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Abstract
We present a method to incrementally voxelize triangles into
a volumetric dataset with pre-filtering, generating an accu-
rate multivalued voxelization. Multivalued voxelization al-
lows direct volume rendering of voxelized geometry as well
as volumes with intermixed geometry, accurate multiresolu-
tion representations, and efficient antialiasing. Prior voxeliza-
tion methods either computed only a binary voxelization or in-
efficiently computed a multivalued voxelization. Our method
develops incremental equations to quickly decide which filter
function to compute for each voxel value. The method requires
eight additions per voxel of the triangle bounding box. Being
simple and efficient, the method is suitable for implementation
in a hardware volume rendering system.

Key words: Voxelization, volume filtering, hardware, incre-
mental algorithm, cut planes

1 Introduction
Our interest in volume graphics [11] and voxelization is mo-
tivated by the recent proliferation of volume rendering algo-
rithms, hardware (e.g.,VolumeProby Mitsubishi Electric), and
the increasing use of discrete volumetric representation in var-
ious important application areas. These include medical imag-
ing (e.g., CT and MRI), scientific visualization, simulation
(e.g., flight and mission simulation), computer-aided design,
animation, and virtual reality. Volume graphics can be used
in place of traditional geometric applications as well as those
applications that intermix geometric objects with 3D sampled
or computed datasets.

Traditional computational bounds to the use of volume
graphics (i.e., memory storage, bandwidth, and processing)
continue to be shattered, allowing mainstream use of volume
graphics. Leading the way is a recently available PC-based
hardware accelerator board for volume rendering,Volume-
Pro [14], manufactured by Mitsubishi and based on the Cube-4
architecture developed at SUNY Stony Brook [15]. With the
advent of widespread volume graphics, new applications and
modalities will be forthcoming. In this paper, we seek to spur
further development of volume graphics by providing efficient,
simple methods to accurately voxelize geometric models and
to implement cut planes efficiently.

The advantages of volume graphics are many-fold, the pri-
mary being that an object interior can be modeled and visu-
alized and amorphous phenomena can be handled naturally.
In addition, the uniformity of representation allows object in-
dependent processing based on sound theoretical techniques.
In this way, various scanned physical phenomena and objects,
synthesized data, and sampled geometric objects can be pro-
cessed, combined, and rendered together into effective visu-
alizations. Volumetric representations have the advantage of
pre-filtering, so that subsequent rendering can proceed effi-
ciently without aliasing. Volume graphics is also relatively
insensitive to object and scene complexity; detailed polygon
meshes or complex objects can be directly represented using a

Figure 1:The 3D region of influence around a triangle.

finite volume, which can often be more compact. Furthermore,
volumetric multiresolution pyramids allow antialiased render-
ing at various image sizes and are simple to generate, topology
independent, and efficient for simplification [5]. Applications
of pre-filtering are explored in Section 3.

Volume visualization is often enhanced by the combination
of information from multiple data sources, both discrete and
continuous. For example, medical visualizations can bene-
fit from combining volumetric medical data with polygonal
objects (e.g., prostheses, radiation therapy beams, and virtual
scalpels placed within a sampled MRI or CT dataset). Geo-
physical visualizations can benefit from rendering analytical
objects within a volume (e.g., oil drilling paths, pipeline place-
ment, and man-made structures superimposed within a geo-
physical dataset).

To create these visualizations, it is necessary to combine
volume rendering with traditional surface rendering. One ap-
proach is to render the surfaces into az-buffer, then com-
bine thez-buffer image with volume slices during texture map
based volume rendering. However, this approach severely lim-
its the quality and flexibility of the rendering and does not
permit translucent surfaces without complicated sorting. Our
preferred approach is to convert continuous surfaces into a
discrete volumetric representation, called a voxelization [19].
The surfaces can be directly voxelized into the original vol-
ume and rendered with the usual means. If the surfaces are
dynamic relative to the volume, they can be voxelized into a
separate volume and combined only during rendering by inter-



leaving volume samples in the direction of each image pixel
(e.g., during ray casting).

