mesh connectivity by processing the labels in reverse or-
der, whileperforming the inverse of every label operation.
Every update can be performed in constant time, which
gives us linear time complexity. An exception is the in-
verse operation for label M, which requires the traversal
of k � l edges. However, labels of type M correspond to
handles in the mesh, which are of rare occurrence.

mesh characteristics bits per vertex
name vertices triangles holes hndls fixed aac-3
bishop 250 496 - - 4.00 1.86
shape 2562 5120 - - 3.99 0.77

triceratops 2832 5660 - - 4.00 2.52
fandisk 6475 12946 - - 4.00 1.67
eight 766 1536 - 2 4.09 1.43
femur 3897 7798 - 2 4.16 3.05
skull 10952 22104 - 51 4.22 2.96
bunny 34834 69451 5 - 4.00 1.73
phone 33204 66287 3 - 4.05 2.70

terrainSM 13057 25818 1 - 4.02 2.53
terrainLG 42943 85290 1 - 4.01 2.43

Table 1: Compressing connectivity with a fixed bit assignment
scheme (fixed) and an order-3 adaptive arithmetic coder (acc-3).

3.3 Compression and Results
Triangle meshes of v vertices without holes or handles
have �v � � edges and �v � � triangles. This means that
�v � � labels are of type T and v � � labels of type R, L,
S, or E. An encoding that uses 1 bit for label T and 3 bits
each for the other labels guarantees a �v��� bit encoding.
We notice a correlation among sub-

after TRLSE
T, R 1 2 43 4
L 1 4 24 3
S 1 4 34 2
E 1 2 44 3

sequent labels that is consistent across
our wide range of test models. Label
R for instance is likely to be followed
by label R, whereas label L is likely
to be followed by another label of type
L. We exploit this correlation for com-
pression by making the bit assignment dependent on the
last label. Using 1 bit for label T and a varying assignment
of 2, 3, 4 and 4 bits for labels R, L, S, and E guarantees a
�v � �� bit encoding, while being in practice close to �v
bits. The table above describes the bit assignment we use.
The number of holes and handles of a mesh is generally

small and so is the number of labels H and M. Since label
T can never be followed by labels L or E, we encode la-
bel H with the label combination TL and label M with the
combination TE. The associated integer values are com-
pressed subsequently using a standard technique for en-
coding variable sized integers into bit-streams.



However, the correlation among subsequent labels also
invites arithmetic encoding [14]. Experimental results for
variousmeshes using a simple order-3 adaptive arithmetic
coder are listed in Table 1. Since the input sequence to
the arithmetic coder contains only five different symbols,
it can be efficiently implemented using less than 4 KB of
memory for the probability tables.

4 Triangle Strips

Supported in software and hardware, triangle strips are
used for efficient rendering of triangle meshes. They re-
duce the data transfer rate between the main memory and
the graphics engine by allowing the re-use of vertices for
up to three consecutive triangles. This requires the graph-
ics hardware to have a built-in buffer for two vertices,
which is very common in today’s graphic boards.
An OpenGL-style triangle strip is a sequence ofm ver-

tices 	v�� ���� vm��
 that represents the sets of triangles
f	vi� vi��� vi��
g for even i and f	vi��� vi� vi��
g for
odd i with � � i � m � �. The distinction between odd
and even assures a consistent orientation of all triangles.
Two triangle strips and the vertex sequences that repre-

sent them are shown in Figure 2. The strip on the left is
called sequential, because it turns alternating to the right
and to the left. The sequence of 9 vertices describes 7 con-
sistently oriented triangles. The strip on the right is not se-
quential, because it contains consecutive turns in the same
direction. Such a strip is is called generalized. Here 10
vertices are necessary to describe the 7 triangles. In order
to use vertex v� in 4 consecutive triangles the degenerate
zero-area triangle 	v�� v�� v�
 needs to be inserted into the
strip. The cost for such a swap operation is one vertex,
which is cheaper than a restart that costs two vertices.
The problem of constructing good triangle strips has

been considered in several papers [2, 8, 16]. The ob-
jective is to minimize the number of swaps and restarts,
thereby minimizing the total number of required vertices.
Since computing the optimal solution is an NP-complete
problem [1], heuristic search strategies are employed. For
polygonmodels that are not fully triangulated the patchifi-
cationmethod by Evans et al. [2] gives good results. This
technique lets the triangle strips dictate the way the poly-

v2

v0

v1
v4

v6

v8

v3

v5

v7

v0 v1 v2

v2 v1 v3

v2 v3 v2

v2 v3 v5

v2 v5 v4

v4 v5 v7

v4 v7 v6

v6 v7 v8

v2

v1
v4

v6
v3

v5

v7

v0

v8

(v0, v1, v2, v3, v2, v5, v4, v7, v6, v8 )(v0, v1, v2, v3, v4, v5, v6, v7, v8 )

v0 v1 v2

v2 v1 v3

v2 v3 v4

v4 v3 v5

v4 v5 v6

v6 v5 v7

v6 v7 v8

Figure 2: A sequential triangle strip (left) and a generalized tri-
angle strip (right) with their corresponding vertex sequence.

