
Model Simplification Through Refinement

Dmitry Brodsky
Department of Computer Science
University of British Columbia

Benjamin Watson
Department of Computing Science

University of Alberta

Abstract
As modeling and visualization applications proliferate,

there arises a need to simplify large polygonal models at
interactive rates. Unfortunately existing polygon mesh
simplification algorithms are not well suited for this task
because they are either too slow (requiring the simplified
model to be pre-computed) or produce models that are too
poor in quality. These shortcomings become particularly
acute when models are extremely large.

We present an algorithm suitable for simplification of
large models at interactive speeds. The algorithm is fast
and can guarantee displayable results within a given time
limit. Results also have good quality. Inspired by split-
ting algorithms from vector quantization literature, we
simplify models in reverse, beginning with an extremely
coarse approximation and refining it. Approximations of
surface curvature guide the simplification process. Previ-
ously produced simplifications can be further refined by
using them as input to the algorithm.

1 Introduction

Many of today’s applications require simplification of
polygonal models at interactive speeds. Modeling appli-
cations must simplify and display extremely large mod-
els at interactive rates. In visualization applications iso-
surfaces from high dimensional data sets must be com-
puted, simplified, and rendered in close to real-time. In
dynamically modifiable virtual environments, newly gen-
erated surfaces are typically over-tessellated and must be
simplified for display at interactive speeds. As the size
of polygonal models balloons simplification algorithms
have to scale gracefully to handle these extremely large
models.

An ideal simplification algorithm for these applications
would possess several characteristics. Most importantly,
the algorithm must guarantee displayable results within
a specified time limit. Second, the algorithm must pro-
vide good control of output model size if results are to
be displayable. It is also very important that the output
model quality remains reasonable, despite stringent time
constraints. If time demands require the output of a crude
simplification, then the algorithm should allow for later
refinement of that output. Finally, for interactive display

it would be useful if the algorithm produced a continuous
level of detail hierarchy instead of several discrete levels
of detail.

Most existing simplification algorithms are far too
slow to be used in interactive applications. Some vertex
clustering algorithms [15, 18] are very fast, but control of
output quality and size is quite poor. Moreover this out-
put is difficult to refine and to organize into a continuous
level of detail hierarchy.

Our algorithm,R-Simp, was inspired by splitting algo-
rithms from the vector quantization literature [6]. The
algorithm simplifies in reverse from coarse to fine, allow-
ing us to guarantee a displayable result within a speci-
fied time limit. At every iteration of the algorithm, the
number of vertices in the simplified model is known, en-
abling control of output model size. We use curvature to
guide the simplification process, permitting preservation
of important model features, and thus a reasonable level
of output model quality. Performing simplification in a
reverse direction makes it possible to refine intermediate
output as long as some state information is saved. Finally
with its divide and conquer approach, R-Simp can easily
be extended to create continuous level of detail hierar-
chies. R-Simp’s complexity isO(ni log no), whereni is
the size of the input model andno is the size of the output
model. This enables R-Simp to scale linearly with respect
to input size for a given output size. With all these traits,
R-Simp is well suited for simplification of large models
in interactive environments.

We also look to vector quantization to form a taxon-
omy of existing simplification algorithms. In sections 2,
3 and 4 we review vector quantization, related research,
and curvature. The details of the algorithm are discussed
in section 5. In section 6 we examine the performance of
the algorithm and compare it to QSlim [5] and a vertex
clustering algorithm [18]. Sections 7 and 8 present other
possible applications of R-Simp and conclusions.

2 Vector quantization

Vector quantization (VQ) is the process of mapping a vec-
tor in a large setS ⊂ Rn into a smaller setC ⊂ Rn. More
precisely, a quantizer is a functionQ : Rn → C where
C = {~vi ∈ Rn|1 ≤ i ≤ N}. C is called thecodebook.



The challenge is findingC such that it optimally repre-
sents all vectors inS ⊂ Rn. The codebookC partitions
the setS, since each~vi represents multiple vectors from
S. A single partition ofS is called acell and~vi is thecen-
troid of the cell. The difference between a vector~vi and
an input vector~u is calleddistortion. When the distortion
for an input vector~u is minimal for all ~u ∈ S then the
codebook is called optimal.

In [6], Gersho and Gray present four basic types of
VQ algorithms. Using these four types we will create a
taxonomy of existing simplification algorithms.