Such applications and the new hardware driving them spur
the development of efficient and accurate voxelization tech-
niques. Cohen-Or and Kaufman [2] derived the theoretical
properties of voxelizations in a raster grid of binary-valued
voxels. Objects represented by a 3D grid of discrete val-
ues have topological properties analogous to their continuous
counterparts. For example, a6-connecteddiscrete 3D line is
a set of voxels which are adjacent to another through at least
one of the 6 voxel faces. A6-tunnel-freediscrete 3D surface
is a set of voxels which do not allow any 6-connected line to
pierce it (i.e., the intersection of the two sets is not null).

Kaufman [8, 9, 10, 12] presented efficient methods to gener-
ate binary voxelizations of many geometric primitives. Huang
et al. [6] detailed the accuracy (i.e., separability and mini-
mality) properties of binary voxelizations of planar objects.
However, a direct visualization of binary-valued voxels typi-
cally appears to be a set of cuboid bricks with hard, jagged
edges. To avoid this image aliasing we use pre-filtering, in
which scalar-valued voxels are used to represent the percent-
age of spatial occupancy of a voxel [19], an extension of
the two-dimensional line anti-aliasing method of Gupta and
Sproull [4]. The scalar-valued voxels determine a fuzzy set
such that the boundary between inclusion and exclusion is
smooth. Direct visualization from such a fuzzy set avoids
image aliasing. Recent work on voxelization has focused on
generating a distance volume for subsequent use in manipula-
tion [1] or rendering [3].

Šŕamek and Kaufman [17] showed that the optimal sam-
pling filter for central difference gradient estimation in areas
of low curvature is a one-dimensional oriented box filter per-
pendicular to the surface. Since most volume rendering im-
plementations utilize the central difference gradient estimation
filter and trilinear sample interpolation, the oriented box filter
is well suited for voxelization. Furthermore, this filter is an
easily computed linear function of the distance from the tri-
angle. Their voxelization method was accurate, but did not
address efficient methods for triangle primitive voxelization.

This paper proposes an efficient, incremental algorithm for
multivalued triangle voxelization suitable for both software
and hardware implementations. The term multivalued refers
to scalar-valued voxels, as opposed to binary-valued voxels.
Voxelization is conceptually similar to 2D rasterization, which
is conventionally performed in hardware for sake of speed. 3D
voxelization is more computationally intensive than 2D ras-
terization by one dimension, so it is important to consider a
hardware solution. Our algorithm could be built into volume
rendering hardware to voxelize polygons at interactive rates.
The hardware could then provide combined visualization of
continuous polygons and/or discrete volumetric data by com-
bining the two volume datasets during rendering.

Conventional graphics hardware only rasterizes points,
lines, and triangles; higher order primitives are expressed as
combinations of these basic primitives. Similarly, we choose
to voxelize only triangles since all other primitives can be ex-
pressed in terms of triangles. Polygon meshes, spline surfaces,
spheres, cylinders, and others can be subdivided into triangles
for voxelization. Points and lines are special cases of triangles
so they can also be voxelized by this algorithm. To voxelize
solid objects, we can first voxelize the boundary as a set of
triangles, then fill the interior using a volumetric filling proce-
dure.

Figure 1 shows the region which is affected by the multival-
ued voxelization of a triangle. All voxels within the translu-
cent surface, which is at a constant distance from the triangle,
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Figure 2:Density profile of the oriented box filter along a line
from the center of solid primitive outward, perpendicular to
the surface. The width of the filter isW .

must be updated during voxelization. Jones [7] presented a
method for identifying this region around a triangle, voxeliz-
ing it, and repeating for an entire triangle mesh. His method
located the minimum distance to the triangle by direct calcu-
lation for each voxel. Our method produces similar voxeliza-
tions using a more efficient incremental method.