gons are triangulated so that swaps are avoided.
Although the use of indexed triangle strips reduces the

amount of data needed to represent themesh connectivity
by a factor between two and three compared to indexed
triangle sets, it still needs at least � logn bpv. For storage
and transmission purposes it is often necessary to have a
more compact representation of a mesh. However, cur-
rent mesh compression techniques are not designed to en-
code stripified triangle meshes.

5 Triangle Strip Compression

The following is based on the observation that the stripifi-
cation of a triangle mesh is uniquely defined by the set of
strip-internal edges. These are edges that are shared by
subsequent triangles in a strip. The set of strip-internal
edges marks either none, one, or two edges of every tri-
angle. A triangle without a strip-internal edge is a trian-
gle strip by itself. A triangle with one strip-internal edge
is either the start or the end of a strip. A triangle with two
strip-internal edges is in the middle of a triangle strip.
It is necessary to distinguish the start from the end of

a generalized triangle strip, because one direction some-
time needs one fewer swap operation than the other. This
can be computed in a single traversal of the triangle strip
by counting the number of necessary swap operations.
Using one bit per edge (3 bpv) is sufficient to mark all

strip-internal edges. Any previously reported mesh com-
pression scheme could be combined with such an encod-
ing of the stripification. However, this two-pass approach
fails to exploit the redundancy between the connectivity
and the stripification of a mesh: Every strip expresses the
edge adjacency for each pair of subsequent triangles it
contains. This local connectivity information also needs
to be captured by themesh compression scheme. Triangle
Strip Compression specifies this information only once.
Our compression scheme follows the concept of encod-

ing mesh connectivity through an interwoven representa-
tion of a triangle spanning tree and its dual vertex span-
ning tree. Instead of traversing a triangle spanning tree
using a deterministic search strategy we let the underly-
ing stripification be the guide. The adjacency informa-
tion that is encoded while walking along a strip means
progress for both the compression of connectivity and the
compression of stripification.

5.1 Encoding
As in Section 3.1, the encoding process initially defines
the active gate and the active boundary around some edge
of the mesh. However, now this choice is not completely
arbitrary. The edge must not be strip-internal.
Again the active gate is labeled at each step of the en-

coding algorithm. Instead of label Twe use the four labels
TR, TL, TB , and TE . This subclassification captures the



����� ��

����� ��

����� ��

����� �� ����� ��

����� ��
� ����� 	�

store gate

use stored gate

Figure 3: The labels TR, TL TB , and TE . The black arrow de-
notes the active gate, the dark-grey arrow denotes a stored gate.

stripification of the mesh. The four labels direct the way
the encoding process traverses themesh triangles so that it
follows the underlying strips. Once a triangle strip is en-
tered, it is processed in its entirety using these labels. The
total number of edges that receive labels TR, TL, TB , or
TE is equal to the number of mesh triangles. The labels
R, L, S, E, H, and M are used and assigned as before.
Each of the four new label updates the boundary just

like label T. The difference—illustrated in Figure 3—lies
the way the active gate is updated. They are as follows:

label TR The triangle strip leaves the included triangle through
the right edge. The new active gate is this right edge.

label TL The triangle strip leaves the included triangle through
the left edge. The new active gate is this left edge.

label TB The triangle strip leaves the included triangle through
the right and the left edge, which means we just entered
this triangle strip somewhere in its middle. Both directions
need to be considered. Therefore the left edge is stored and
the right edge is the new active gate.

label TE (case 1) The triangle strip leaves the included triangle
neither through the right nor through the left edge and this
is the last triangle of this strip. The new active gate is the
right edge.

label T�E (case 2) The triangle strip leaves the included trian-
gle neither through the right nor through the left edge, but
this is not the last triangle of this strip. Then there was a
preceding label TB . The edge that was stored with label
TB is the new active gate.

5.2 Decoding
As before, the labels are processed in reverse order and
the inverse of each label operation is performed. How-
ever, one initial traversal of the labels in forward order is
necessary. For every label TB we count the number of en-
countered TR labels before the first occurrence of a label
TE . We add 2 to the count and associate this value with
the respective label TE , marking it with a *.
When during the decoding process a label T�

E
with as-

sociated value w is encountered, we walk from the active
gate w edges along the active boundary. The edge we ar-
rive at is the new active gate and we continue normally.
This little variation becomes necessary to invert what

happens during encoding: The first occurrence of a label
TE after a label TB marks the completion of one end of a
triangle strip. The active gate jumps to the edge that was
stored with the preceding label TB . The computed value
expresses how many boundary edges were between the
active gate and the stored edge at the time this jump oc-
curred. The time complexity for decoding remains linear,
since every triangle strip is traversed at most once.
The example in Figure 4 and 5 leads step by step

through the encoding and decoding process of a small
mesh with two triangle strips.