Product codealgorithms use scalar quantizers that are
independently applied to each input vector element.

In pruningalgorithms, the codebook initially contains
all the vectors in the input setS. The codebook entry
that increases distortion least is removed; removals con-
tinue until the desired codebook size is reached. Alter-
natively, the codebook is initially empty, and each of the
input vectors is considered in succession. If representing
any vector with the current codebook would result in dis-
tortion over a given threshold, the vector is added to the
codebook.

Pairwise nearest neighboralgorithms also set the ini-
tial codebook to contain all the vectors inS. All possible
cell pairs are considered and the pair that introduces the
least distortion is merged. Merging continues until the
desired codebook size or distortion tolerance is reached.

In Splittingalgorithms, the codebook initially contains
a single cell. The cell with the most distortion is located
and then split. Splitting continues until the required dis-
tortion or codebook size is reached.

3 Vector Quantization and Simplification

Simplification relates to quantization as follows: a cen-
troid equates to a primitive (vertex, line, or polygon) or a
set of primitives in the simplified model. For most vertex
merge algorithms, the centroid is a single vertex and as-
sociated faces. A cell equates to a set or cluster of faces in
the original model. There are a few ways in which model
simplification differs from vector quantization. For ex-
ample in model simplification, two disjoint faces do not
make up an ideal cluster, while in image quantization a
cluster with two separate pixels is perfectly acceptable.
We cannot review every known simplification algorithm;
a fairly comprehensive survey is available from Garland
and Heckbert [8].

Rossignac and Borrel [18] proposed an algorithm that
applies a product codes technique to the model vertices.
Cells are formed with a uniform voxelization; the cen-
troid is usually chosen as the mean of the vertices in each
cell (weighted averages or maxima are common alterna-
tives). Only a linear pass through the vertices is required

to simplify the surface. The result is an extremely fast
algorithm that produces poor simplifications. He et al
[7] proposed a similar and slower algorithm that makes
use of a low pass three dimensional filter. Low and Tan
[15] developed a vertex clustering algorithm that non-
uniformly subdivided the model’s volume. Cells are cen-
tred on the most important vertices in the model.

The simplification algorithms taking the pruning ap-
proach are generally not as fast as the product code algo-
rithms, but they produce better simplifications. Two such
algorithms [9, 13] work by growing coplanar patches.
When a face cannot be added to a patch without violating
a co-planarity threshold, it is re-triangulated with fewer
polygons and added to the codebook. Other algorithms
[20, 21] work by removing or pruning away single ver-
tices. The algorithm described in [20] simply removes
a vertex whose surrounding faces are relatively coplanar
and re-triangulates the created hole, while the algorithm
described in [21] adds a completely new set of vertices
and tries to prune away as many of the old vertices as
possible.

There are many algorithms, commonly called vertex
merge or edge collapse algorithms, that use the pair-
wise nearest neighbour approach [1, 3, 5, 10, 11, 14, 17].
These algorithms tend to produce the best simplification
results but are often quite slow. The algorithms assign
weights to each vertex merge and use a priority queue to
locate the merge with minimum cost. They merge the
vertices (merge the cells), recompute the affected vertex
pairs, and iterate. The algorithms continue until the re-
quired model size or error tolerance is reached. The algo-
rithms differ in how they assign weights to a vertex merge
and how they determine the location of merged vertices
(calculate centroids).

To our knowledge R-Simp is the only simplification
algorithm based on the splitting technique. In R-Simp
we treat simplification as quantization of face normals as
opposed to colour (x, y, z instead ofR,G,B). Our goal
when splitting is to create cells containing the most planar
surface possible (the variation in face normals is small).
Thus, cells that contain little curvature are split less than
cells that contain more curvature.

4 Curvature

One common measure of surface curvature is callednor-
mal curvature [16]. Normal curvature is the rate of
change of the normal vector fieldU on a surfaceS in di-
rection~u, where~u is a unit vector tangent to the surfaceS
at pointp. There are two important normal curvature ex-
trema calledprinciple curvatures, these are the maximum
(k1) and minimum (k2) values of normal curvature. The
directions corresponding to these principle curvatures are



calledprinciple directions.
Since these curvature measures are defined for in-

finitely small patches, they provide a good description of
the local surface around a point. However, they do not
work well for larger surface patches with multiple scales
of curvature. (e.g. asphalt looks flat from a distance but
can feel quite rough close up). R-Simp requires measures
of orientation change, curvature, for large patches. We
will use the termnormal variationto refer to orientation
change in large patches.