Triangle rasterization methods have yielded some impor-
tant algorithms which are extensible to triangle voxelization.
Pixel Planes and Pixel Flow hardware [13] scan converts tri-
angles with SIMD processors by computing three plane equa-
tions per pixel to determine whether or not it is inside the tri-
angle. These equations, callededge functions, are linear ex-
pressions that maintain the distance from an edge by efficient
incremental arithmetic. Shilling [16] used edge functions for
antialiasing primitive edges. Our work extends this notion into
three dimensions and applies antialiasing during the scan con-
version of volumetric triangles.

2 Algorithm
The general idea of the algorithm is to voxelize a triangle by
scanning a bounding box of the triangle in raster order. For
each voxel in the bounding box, a filter equation is evaluated
and the result is stored in memory. The value of the equation
is a linear function of the distance from the triangle. The result
is stored using a fuzzy algebraic union operator — themaxop-
erator. Thus, the complexity of the algorithm is O(nk3) where
k is the average size in volume units ofn triangles. The com-
plexity has a lower bound ofΩ(nk2), since the triangles may
be oriented perpendicular to a major axis and the thickness is
constant.

2.1 Inclusion testing
The inclusion of a voxel in the fuzzy set varies between zero
and one inclusive, determined by the value of the oriented box
filter. The surface of the primitive is assumed to lie on the 0.5
density isosurface. Therefore, when voxelizing a solid prim-
itive as in Figure 2, the density profile varies from a value of
one inside the primitive to zero outside, and varies smoothly
through the edge. For a surface primitive such as the trian-
gle in Figure 3, the density is one on the surface and drops
off linearly to zero at distanceW from the surface. For the
remainder of this paper, we only treat the voxelization of sur-
faces, not solids.

The optimum value for filter widthW is determined to be
2
√

3 voxel units [17]. Rendering from a multi-valued vox-
elized model is most often performed by ray tracing an implicit
functionf() = 0.5. This places an isosurface at the density
value of 0.5, halfway between the minimum and maximum
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Figure 3:Density profile of the oriented box filter along a line
perpendicular to the triangle surface primitive.

values. To resolve surface orientation, some for of shading
(e.g., Phong) is applied based on an estimated gradient (nor-
mal) at the surface intersection. The oriented box pre-filter is
designed to be combined with the central difference gradient
estimation (i.e.,Gx = f(x + 1, y, z) − f(x − 1, y, z), etc.).
Because the overall width of the central difference filter is at
most2

√
3 units, a correct gradient is always found on the 0.5

density isosurface. Normally, the surface thicknessT is zero
unless thick surfaces are desired (see Figure 3). If more ac-
curate shading is desired, an analytical normal could be com-
puted using the original surface model, and stored at each grid
point at a storage premium.

Based on a 0.5 density isosurface, the apparent thickness of
a surface voxelization isT + W . By thresholding at 0.5 den-
sity, a 6-tunnel-free set of voxels is generated whenW≥1 [6].
This property is useful for volumetric filling, (e.g., in order to
generate solid objects).

All voxels with non-zero values for a triangle are within a
bounding boxS = W + T/2 voxel units larger in all direc-
tions than a tight bounding box. Therefore, the first step of the
algorithm determines a tight bound for the triangle, then in-
flates it in all directions byS voxel units and rounds outward
to the nearest voxels.

Figures 4 and 5 show the seven regions surrounding a tri-
angle which must be treated separately. Each candidate voxel
must be tested for inclusion within the seven regions, then fil-
tered with a different equation for each region. In the interior
region of the triangle (R1), the value of the oriented box fil-
ter is simply proportional to the distance from the plane of the
triangle. In regions along the edges of the triangle (R2, R3,
and R4), the value of the filter is proportional to the distance
from the edge of the triangle. In regions at the corners of the
triangle (R5, R6, and R7), the value of the filter is proportional
to the distance from the corner of the triangle.

