
Universal Rendering Sequences for
Transparent Vertex Caching of Progressive Meshes

Alexander Bogomjakov Craig Gotsman

Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel

{alexb|gotsman}@cs.technion.ac.il

Abstract
We present methods to generate rendering sequences for
triangle meshes which preserve mesh locality as much
as possible. This is useful for maximizing vertex reuse
when rendering the mesh using a FIFO vertex buffer,
such as those available in modern 3D graphics hardware.
The sequences are universal in the sense that they per-
form well for all sizes of vertex buffers, and generalize
to progressive meshes. This has been verified experi-
mentally.

Key words: Rendering sequence, transparent vertex
caching, triangle strips, progressive meshes, space-
filling curves.

1 Introduction and Previous Work
One of the trends in contemporary computer graphics
applications is the use of more and more polygons in
order to increase image realism. This trend is partially
fuelled by recent developments in graphics hardware,
particularly the appearance of the GPU (Graphics Proc-
essing Unit) on low-end display adaptors. This means
that not only the scan conversion is done by the graphics
adaptor, but also the 3D geometric projections and shad-
ing operations. Hence, processing of the scene geometry
is no longer a bottleneck as it was in the past.

In order to process geometry as rapidly as possible, the
GPU’s (e.g. the NVidia GeForce 1 and 2) maintain a
FIFO vertex cache of fixed size, thru which processed
vertices travel. While rendering a typical 3D mesh on a
per-triangle basis, each vertex may have to be processed
more than once, since each vertex participates in six
triangles on the average. Processing a cached vertex can
be significantly faster than processing an uncached ver-
tex. Thus, to maximize benefit from the cache, the mesh
triangles, hence also the associated vertices, must be
rendered in an order which somehow preserves locality.
This ordering of the triangles is called the mesh render-
ing sequence. A good rendering sequence will minimize
the average number of cache misses per triangle, also
known as the ACMR (average cache miss ratio) which,

theoretically, is anywhere between 0.5 and 3.0, since the
number of triangles in a typical 3D mesh is approxi-
mately double the number of vertices. Fig. 1 shows a
mesh and a possible rendering sequence. Note that the
sequence is not necessarily continuous, i.e. triangles
adjacent in the rendering sequence are not necessarily
adjacent in the mesh.

3D meshes are usually specified, for example, in the
ASCII VRML 2.0 file format, as a list of triangles in an
arbitrary order, where each triangle is specified as three
indices into a list of vertices. Simple-minded renderers
send these triangles to the graphics pipeline in the order
specified in the file, hence achieve mediocre rendering
performance. More sophisticated renderers use the tri-
angle strips technique, which renders the triangle mesh
using a FIFO vertex cache of size 2, which is a standard
part of legacy 3D hardware. Algorithms to generate tri-
angle strips were described by Akeley et al [1], Evans et
al [8], Xiang et al [24] and Stewart [21]. However, due
to the limited size of the cache, it is provably not possi-
ble to reduce the ACMR below 1.0 in this case. Deering
[6] first proposed a hardware model where a larger ver-
tex cache is allowed, which he called generalized trian-
gle meshes, but did not supply algorithms to generate the
appropriate rendering sequences. Chow [5] later pro-
vided algorithms, as did Bar-Yehuda and Gotsman [4]
and Lin and Yu [15]. Deering’s hardware design has
since been implemented in Sun Microsystems Elite3D
graphics hardware series [22] and the generalized mesh
representation is an important component of the com-
pressed geometry format of the Java3D API [22]. Re-
cently, Mitra and Chiueh [16] also proposed an architec-
ture based on two vertex buffers and a breadth-first tra-
versal algorithm for generating rendering sequences for
it.