5 The R-Simp algorithm

Unlike other algorithms, R-Simp starts with a coarse ap-
proximation of the model and refines it until the desired
model complexity is reached. The algorithm begins with
the triangulated model in a single cluster (a cluster is a
collection of faces from the original model). The initial
cluster is then divided into eight sub-clusters. These eight
sub-clusters are then iteratively divided until the required
number of clusters (vertices) is reached. Clusters are cho-
sen for division based on the amount of normal variation
on the surface in the cluster.

The R-Simp algorithm can be broken down into three
stages.

• Initialization: In this stage we create global face
(gfl ) and vertex (gvl ) lists, as well as vertex-
vertex and vertex-face adjacency lists. We also cre-
ate the eight initial clusters.

• Simplification: In this stage the model is simplified.
The simplification consists of four steps:

1. Choose the cluster that has the most face nor-
mal variation.

2. Partition (split) the cluster based on the amount
and direction of the face normal variation.

3. Compute the amount of face normal variation
in each of the sub-clusters.

4. Iterate until the required number of clusters
(vertices) is reached.

• Post Processing: For each cluster that is left,
compute a representative vertex (centroid). Re-
triangulate the model.

5.1 Data structures
The principle data structure in this algorithm is the
Cluster . It stores all the information necessary to de-
termine face normal variation and to compute the repre-
sentative vertex. It contains two arrays of indices, for ver-
tices (vl ) and faces (fl ), that index into two global lists
of the vertices and faces from the original model (gfl

and gvl ). The Cluster also contains the mean nor-
mal ( ~mn) that is the area-weighted mean of all the face
normals in the cluster and is computed by Equation 1.

~mn =
N∑
i

~niai (1)

whereN is the number of faces in the cluster,~ni is the
normal of facei, andai is the area of facei. TheClus-
ter also holds the mean vertex (mv) for the cluster, the
amount of normal variation (nv), and the total area of the
faces in the cluster.

Two other important data structures are theFace and
theVertex data structures which make upgfl andgvl
respectively. TheFace contains a list of vertices that
make up the face, its normal, the face area, and its mid-
point. TheVertex contains adjacency information for
all the vertices and faces adjacent to it.

The vertices in theFace data structure are indices into
gvl . The adjacency lists for the faces and the vertices in
theVertex data structure are also indices intogfl and
gvl .

5.2 Initialization
During the initialization stagegfl and gvl are con-
structed and the initial eight clusters are created. The ini-
tial clusters are created by partitioning the model using
three axis aligned planes that are positioned in the mid-
dle of the model’s bounding box. We then compute the
amount of face normal variation in each of these clusters
(see Section 5.3). These eight clusters are then inserted
into a priority queue sorted by the amount of face normal
variation.

5.3 Choosing the cluster to partition
In the simplification stage of our algorithm the first step
is to choose a cluster in which the face normals vary the
most (the cluster at the head of the queue). We com-
pute the amount of face normal variation using the area-
weighted mean (~mn) of the face normals.

The flatter the surface, the larger the magnitude of~mn.
If all the faces are coplanar, the magnitude of~mn will
equal the area of the surface in the cluster. We define this
componentcp of our face normal variation measure as
follows:

cp =
‖ ~mn‖∑N
i ai

(2)

Even if the surface in a cluster is extremely small it can
contain a large amount of curvature. In order to prevent
small, highly curved details (e.g. a small spring in an en-
gine) from dominating the simplification we must make
our normal variation measure (nv ) sensitive to size. To



do this, we scalecp by the ratio of the surface area in the
cluster to the model surface area:

nv =
∑N
i ai∑M
i ai

(1− cp) (3)

whereM is the number of faces in the model. We com-
plementcp so thatnv increases as face normal variation
increases. In the remainder of this paper the term “normal
variation” refers to variation of face normals.