The regions are distinguished by their distance from seven
planes. The first planea is coplanar with the triangle and its
normal vectora points outward from the page in Figure 5. The
next three planesb, c, andd have normal vectorsb, c, andd
and pass through the corner verticesC1, C2, andC3, respec-
tively. The final three planese, f , andg are perpendicular to
the triangle and parallel to the edges; their normal vectors (e,
f, andg) lie in the plane of the triangle and point inward so that
a positive distance from all three planes defines region R1. All
the plane coefficients are normalized so that the length of the
normal is one — except for normal vectorsb, c, andd which
are normalized so that their length is equal to the inverse of
their respective edge lengths. In that way, the computed dis-
tance from the plane varies from zero to one along the valid
length of the edge. Table 1 summarizes the requisite condi-

Figure 4:Illustration of the seven voxelization regions around
a triangle. Each affected voxel is either closer to the triangle
face, an edge, or a corner.
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Figure 5:2D illustration of the seven voxelization regions (R1-
R7). The regions are delineated by seven planesa-g, whose
normal vectors are shown.

tions for inclusion in each region.

2.2 Distance from a Plane
For any planar surface, the distance of any point from the sur-
face can be computed using the plane equation coefficients.

Dist =
Ax+By + Cz +D√

A2 +B2 + C2

which simplifies toDist = Ax+By+Cz+D when the co-
efficients are pre-normalized. This computation can be made
incremental so that when stepping along any vector, the dis-
tance only changes by a constant. For example, if the distance
from a plane isDist at position[x, y, z], then stepping one
unit distance in theX direction changes the distance to

Dist′ = A(x+ 1) +By + Cz +D

= Ax+By + Cz +D +A

= Dist+A.



Table 1: The necessary (but not always sufficient) conditions
for inclusion in a region based on the distances along seven
plane normal vectors.

R1
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R3
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R5
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Plane Normal Vector
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-S,S(        )
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-S,S(        )
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-S,S(        )

-S,S(        )

-S,S(        )
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(1,    )

(1,    )

[0,    ) [0,    ) [0,    )

(-    ,0)

(-    ,0)

(-    ,0)

(-    ,0)

(-    ,0)

(-    ,0)

Define Plane(A,B,C,D);
Find triangle bounding box(bb);
Dist = A×bb.min.x+B×bb.min.y + C×bb.min.z +D;
xStep = A;
yStep = B −A×bb.width;
zStep = C −B×bb.height−A×bb.width;
Forz = bb.min.z to bb.max.z with unit steps

Fory = bb.min.y to bb.max.y
Forx = bb.min.x to bb.max.x

storef(Dist) in [x, y, z]
Dist = Dist+ xStep;

end For
Dist = Dist+ yStep;

end For
Dist = Dist+ zStep;

end For
Algorithm 1: Incremental algorithm for computing the dis-
tance from a plane.

In general, stepping along any vectorr = [rx, ry, rz], the dis-
tance from the plane changes by

Dist′ = Dist+ r� [A,B,C]

where� indicates the dot product. While scanning the bound-
ing box of the triangle, the distance from the plane of the trian-
gle can be computed incrementally with just a single addition
per voxel (see Algorithm 1). This incremental algorithm is a
3D extension of the edge function used by Schilling [16].

TheY -step is more complicated than theX-step because
it not only steps one unit in theY direction, but it also steps
back multiple units in theX direction, exactly like a typewriter
glides back to the left margin of the paperand advances the
line with one push of the return key. Similarly, theZ-step
combines stepping back in both theX andY directions and
stepping forward one unit in theZ direction. This simple pre-
processing step ensures efficient stepping throughout the entire
volume. If numerical approximation issues arise, then it is
possible to store the distance value at the start of each inner
loop and restore it at the end, eliminating numerical creep due
to roundoff in the inner loops.