The published algorithms, however, used a non-FIFO
vertex cache, i.e. a cache which could be explicitly con-
trolled by the user, which is non-existent in today’s gen-
eral-purpose low-end GPU’s. Realizing this, Hoppe
[12] proposed an algorithm to generate rendering se-

mailto:{alexb|gotsman}@cs.technion.ac.il

quences for a so-called transparent FIFO cache, and
experimentally showed that for any given cache size, his
algorithm generates rendering sequences whose ACMR
is not significantly worse than those generated by
Chow’s algorithm. However, a major problem with all
the algorithms, including Hoppe’s, is that the cache size
must be known in advance, i.e. a different rendering
sequence is generated for any cache size, and using it to
render a mesh when a smaller cache is present may pro-
vide far from optimal results.

Another drawback of all the existing algorithms is that
they do not generalize well for progressive meshes. Pro-
gressive meshes differ from fixed-resolution meshes in
that a vertex removal order is imposed on them, usually
for reasons of geometric approximation. As each vertex
is removed in turn from the mesh, the resulting hole is
retriangulated. Progressive meshes are useful in render-
ing a mesh at a resolution which can continuously vary
depending, say, on viewing parameters. A sequence of
update records would indicate the vertex removals and
retriangulations to perform in order to achieve the de-
sired polygon count. Since the mesh is constantly chang-
ing, the rendering sequence must also change with it.
The only work we are aware of in this respect is that of
El-Sana et al [7] and Stewart [21] on maintaining simple
triangle strips for progressive meshes.

This paper introduces methods for generating universal
mesh rendering sequences. These sequences preserve
locality at all scales, hence may be used as rendering
sequences with a FIFO cache of any size. We also show
how, thanks to the universality of the sequences, these
rendering sequences may be adapted to progressive
meshes without a significant performance penalty. In a
sense, the rendering sequences generated by our algo-
rithms are analogous to the so-called discrete space-
filling curves [18], highly regular constructions applica-
ble only to uniform grid structures. The simplest appli-
cation of these sequences, once computed, is to list a
triangle mesh in the order dictated by the sequence in an
ASCII VRML file, so even the simple renderers may
benefit from them.

Space-filling curves are classics dating back to Hilbert,
Peano and other mathematicians. See the book by Sagan
[18] for a complete treatise on the subject. These curves
are actually traversals of the cells in a (multi-
dimensional) grid, which preserve locality in some
sense. Quantification of the notion of locality-
preservation has also been the focus of recent attention,
and a variety of measures have been proposed (e.g.
[9,17]), tailored to specific applications. The essence of

Figure 1: A triangle mesh containing 14 vertices and 16
triangles and a possible rendering sequence. Triangles are
numbered in rendering sequence order. The rendering se-
quence is <1,2,4>, <1,4,5>, <4,5,14>, <2,3,4>, <3,4,12>,
<3,11,12>, <9,11,12>, <9,10,11>, <7,9,13>, <7,8,9>,
<6,7,13>, <6,13,14>, <9,12,13>, <4,12,14>, <12,13,14>,
<5,6,14>. There are 25 cache misses (ACMR = 1.56) for a
cache of size 4 and 14 cache misses (the minimum, ACMR
= 0.88) for a cache of size 16.

our work is to generalize this notion to general irregular
triangle meshes, where the classical methods fail. At-
tempts at such constructions have been made by Bar-
tholdi and Goldsman [2], but the effectiveness of the
construction was not quantified in their work. Note that
these traversals depend only on the connectivity of the
mesh, and not on its geometry, i.e. the coordinates in
space of the vertices.

It might be argued that the precise connectivity of a
mesh is just an artifact of the specific method used to
create the mesh, hence it would be reasonable to allow
modification of the connectivity in order to generate
good rendering sequences more easily, as long as the
geometric shape of the mesh is preserved. Some applica-
tions even perform remeshing, which modifies the num-
ber and the geometry of the mesh vertices in order to
achieve a more regular connectivity. While this is true in
some applications, we make the more stringent assump-
tion that the connectivity cannot be changed at all.