5.3 Compressing and Results
There is a very strong

after TRTLTBTERLSE
TR,T�E 2 1 – 2 – – – –
TL,TB 1 2 – 2 – – – –
TE 4 5 3 6 2 7 1 7
R, E 7 6 5 7 1 4 3 2
L, S 6 7 5 7 4 1 3 2

correlation among sub-
sequent labels. We can
observe long runs of
labels R and L, and long
sequences of alternating
labels TR and TL. The
simple bit assignment
scheme that is described in the table above exploits these
dependencies and achieves bit-rates between 3.0 and
5.0 bpv. This bit allocation scheme is geared towards



mesh characteristics corners of bits per vertex
name strips triangles strips fixed aac-3
bishop 1 1488 498 2.98 1.78
shape 2 15360 5124 3.09 0.62

triceratops 144 16980 5948 4.12 3.49
fandisk 224 38838 13394 3.61 2.25
eight 24 4608 1584 3.46 1.78
femur 237 23394 8272 4.48 4.02
skull 600 66312 23304 4.74 4.18
bunny 1229 208353 71909 3.69 2.40
phone 1946 198861 70179 4.42 3.88

terrainSM 707 77454 27232 4.31 3.76
terrainLG 2404 255870 90098 4.41 3.83

Table 2: Compressing connectivity and stripification with a
fixed bit scheme (fixed) and an arithmetic coder (acc-3).

long triangle strips with alternating left-right turns. The
encodings become more compact with higher quality
stripifications (e.g. fewer strips, fewer swaps).
The resulting compression rates (see Table 2) increase

by at most 0.6 bpv for the fixed and 1.3 bpv for the
arithmetic coder compared to those from Table 1. For
very regular meshes the encodings are even more com-
pact than before because such meshes can be decomposed
into long sequential strips. Overall, the achieved com-
pression rates for connectivity and stripification are sig-
nificantly better than those of previously reported com-
pression schemes for connectivity combined with an one
bit per edge (3 bpv) encoding of the stripification.
We used version 2.0 of STRIPE [2] to stripify our ex-

ample meshes. This software is designed for fast gener-
ation of triangle strips, hence the generated strips are not
optimal. Wewould now like software that gives us higher
quality strips at the expense of longer computation time.

6 Normals, Colours, and Texture Coordinates

Additional care needs to be taken when stripifying polyg-
onal meshes that have multiple corner attributes per ver-
tex. A corner is a vertex/trianglepair and corner attributes
are typically vertex normals, colours, or texture coordi-
nates. The idea of triangle strips is based on re-using the
vertex data, which includes these corner attributes. Dis-
continuities in themodel like a crease or a material change
result in discontinuities in the corner attributes around a
vertex. Good stripification software must assure that the
triangle strips do not run across such discontinuities. Ver-
tices have on average a set of three adjacent corners in a
triangle strip and their attributes need to be consistent.
The above restricts the stripification process, but can

be exploited for compressing the number of bits needed
for mapping attributes to corners, which uses one bit per
corner in the method by Taubin et al. [9]. Since the at-

tributes of all adjacent triangle corners within a strip are
consistent, we need to specify them only once for such a
strip corner. The number of different triangle corners for
meshes with t triangles is �t. However, decomposed into
s stripswe need to distinguishonly the t��s strip corners
for the mapping from attributes to corners (see Table 2).

7 Summary and Acknowledgments

Our main contribution is the compression of stripified
meshes. We have extended Triangle Fixer to include in-
formation about a pre-computed set of triangle strips into
the compressed representation of a mesh. Our algorithm
fully exploits the existing correlation between connectiv-
ity and stripification of a mesh.
The new compressed format is especially useful for

models with a large distribution. The computation of high
quality stripifications is very expensive and, in particu-
lar for triangle meshes with corner attributes, not trivial.
Once a good set of triangle strips has been computed, our
technique allows to store and distribute it together with
the model at little additional storage or processing cost.
Many thanks to Bettina Speckmann for discussions on

triangle strips, to Xinyu Xiang for triangulating various
models, and to Jack Snoeyink for reviewing the paper.

8 References
[1] F. Evans, S. S. Skiena, and A. Varshney. Completing sequential

triangulations is hard. Technical report, Department of Computer
Science, State University of New York at Stony Brook, 1996.

[2] F. Evans, S. S. Skiena, andA. Varshney. Optimizing triangle strips
for fast rendering. In Visualization’96, pages 319–326, 1996.