For multivalued voxelization, seven plane distances are re-
quired, so seven additions are required per voxel to compute
the plane distances. Other computations per voxel include in-
crementing the loop index, comparisons to determine the ap-
propriate region, and, if necessary, computations to determine
the density.

2.3 Distance from a Triangle
In region R1, the density value of a voxel is computed with the
box filter oriented perpendicular to planea. Given a distance
DistA from planea, the density valueV is computed using:

V = 1− |DistA| − T/2
W

.

In region R2, the density is computed using the distance from
planesa andg:

V = 1−
√
DistA2 +DistB2 − T/2

W
.

Similarly, region R3 uses planesa andf , and region R4 uses
planesa ande. Region R5 uses the Pythagorean distance from
the corner pointC1:

V = 1−
√

(Cx1 − x)2 + (Cy1 − y)2 + (Cz1 − z)2 − T/2
W

.

Likewise, regions R6 and R7 use corner pointsC2 andC3,
respectively.

2.4 Shared Edges
At the shared edge of adjacent triangles, we want to avoid
cracks. Fortunately, the oriented box filter guarantees accu-
rate filtering of the edges for any polyhedra, provided we
correctly compute the union of the voxelized surfaces. Mul-
tivalued voxelization is based on fuzzy algebra, in which
true/false Boolean decisions are abandoned in favor of scalar
values indicating a continuously variable percentage of truth,
or in our case, occupancy. The union operator can be
defined [19] over multivalued density valuesV (x) with
V
A
⋃
B
≡ max(VA(x), VB(x)). Other Boolean operators

are available; however, themaxoperator preserves the correct
oriented box filter value at shared edges. At the edge of a tri-
angle, the oriented box filter generates a cylinder on the 0.5
density isosurface (see Figure 4). If an edge is shared between
two triangles, then the two coincident edge cylinders are su-
perimposed yielding a smooth transition between them. Un-
fortunately, themaxoperator can introduce discontinuities at
polygon intersections (e.g., a triangle piercing another).

Themaxoperator permits us to voxelize triangles in any or-
der without consequence. The implication of usingmaxin our
algorithm is that we must read the current voxel value from
memory, then possibly modify it and write it back to mem-
ory. Thus, a maximum of two memory cycles are required per
voxel, although this is true for any algorithm that voxelizes in
a separate pass for each primitive.

3 Pre-filtering
Voxelization is a pre-filtering operation; the representation is
filtered during generation so that aliasing is avoided during
rendering. Pre-filtering is a powerful tool that allows complex
calculations to take place off-line so that subsequent render-
ing from multiple viewpoints is optimized. Here we present
two techniques that can be performed with our voxelization
method.

Pre-filtering can be used to generate a series of volumes [5]
of different resolutions (see Figure 6). This technique is useful
for rendering images of different sizes; the size of the volume
is chosen to correspond to the size of the final image. In this
way, aliasing is avoided at all image resolutions and no unnec-
essary work is performed in rendering parts of the scene not
visible at the image scale. Furthermore, low resolution vol-
umes generated by our method provide accurate topology of
the model.



Figure 6:Multiresolution triceratops voxelizations: maximum
dimensions of 512, 256, 128, and 64 voxels.

Figure 7: Pre-filtered helicopter blade with motion blur effi-
ciently rendered in a single pass at the same speed as without
motion blur.