It might also be argued that if the algorithm computing
the rendering sequence is fast enough, it could be run on
the fly immediately before rendering, eliminating the
need for a precomputed universal rendering sequence
suitable for all cache sizes, since at this point the vertex
cache size of the rendering hardware is known, and a
rendering sequence tailored to the cache size (such as
Hoppe’s [12]) can be used. This might be true in theory,
but in a typical client-server scenario, where the server
is very powerful, and the client very weak (e.g. a PDA),
it is very important to reduce the compute load on the
client to a minimum, hence a universal rendering se-

1

2 3

4
5

6
7 8

9
101112

13
14 15

16

3
11 10

9

87

2

1

5
6

12

134
14

quence precomputed and stored at the server, is advan-
tageous.

From a theoretical point of view, Bar-Yehuda and
Gotsman [4] have shown that a vertex cache of size

)(nθ is required in order to render a n-vertex triangle

mesh with the minimum ACMR of 0.5. Conversely,
given a cache of size k, they show that the ACMR is
0.5+)/1(kΩ . These bounds apply to the case of a con-

trollable cache, so a (more restricted) FIFO cache can
perform no better. In general, the objective is to generate
a rendering sequence, such that when each triangle is
rendered, hopefully as many of the triangle vertices as
possible will be present in the cache. If not – these count
as cache misses.

The remainder of this paper is organized as follows.
Section 2 presents two algorithms for generating univer-
sal rendering sequences, which are generalized to pro-
gressive meshes in Section 3. In Section 4 we present
experimental evidence that the rendering sequences gen-
erated by our algorithm indeed perform well, and con-
clude in Section 5.

2 Generating Universal Rendering Sequences
In this section we present two algorithms to generate
universal rendering sequences. The first is inspired by
classical space-filling curve constructions, and the sec-
ond is obtained as a solution to an optimization problem.

2.1 The Recursive Cut Algorithm
We know that the classical space-filling curves on rec-
tangular grids (of sizes which are powers of two) have
good locality properties, so as a first experiment it

would be interesting to see how these curves perform as
rendering sequences. It is easy to use the classical Hil-
bert curve to produce a rendering sequence for the regu-
lar triangle grid (instead of a rectangular grid). See Fig.
2b. The graph in Fig 4a shows the ACMR incurred by
this rendering sequence as a function of the cache size.
The Hilbert construction proceeds as follows: Partition
the mesh into four (identical) quarters. Render all trian-
gles in the first quarter (recursively), then all triangles in
the second quarter (recursively), etc. The recursion ter-
minates when the mesh contains only a few triangles.
Care is exercised so that the last triangle rendered in the
first quarter is adjacent to the first triangle rendered in
the second quarter, and similarly for the third and fourth
quarters. This is possible due to the regular structure of
the mesh, and thus guarantees a continuous curve. The
Hilbert curve construction inspires the following analo-
gous recursive procedure for irregular triangle meshes:
Partition the mesh into two approximately equal sub-
meshes. Render the first submesh, then render the sec-
ond submesh. Make sure, though, that the exit point
from the first submesh is close to the entry point into the
second submesh. To be more precise, we need to find a
balanced edge-cut of the mesh connectivity graph, i.e. a
set of edges of the graph such that removing them from
the mesh results in two disconnected sets of vertices of
approximately the same size. It is even better if the
edge-cut contains only a small number of edges, because
most of the cache misses will ultimately be incurred
along the edge-cut. The procedure proceeds to first ren-
der the left submesh, then the triangles straddling the
edge-cut, and then the right submesh.

(a) (b) (c) (d)
Figure 2: Possible rendering sequences for a regular triangle mesh generated from a 16x8 regular square grid. Note that all vertices
but the boundary ones have degree 6. Dashed lines denote “jumps” in the sequence between non-neighboring triangles. (a) Simple
“snake” raster. (b) Hilbert space-filling curve. (c) Sequence generated by the recursive cut algorithm. (d) Sequence generated by the
MLA algorithm.