5.4 Describing the pattern of normal variation
The next step is to describe normal variation in the cho-
sen cluster. We follow Gersho and Gray [6] who suggest
principle component analysis (PCA) [12] as a way of de-
termining how to split cells when using a splitting algo-
rithm. In PCA a covariance matrix is formed from the
data set of interest. The eigenvectors of this matrix are
aligned according to the pattern of variation in the data
set. Garland [4] showed that if the covariance matrix is
formed with normal vectors, the eigenvectors are gener-
ally related to the principal directions of normal curva-
ture. Specifically, the largest eigenvalue and correspond-
ing eigenvector represent the mean normal of the surface.
Usually the second and third largest eigenvalues and cor-
responding eigenvectors represent the directions of max-
imum and minimum curvature.

The covariance matrixA around the mean[0, 0, 0] is
defined by:

A =
N∑
i

~ni~n
T
i (4)

We compute the eigenvalues and eigenvectors using the
Jacobi method.

5.5 Partitioning the cluster
Partitioning the cluster consists of four steps. First, we
must determine how many planes to use to partition the
cluster. Second, we must orient the planes. Finally, we
must position the planes and create new sub-clusters.

A cluster is partitioned into two, four, or eight sub-
clusters depending on the amount of curvature. Letcmn,
cM andcm equal the eigenvalues in descending order (the
second and third largest eigenvalues relate tok1 andk2,
the magnitudes of principle curvature). Let~cM and~cm
represent the corresponding eigenvectors (these are re-
lated to the directions of maximum and minimum cur-
vature).

If all eigenvalues are of similar magnitude the pattern
of normal variation is unclear. We test for this by com-
paring the eigenvalues as follows: bothcM < 2cm and
cmn < 2cM must be true. In this case we partition the
cluster into eight sub-clusters. One partitioning plane is

perpendicular to~cM , the second plane is perpendicular to
~cm, and the third plane is perpendicular to~mn.

Otherwise, ifcMcm <= 4 then the surface is most likely
hemispherical since there is significant curvature in both
the minimum and maximum directions of curvature. In
this case we partition the cluster into four sub-clusters.
One partitioning plane is perpendicular to~cM and the
other plane is perpendicular to~cm.

In all remaining casescMcm > 4 and the surface is most
likely cylindrical since most of the curvature is in one
direction. In this case we partition the cluster into two
sub-clusters. The partitioning plane is perpendicular to
~cM .

We must now position the partitioning planes in the
cluster. Ideally the surface should be partitioned along
any ridges or through any elliptical bumps. However, lo-
cating such features is difficult, instead we do the fol-
lowing: first we compute the vector~cM⊥, which is the
projection of~cM ontoPmn, the plane defined by~mn and
the cluster’s mean vertex (mv). We then project the mid-
point of all the faces in the cluster ontoPmn and find the
mean of all projected midpoints that fall within 2.5 de-
grees of~cM⊥. The resulting point is the position for the
partitioning plane(s).

Sub-clusters are created by partitioning the vertices in
a cluster. The membership of a vertex depends on which
side of the partitioning plane(s) it falls on. The faces fol-
low the vertices to the sub-clusters. A face may belong
to two or three clusters if the vertices of the face fall into
different sub-clusters.

Even if the entire model is topologically connected, a
given cluster may contain two or more disconnected com-
ponents. Approximating these components with a single
vertex can introduce severe distortion. We have found it
useful to perform a topology check to determine if a new
cluster contains topologically disjoint components.

The topology check is a breadth first search on the ver-
tices and edges contained in a cluster. We use a bit array
to record the vertices visited during the search, making it
linear in complexity. If the cluster contains disjoint com-
ponents, each component is placed into a separate cluster.
Although this topology check increases the overall sim-
plification time, the resulting increase in quality of the
simplification is considerable.

5.6 Post processing
Once the simplification stage is finished two tasks remain.
The first is to compute the location of the representative
vertex (v) for each cluster. The second is to re-triangulate
the output surface.

To represent a cluster’s faces as accurately as possible,
v should be as close as possible to all the faces. [5, 14, 17]
all minimize the summed distance from the planes con-



taining the cluster’s faces. [5, 14] minimize the squared
distance:

Q(v) = vTAv + 2~bT v + c (5)

Where~ni + di = 0 is the plane equation for facei, A is
as previously defined,~b =

∑N
i di~ni, andc =

∑N
i d

2
i .