Pre-filtering can additionally be used to model motion blur.
As an object sweeps past a camera, it sweeps out a complex
volume during the time the shutter is open, causing motion
blur. To accurately render this, conventional rendering tech-
niques actually render multiple images and blend them into
a single image. This is accurate, but very slow. With pre-
filtering, we can perform the sweeping operation once, during
voxelization, so that motion blur can be rendered in the same
time as regular volume rendering. This only works for certain
cases where the motion is constant, (e.g., the same direction
and/or rotation). A good example of this is a helicopter blade
which spins at a constant speed during flight. We voxelized the
blade spinning at the rate of 5Hz for an animation frame rate of
30Hz. That means that the blade sweeps out an arc of5

30
(2π)

radians each frame. We voxelize by integrating the voxel den-
sity over the time of the frame. Because the inner portion of
the blade sweeps out a smaller volume, the average density is
much higher than the outer portion, where each voxel is occu-
pied only a small portion of the time. The volume rendering
transfer function is set so that the lower density values are less
opaque and higher density values are more opaque. This cor-
rectly gives the visual impression of higher opacity near the
center and lower opacity near the edge. The resulting image is
shown in Figure 7.

4 Implementation
4.1 Software
The algorithm and volume rendering routines are implemented
in object oriented C++. However, the inner loop of the algo-
rithm avoids using C++ classes for a significant performance
increase.

The efficiency can be further increased by limiting the
amount of unnecessary computation. Specifically, the bound-
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Figure 8:The parallel, distributed architectural organization
of the Cube-4 volume rendering accelerator.

ing box often contains a greater percentage of voxels unaf-
fected by the triangle than affected by it. Efforts to obtain a
tighter bounding box generally increase the complexity of the
algorithm. Therefore, such optimizations only increase effi-
ciency when the size of the triangles is large (e.g., edges longer
than 100 voxels). The bounding box can be made tighter by
recursively subdividing the triangle when edge lengths exceed
some constant.

A software implementation allows optimizations that are
not possible in hardware. In software, usually a single com-
parison per voxel is all that is necessary since most of the vox-
els are unaffected by the voxelization of a single triangle. For
a voxel to be considered, the distance from planea must be
less than or equal toS units. Therefore, a simple rejection test
is used to eliminate most voxels from consideration. By elim-
inating most computation early, time spent traversing empty
space is minimized and most of the time is spent computing
the filter function.

The memory access patterns can be optimized for optimum
cache coherence by reordering the computation. In our case,
the triangles can be divided into volumetric groups suitable for
the cache of the target platform. For example, with a 512KB
cache and 1-byte voxels, the triangles could be voxelized into
643 sub-blocks of the volume, one sub-block at a time.

4.2 Hardware
With the advent of volume rendering hardware such asVol-
umePro [14], real-time volume visualization will soon be
available for practical use. To visualize intermixed polygons
and volumes, the polygons can be voxelized into the target vol-
ume and rendered in a single pass. If the polygons move with
respect to the volume, then voxelization should occur in a copy
of the original volume, so as not to corrupt the data. The mul-
tivalued voxelized polygon voxels can be tagged to distinguish
them from volume data. In this way, polygons can be colored
and shaded separately from other data.

The algorithm is efficiently implemented in the distributed
pipelines of the Cube-4 volume rendering system. This al-
gorithm adds just a small amount of hardware to the exist-
ing pipelines and performs accurate multivalued voxelization
at interactive rates (see Section 5). Multiple Cube-4 pipelines
work in parallel to retrieve voxels from distributed memories
and perform ray casting in real time (see Figure 8). The vol-
ume is raycast beam-by-beam, one slice at a time into a buffer
which eventually becomes theBase Plane(see Figure 9). Af-
ter raycasting is complete, theBase Planeis 2D warped to the
Image Plane. A primary advantage of the Cube-4 volume ren-
dering algorithm is that the volume data is accessed coherently
in a deterministic order. This feature allows orderly scanning
of a bounding box similar to the software implementation with
deterministic memory access.

The overall voxelization pipeline is shown in Figure 10.
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Figure 10:An overview of the hardware voxelization pipeline.

If on-the-fly voxelization is important, then there would be
separate pipelines for volume rendering and voxelization. If
voxelization could occur in a separate pass, then these two
pipelines would be rolled into one, with the voxelization
pipeline re-using most of the hardware from the volume ren-
dering pipeline. The setup for each triangle occurs on the host
system, much like setup is performed on the host for 2D raster-
ization. Per pipeline, this algorithm requires the use of 28 reg-
isters, 7 comparators, 12 adders, 3 multipliers, and one lookup
table (LUT).