Finding a balanced edge-cut of a graph is a much-
studied problem in itself, with applications in parallel
processing, numerical computation and VLSI, to name a
few. Rather than reinvent the wheel, we used the excel-
lent MeTis software package [13]. MeTiS is able to find
balanced edge-cuts in time linear in the mesh size. Fig.
2c and 3a show the rendering sequences generated using
this algorithm on two meshes, and Fig 4 the associated
performance graphs. The first mesh is the regular trian-
gulated grid mentioned before, where each vertex has
degree 6.

The second mesh is irregular, whose vertices have de-
grees anywhere between 4 and 8. Since the rendering
sequences depend on mesh connectivity alone, we visu-
alize the irregular mesh using the graph drawing proce-
dure of Tutte [23], where the boundary vertices are
mapped to a circle, and each of the interior vertices is
placed at the centroid of its neighbors (this drawing is
generated by iteratively solving a system of linear equa-
tions for the planar coordinates of the vertices). To com-
pare, Fig. 4 shows the performance curves generated by
this algorithm for the meshes. For the regular mesh, the
rendering sequence generated by the recursive cut algo-
rithm is not much worse than the Hilbert curve. It is also
possible to use the simple “raster snake” curve, which
also seems to give reasonable results. Not surprisingly, a
completely random rendering sequence performs dis-
mally.

2.2 The Minimum Linear Arrangement Approach
Space-filling curves in general, and rendering sequences
in particular, are attempts to impose a one dimensional
ordering on a set of higher-dimensional elements. In-
deed, space-filling curves are used for reducing higher-
dimensional problems to one-dimensional ones without
losing too much of the spatial correlations present in the
data, e.g. in image compression [14].

Following this argument, the problem of generating an
efficient rendering sequence may be cast as an instance
of the Minimum Linear Arrangement (MLA) problem
on hypergraphs. A hypergraph is a pair <V,HE> where
V is a vertex set, and HE a set of hyperedges connecting
sets of vertices. A graph is a special case of a hyper-
graph where every hyperedge connects just two vertices.
The MLA problem requires that the n vertices of the
hypergraph be mapped to the integers {1,..,n}, such that
the sum of the hyperedge lengths is minimal. The length
of a hyperedge e=[v1,..,vk] is defined to be

))(),..,(min())(),..,(max()(11 kk vmvmvmvmeL −= ,

where m:V→{1,..,n} is the mapping function. This
means that all vertices participating in a hyperedge
should be mapped in close proximity. The MLA is a
member of the class of geometric embedding problems
[10], where combinatorial structures, e.g. graphs, are

(a) (b)
Figure 3: Possible rendering sequences for an irregular mesh of 509 vertices and 950 triangles. Dashed lines denote
“jumps” in the sequence between non-neighboring triangles. (a) Sequence generated by the recursive cut algorithm. (b)
Sequence generated by the MLA algorithm.

embedded in a geometric domain, such that they opti-
mize some geometric measure, e.g. distance. Here the
graph is embedded into a one-dimensional grid.

Our mesh rendering problem may be cast as an instance
of the MLA as follows: The hypergraph vertices corre-
spond to the mesh triangles, and the hyperedges corre-
spond to the mesh vertices, i.e. a hyperedge relates all
mesh triangles incident on the same mesh vertex. The
meaning of edge length in our context is the distance in
the rendering sequence between the first and last trian-
gles incident on the mesh vertex.

The MLA problem is known to be NP-Hard, hence effi-
cient algorithms have been proposed to approximate the
minimum. We use that of Bar-Yehuda et al. [3], which
approximates the minimum in O(n2.2) time and O(n)
space, where n is the number of vertices. The time com-
plexity may be reduced by adjusting some algorithmic
parameters, at the expense of the output quality.