SinceQ is a quadratic thenQ(v) is minimum when its
partial derivatives equal zero. This occurs when:

vmin = −A−1~bT (6)

We re-triangulate using a method similar to that used
by [18]. Aftervj is computed for each cluster, thevjs are
output to a simplified vertex listsvl . In gvl , all vertex
references contained in (vl ) of clusterj are pointed at
the new entry insvl . We then traverse the global face
list gfl . Any face referencing three different vertices in
svl is retained and output to the simplified face listsfl .
All other faces have degenerated into lines or points and
are discarded.

6 Results

Simplification algorithms are usually judged by two cri-
teria. The first criterion is speed, the time required to
simplify a model. The second and more difficult to mea-
sure criterion is quality. Intuitively speaking, quality of a
simplification is its appearance or its geometric accuracy.

In the following subsection we present execution times
for two different input models. We also present qual-
ity results, including images allowing for comparison of
appearance and geometric accuracy measured with the
Metro [2] tool.

6.1 Performance
Five different models were used in our comparisons.
All models were simplified on a 195 MHz R10000 SGI
Onyx2 with 512 MB of main memory.

We compared R-Simp to two other simplification al-
gorithms. We chose the fastest vertex clustering algo-
rithm and the fastest vertex merge algorithm. The first is
Rossignac and Borrel’s [18] vertex clustering algorithm
(with unweighted centroid calculations). The second,
QSlim [5], is one of the fastest vertex merge algorithms.

Figure 1 compares the performance of R-Simp to QS-
lim and vertex clustering with the Stanford bunny. R-
Simp is considerably faster than QSlim; it is able to pro-
duce a simplified model of up to 20000 polygons before
QSlim removes a single face. R-Simp’s complexity is
O(ni log no) whereni is the input model size andno is
the output model size. Thus R-Simp is linear for a fixed
output size. The speed of vertex clustering is not related
to output size.

Figure 2 shows how the size of the input model affects
simplification time. The dragon was initially simplified

0.1

1

10

10 100 1000 10000 100000

T
im

e 
In

 S
ec

on
ds

Output Model Size (Faces)

R-Simp
QSlim V2.0

Vertex Clustering

Figure 1: The effect of output model size on simplifica-
tion time for the Stanford bunny.

using QSlim to various sizes. These models were then
simplified by R-Simp, QSlim, and vertex clustering to
2100 polygons. As the graph shows, the larger the input
model, the longer it takes to simplify. However, QSlim’s
curve is significantly steeper than R-Simp’s. Vertex clus-
tering is fastest but is affected by input size.

To compare model quality we took seven models and
simplified them. Table 1 summarizes the results. The ta-
ble shows the mean Hausdorff distance between the orig-
inal and the simplified surface as a percentage of the di-
agonal of the bounding box of the original surface [2].

Figures 3a-h show the original bunny and dragon mod-
els and the corresponding simplifications produced by all
three algorithms.

6.2 Discussion
As we noted earlier, in applications where the model is
created in response to user input pre-computation is not
possible. Models must be simplified at interactive rates.
Applications that deal with extremely large models must
ensure that the simplification algorithm is able to produce
simplifications in reasonable time.

Algorithms useful for such applications should possess
several characteristics:

• Interactive response: Most importantly, algorithms
should be able to guarantee displayable results
within a specified time limit. R-Simp’s speed and
coarse to fine pattern of simplification make it ideal
for this application. Vertex clustering is even faster
although precise control of execution time is diffi-
cult. Because QSlim is slower and simplifies from
fine to coarse it cannot make any time guarantees.



Model Input Output Vertex Clustering R-Simp QSlim
# Faces # Faces Error Time (s) Error Time (s) Error Time (s)

Bunny 69451 1600 0.302% 0.09 0.155% 1.58 0.071% 7.85
Cow 5782 1600 0.256% 0.03 0.118% 0.12 0.060% 0.45
Dragon 871306 2100 0.428% 0.29 0.241% 18.9 0.175% 129
Horse 96966 1600 0.266% 0.05 0.147% 2.29 0.052% 11.5
Chair 2481 800 0.658% 0.00 0.215% 0.05 0.019% 0.17
Torus 20000 400 0.460% 0.05 0.265% 0.32 0.160% 1.74
Spring 9386 800 1.012% N/A 0.594% 0.13 0.295% 0.75

Mean 0.483% 0.09 0.242% 3.34 0.119% 21.6

Table 1: Simplification error and time of R-Simp, QSlim, and vertex clustering. The error is the mean surface deviation
between two surfaces measured as a percentage of the sampling bounding box diagonal [2].