In the first hardware stage of the pipeline, the distances from
the seven planes are computed. Seven simple distance units are
allocated with four registers for each of the seven planes. One
register holds the current distance from the plane and the other
three hold the increments for theX, Y , andZ-steps. During
each clock cycle of voxelization, the pipeline steps either in
theX, Y , or Z direction, so the current distance is updated
according to the direction of movement.

Since the hardware for looping through the volume is al-
ready built into the volume rendering pipeline, it is re-used
here to scan the bounding box of the triangle. It is important
to note that the hardware is a systolic array built withp parallel
pipelines. The pipelines always operate on contiguous voxels
in a beam, so it is necessary that the bounding box edges be a
multiple ofp. This potentially leads to inefficient load balanc-
ing, butp is typically small (i.e., four or eight).

After the seven plane distances are calculated, the val-
ues flow down the pipeline where tests are done in the next
pipeline stage to determine in which region the current voxel

resides. Only seven comparators are needed to decide the out-
come of the truth table (see Table 1), due to the mutual exclu-
sion of some cases. For instance, in Figure 5 if you are on the
negative (lower) side of planeb, then it is not necessary to test
the distances from planef or g depending on the value of the
distance from planee.

The next pipeline stage, which computes the filter function,
is only activated if the current voxel is withinS voxel units
of the triangle. Otherwise, the current voxel is unaffected
by the triangle and different regions require different calcu-
lations, ranging from a simple linear expression to a complex
Pythagorean distance evaluation. Since hardware must be able
to handle all cases equally well, it must be able to perform
a square root approximation by means of a limited resolution
LUT. Luckily, the range of inputs and outputs is small, so the
size of the required LUT is tiny by most standards. Further-
more, the Cube-4 hardware has several LUTs available for vol-
ume rendering which can be re-used for voxelization. Instead
of providing three separate units to compute the expression:
V = 1 − (

√
Dist − T/2)/W , it is more efficient to roll all

the calculations into one LUT. In this case, the input isDist2,
defined over [0,12], and the output is the density valueV in
the range [0,1].

Due to the mutual exclusion of the seven regions, it is suf-
ficient to provide hardware for only the most complex filter
calculation. The most complex calculation is the corner dis-
tance computation of regions R5, R6, and R7 which requires 5
adders and 3 multipliers in addition to the already mentioned
square root LUT. The line distance computations in regions
R2, R3, and R4 are simpler, requiring only 1 adder, 2 multi-
pliers, and the square root LUT. Region R1 requires a single
multiply to obtain the distance squared, which is the required
input to the LUT.

The final stage of the pipeline computes themaxoperation
using the current voxel value and the computed density esti-
mate. Themaxoperator is simply a comparator attached to a
multiplexor such that the greater of the two values is written
back to memory. Since most voxels in the bounding box are
not close enough to the triangle to be affected by it, memory
bandwidth will be saved by only reading the necessary voxels.
Further savings can be reached by only writing back to mem-
ory those voxels that change the current voxel value. Since
there is some latency between asking for and receiving word
from memory, the voxel should be fetched as soon as possible
in the pipeline and the results queued until the memory is re-
ceived. The final stage is write-back to memory, which can be
buffered without worry of dependencies.

4.3 Cut Planes
During volume rendering, the distance units of the voxeliza-
tion pipeline are unused. Each of the seven units could be
used to implement cut planes that divide the volume into re-
gions, positive and negative. The voxels in the intersection of
the positive-valued regions are rendered visible while all other
voxels are rendered invisible. Two such planes can be used as
the yon and hither clipping planes. The remaining five planes
could be arbitrarily oriented by the user for isolating a region
of interest. For proper anti-aliasing, the oriented box filter is
applied to the opacity using a non-zero widthW .