[3] S. Gumhold and W. Strasser. Real time compression of triangle
mesh connectivity. In SIGGRAPH’98, pages 133–140, 1998.

[4] M. Isenburg. Triangle Fixer: Edge-based connectivity encoding.
In 16th EuropeanWorkshop on Comp. Geom., pages 18–23, 2000.

[5] M. Isenburg and J. Snoeyink. Mesh collapse compression. In Pro-
ceedings of 12th SIBGRAPI, Brazil, pages 27–28, October 1999.

[6] D. King and J. Rossignac. Guaranteed3.67v bit encodingof planar
triangle graphs. In Proc. of 11th CCCG, pages 146–149, 1999.

[7] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Trans. on Vis. and Computer Graphics, 5(1), 1999.

[8] B. Speckmannand J. Snoeyink. Easy triangle strips for TIN terrain
models. In Proceedings of 9th CCCG, pages 239–244, 1997.

[9] G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry
coding and VRML. Proc. of the IEEE, 86(6):1228–1243, 1998.

[10] G. Taubinand J. Rossignac. Geometric compression through topo-
logical surgery. ACM Trans. on Graphics, 17(2):84–115, 1998.

[11] C. Touma and C. Gotsman. Triangle mesh compression. In GI’98
Conference Proceedings, pages 26–34, 1998.

[12] G. Turan. Succinct representations of graphs. Discrete Applied
Mathematics, 8:289–294, 1984.

[13] Viewpoint. Premier Catalog (2000 Edition) www.viewpoint.com.
[14] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for

data compression. Comm. of the ACM, 30(6):520–540, 1987.
[15] M. Woo, J. Neider, and T. Davis. Open GL Programming Guide.

Addison Wesley, 1996.
[16] X. Xiang,M.Held, and J. Mitchell. Fast and efficient stripification

of polygonal surface models. In I3DG, pages 71–78, 1999.



1817 19 20

1413 15 16

65 7 8

21 3 4

109 11 12

�� � �� �

���� � �

��
��� �� ���

���� �� ��

�� �� ����

��

��

��

Figure 4: An example run of the encoding algorithm on a small mesh with two triangle strips. The interior of the
active boundary is shaded dark, the active gate is denoted by a black arrow, a gate in the stack by a light-grey arrow,
and a stored gate by a dark-grey arrow. The label(s) in the lower left corner of each frame express the performed
update(s) since the previous frame. (1) Initial active boundary. (2-4) Boundary is expanded along the first triangle
strip. (5) Reaching the last triangle of this strip. (6) Entering the second triangle strip in its middle. (7-9) Expanding
this strip into one direction. (10) Finishing one side, the active gate jumps to expand other direction. (11) Finishing
the other side. (12) Including a hole of ten edges. (13-15) Fixing the boundary with five R labels. (16) Splitting the
boundary, one part is pushed on stack, continuing on other part. (17) Fixing the boundary with two L labels. (18)
Ending this boundary, popping a boundary from stack. (19) Fixing the boundary with two R labels. (20) Ending this
boundary, stack is empty, terminate.

Note: Instead of defining the initial active boundary around an edge we can also define it around a hole. In this
example this would save us the labelH��. In general we want to define the initial active boundary around the largest
hole of the mesh, which is also referred to as the boundary of the mesh.



��� � �

1817 19 20

1413 15 16

65 7 8

21 3 4

109 11 12

�
�

�� �
�

�
�

�
�

�
�
� �

�
�

�

�
��

�� �
� ���� ���	
�

�� � ��

�
�

�
�

�
�

�
�

�
�

Figure 5: The decoding process that reconstructs connectivity and stripification of a mesh from the label sequence
generated in Figure 4. The label(s) in the lower left corner of each frame indicate the inverted label operation(s) since
the previous frame. In an initial forward traversal of the label sequence we mark the first occurrence of a TE label after
a TB label with a *. Adding two to the number of TR labels between TB and TE makes six, which is associated with the
(now marked) label T�

E
(1) Creating a boundary of length two, undoing the last label E operation. (2) Expanding this

boundary, undoing two label R operations. (3) Pushing the current boundary on the stack and creating a new boundary
undoes another label E operation. (4-5) Expanding the boundary. (6) Merging the boundaries that were split by the
S label. (7-9) Further expansion of the boundary. (10) Recreating a hole of size ten. (11) Recreating a triangle that
starts the first strip. (12) Walking the offset associated with the marked label. (13) Recreating the first triangle at the
other end of the strip. (14-16) Recreating six more triangles of this strip. (17) Finishing the first strip, by gluing its two
sides together. (18) Recreating a triangle that starts the next strip. (19-20) Recreating four more triangles of this strip,
terminate.