0

20

40

60

80

100

120

140

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

T
im

e 
In

 S
ec

on
ds

Input Model Size (Faces)

R-Simp
QSlim V2.0

Vertex Clustering

Figure 2: The effect of input model size on simplification
time. Output model size is 2100 polygons.

• Control of output model size: Control of output
model size is important if results are to be dis-
playable. R-Simp and QSlim provide a straight for-
ward way to control the output model size but most
vertex clustering algorithms do not. In these algo-
rithms one can only specify the number of voxels;
the number of vertices and faces will typically be
much smaller. Thus, if displayability is to be guar-
anteed, quality suffers.

• High output quality: Algorithms should output mod-
els of the best possible quality despite time con-
straints. QSlim clearly generates the best quality
models. R-Simp’s output quality is not as good, ver-
tex clustering is worst.

• Iterative improvement: When time constraints re-
quire the output of a crude simplification, it should

be possible to refine the result after the time de-
mands have been met. R-Simp’s coarse to fine pat-
tern of simplification makes this fairly simple; one
must only save the priority queue of clusters. With
QSlim there is no need for refinement, the more
important question is whether the time constraints
could be met. Vertex clustering uses a one pass, one
resolution approach and thus refinement is not pos-
sible.

• Continuous level of detail: Many interactive appli-
cations require level of detail hierarchies. Both R-
Simp and QSlim are able to produce hierarchies but
much of the hierarchy initially output by QSlim will
not be displayable in interactive settings. Vertex
clustering cannot produce hierarchies without fun-
damental changes to the algorithm.

• Scalability: Simplification algorithms need to scale
gracefully so that they are able to handle extremely
large models. QSlim’s complexity isO(n log n) in
input while R-Simp’s is linear for a fixed output size.

To summarize, QSlim generates the best quality mod-
els but it is not suitable for interactive applications be-
cause it is too slow and cannot guarantee displayable re-
sults in a fixed time. Vertex clustering algorithms are ex-
tremely fast but generate poor quality models and do not
provide an easy way to control output model size. We be-
lieve R-Simp’s time guarantees and quality/speed trade-
off make it ideal for use in interactive applications.

R-Simp can simplify any model, regardless of topol-
ogy or manifold characteristics. In output it can simplify
topology and thus does not guarantee topology preserva-
tion.

7 Future work and other applications

The quality of R-Simp’s simplifications might be im-
proved by adding a look-ahead feature, comparing the
normal variation before and after the cluster split. It



should also be possible to modify R-Simp to consider
boundaries as well as face and vertex attributes (e.g.
colour) during simplification. For large environments
consisting of many objects, it should be possible to add a
distance threshold to the topology check, so that disjoint
but neighbouring objects remain in the same cluster and
are merged.

To enable management of the quality/speed tradeoff,
R-Simp might be used as part of a two stage simplifi-
cation process. If speed is particularly important, ver-
tex clustering could be used to simplify the model to a
medium level of complexity and the result input to R-
Simp. If quality is important, the output of R-Simp could
be input to QSlim.

We have already discussed the use of R-Simp for level
of detail hierarchies. The bounding box around the clus-
ters in these hierarchies can be used to speed up colli-
sion detection. We have experimented with such bound-
ing boxes as an error measure during simplification and
found no loss in quality or speed. For view based level of
detail control, the error measure should limit the distance
between the simplified and original surfaces.

Since R-Simp simplifies in a coarse to fine direction, it
should be well suited for application in progressive trans-
mission of 3D models. Approximations of previously un-
compressed models could be transmitted quickly.

8 Conclusion

We presented R-Simp, an algorithm that simplifies 3D
models in reverse and is well suited for interactive appli-
cations such as generation of iso-surfaces. Given a lim-
ited amount of time most other algorithms cannot guar-
antee displayable results or results of reasonable quality.
R-Simp also allows iterative improvements, precise con-
trol of output size, and construction of level of detail hi-
erarchies.

Acknowledgments

We would like to thank Oleg Verevka for suggesting the
comparison of quantization to model simplification and
Carolina Diaz-Goano for her mathematical assistance.
We are grateful to Alex Brodsky for all his helpful and
insightful comments and to Greg Turk for his comments,
geometry filters, and models. This research was sup-
ported by an NSERC grant: RGPIN203262-98.