Alternately, the visible region can be defined using only a
single thick plane (T�1). Again, the final opacity is deter-
mined by modulating with the value of the oriented box filter.
In this way, it is possible to perform oblique multiplanar refor-
matting, useful in the medical field. Using this new definition,
the yon and hither clipping planes can be implemented using
a single thick cutting plane, located halfway between the clip-
ping planes. The remaining 6 plane distance units can be used



Figure 11:Cross-section of a CT visible female foot rendered
using our incremental cut plane algorithm.

for arbitrary region cutting. We simulated Cube-4-like object
order volume rendering including an incremental cut plane.
Figure 11 shows the CT foot of the visible female efficiently
cut away to reveal inner structure.

5 Results and Discussion
The algorithm has been implemented on a 195 MHz MIPS
R10000 and tested with various datasets (see Table 5). This
algorithm has also been implemented and tested as part of a
full-featured voxelization system [18]. The incremental vox-
elization method produces accurate, multivalued voxelization
of triangles. The primary result is that voxelization proceeds
at a high rate — often on the order of thousands of triangles
per second. The rate varies with the average triangle size and
their orientation. Sphere-3, shown in Figure 12a, is an approx-
imation of a sphere with 128 triangles using three levels of
recursive subdivision from an octahedron. Sphere-7 (see Fig-
ure 12b) is a better approximation of a sphere generated by
four levels of recursive subdivision of Sphere-3.

The use of edge functions to compute distances has proven
to be fast and easy to implement, even in hardware. The last
column of Table 5 estimates the time required to voxelize the
object in hardware, assuming a hardware fill rate of 2.5 Mega-
voxels/sec. This estimate is based on currentVolumeProhard-
ware which is capable of rendering a 2563 volume at 30Hz
(recall that voxelization requires up to twice the memory band-
width of rendering).

Most of the voxelizations were at a medium resolution (i.e.,
at least 256 voxels), but a few were at a low resolution for com-
parison with prior work. Jones [7] voxelized objects into a603

volume, taking on the order of 100 triangles per second. By
comparison, our method in software voxelizes the same num-

Figure 12: (a) 128 triangle approximation of a sphere vox-
elized into a2563 volume in 1.8 s, (b) 32768 triangle ap-
proximation of a sphere voxelized into a2563 volume in 16.7
s, (c) 5660 triangle model of a triceratops voxelized into a
175×229×512 volume in 5.8 s, (d) 1352 triangle model of the
letter “a” voxelized into a 123×256×256 volume in 5.3 s.

ber of triangles into a similarly sized volume approximately
one order of magnitude faster with a similar machine. Com-
pared to Wang and Kaufman’s method [19], ours provides at
least one order of magnitude speedup for triangle primitives,
but actually performs slower voxelizing solid primitives such
as spheres and cones, which are approximated by a large set of
triangles instead of a single implicit function. Such primitives
are better voxelized using direct methods appropriate for each
primitive, as in [18].

Other models voxelized were a triceratops model and the
letter “a” (see Figures 12c and 12d). At a high resolution,
the voxelized triceratops model appears as if it were an an-
tialiased polygonal rendering. Pre-filtering is one of the advan-
tages of voxelization followed by volume rendering compared
to polygonal rendering, as shown in Section 3.

Since this is a rasterization method, the quality of the vox-
elization is directly related to the quality of the input triangle
mesh and the desired resolution. Model meshes need not be
manifold or otherwise structured, unless volumetric filling is
employed. Degenerate triangles form either a line or a point
which are handled as a special case using only three or one of
our defined regions, respectively.
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[17] M. Šŕamek and A. Kaufman. Alias-free voxelization of
geometric objects.IEEE Transactions on Visualization
and Computer Graphics, 5(3):251–267, July 1999.
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