References
[1] Maria-Elena Algorri and Francis Schmitt. Mesh simplifi-

cation.Computer Graphics Forum, 15(3):C77–C86, 1996.

[2] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: mea-
suring error on simplified surfaces. Technical report,
Istituto per l’Elaborazione dell’Infomazione - Consiglio
Nazionale delle Ricerche, 1997.

[3] Jonathan Cohen, Dinesh Manocha, and Marc Olano. Sim-
plifying polygonal models using successive mappings.
In Proceedings IEEE Visualization’97, pages 395–402,
1997.

[4] Michael Garland.Quadric-Based Polygonal Surface Sim-
plification. PhD thesis, Carnegie Mellon University, 1999.

[5] Michael Garland and Paul S. Heckbert. Surface simpli-
fication using quadric error metrics. InSIGGRAPH 97
Conference Proceedings, pages 209–216, 1997.

[6] Allen Gersho and Robert M. Gray.Vector Quantization
and Signal Compression. Kluwer Academic Publishers,
Norwell, Massachusetts, 1992.

[7] Taosong He, L. Hong, A. Kaufman, A. Varshney, , and
S. Wang. Voxel-based object simplification. InProceed-
ings IEEE Visualization’95, pages 296–303, 1995.

[8] Paul S. Heckbert and Michael Garland. Survey of polyg-
onal surface simplification algorithms. Technical report,
Carnegie Mellon University, 1997. Draft Version.

[9] P. Hinker and C. Hansen. Geometric optimization. InPro-
ceedings IEEE Visualization’93, pages 189–195, 1993.

[10] Hugues Hoppe. Progressive meshes. InSIGGRAPH 96
Conference Proceedings, pages 99–108, 1996.

[11] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. InSIG-
GRAPH 93 Conference Proceedings, pages 19–26, 1993.

[12] I. T. Jolliffe. Principle Component Analysis. Springer-
Verlag, New York, 1986.

[13] Alan D. Kalvin and Russell H. Taylor. Superfaces: Polyg-
onal mesh simplification with bounded error.IEEE Com-
puter Graphics and Applications, 16(3):64–77, 1996.

[14] Peter Lindstrom and Greg Turk. Fast and memory efficient
polygonal simplification. InProceedings IEEE Visualiza-
tion’98, pages 279–286, 1998.

[15] Kok-Lim Low and Tiow-Seng Tan. Model simplification
using vertex-clustering. In1997 Symposium on Interactive
3D Graphics, pages 75–82, 1997.

[16] Barret O’Neill. Elementary Differential Geometry. Aca-
demic Press Inc., New York, New York, 1972.

[17] Remi Ronfard and Jarek Rossignac. Full-range approxi-
mation of triangulated polyhedra.Computer Graphics Fo-
rum, 15(3):C67–C76, C462, 1996.

[18] Jarek Rossignac and Paul Borrel. Multi-resolution 3D ap-
proximations for rendering complex scenes. InModeling
in Computer Graphics: Methods and Applications, pages
455–465, 1993.

[19] Dieter Schmalstieg. Lodestar: An octree-based level of
detail generator for VRML. InVRML 97: Second Sym-
posium on the Virtual Reality Modeling Language, pages
125–132, 1997.

[20] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes.Computer
Graphics, 26(2):65–70, 1992.

[21] Greg Turk. Re-tiling polygonal surfaces.Computer
Graphics, 26(2):55–64, 1992.



(a) Original (b)

(c) 0.21 Seconds Vertex Cluster (d) 2.63 seconds

(e) 1.65 Seconds R-Simp (f) 19.72 seconds

(g) 7.74 Seconds QSlim (h) 128.43 Seconds

Figure 3: Visual results of the three simplification algorithms. (a) Original bunny 69451 faces. (b) Original dragon
871306 faces. (c)(e)(g) are 1900 faces. (d)(f)(h) are 2500 faces.


	Introduction
	Vector quantization
	Vector Quantization and Simplification
	Curvature
	The R-Simp algorithm
	Data structures
	Initialization
	Choosing the cluster to partition
	Describing the pattern of normal variation
	Partitioning the cluster
	Post processing

	Results
	Performance
	Discussion

	Future work and other applications
	Conclusion