Fig. 2d and 3b show the rendering sequences generated
by the MLA algorithm on our two test meshes, and Fig.
4 compares the sequence performance with those gener-
ated by other methods. In particular, it is interesting to
compare to the performance of a rendering sequence
obtained from a leading triangle stripper [24]. While the
ACMR of that sequence is reasonable, it is nowhere
near optimal, since it was designed specifically for a
cache of size two.

3 Application to Progressive Meshes
Many real-time 3D graphics applications, especially
those dealing with large scenes, employ variants of the
progressive mesh technique (also known as continuous
level-of-detail) [11] to increase rendering performance.
In a nutshell, this means that the polygon count of the
scene is adjusted on the fly to adapt the geometric scene
resolution to the rendered image resolution. For exam-
ple, it is wasteful to render hundreds of polygons when
the contribution of those polygons to the rendered image
is less than one pixel.

Typical progressive mesh algorithms operate in two
stages: In a preprocessing stage, a data structure is built
containing information pertaining to the operations per-
formed in order to increase or decrease the polygon
count. The polygon count may be changed by a variety
of methods, such as edge collapses [11] or vertex re-
movals [19]. We consider the more general vertex re-
moval method. The decision as to which vertex to re-
move at any given resolution level is usually based on
geometric criteria, such as geometric approximation
error relative to the original model. In essence, this
means that at each level the vertex which least damages

the geometric shape of the model is removed first. The
resulting data structure usually consists of a sequence of
update records which record at each resolution which
vertex is to be removed, and how the resulting hole is to
be retriangulated. When increasing resolution, the same
record indicates the vertex to be inserted to the mesh,
and how the mesh connectivity is adjusted accordingly.
During rendering, this information is used on the fly to
adjust the mesh resolution according to some user (and
view) dependent criteria.

(a)

(b)

Figure 4: Performance of different rendering sequences as a
function of cache size. The random rendering sequence is the
ordering of the triangles as they happened to appear in the
VRML IndexedFaceSet shape in the input file. (a) Regular
triangle grid (as in Fig. 2). Note how the snake raster is no
worse, and sometimes even better, than the other sequences on
very small or very large cache sizes. (b) Irregular triangle grid
(as in Fig. 3).

ACMR

Cache size

0 10 20 30 40 50 60 64
0.5

0.75

1

1.5

2

3

Recursive Cut
MLA
Hilbert
Snake

Triangle Strips

Random

0 10 20 30 40 50 60 64
0.5

0.75

1

1.5

2

3

Recursive Cut
MLA
Triangle Strips
Random

ACMR

Cache size

Since the update records of the progressive mesh are
generated offline, long before the rendering, this is a
given for the rendering sequence generator. The mesh
cannot be modified on the fly to optimize other criteria,
such as the performance of the rendering sequence.
Hence, given this sequence of update records, we must
generate not only a rendering sequence for the highest
resolution, but also a sequence of corresponding updates
to the rendering sequence, so that it continues to per-
form well also at lower resolutions.

We experimented with two rendering sequence update
methods. Assume a vertex is to be removed from the
mesh, and that vertex is incident on triangles whose po-
sitions in the rendering sequence are k1,..,kn. In a mani-
fold closed mesh, the resulting hole will have n-2 edges,
hence the vertex removal will eliminate n triangles from
the mesh, and retriangulating the hole will generate n-2
new triangles. The simplest way to update the rendering
sequence is to arbitrarily assign the n-2 new triangles to
the first n-2 indices of the n now available. This makes
sense, as the new n-2 triangles fill in the same area as
the old n triangles filled in the past, so the locality will
be somewhat preserved. We call this the simple update
algorithm. However, this will probably be suboptimal,
and the assignment of these new triangles among the
freed indices can be optimized to better preserve the
locality. Towards this end, we developed the smart up-
date algorithm, whose pseudo-code appears in Fig. 5.
Note that we do not attempt more global updates to the
rendering sequence, and the places of all mesh triangles
not affected by the vertex removal are not changed in
the rendering sequence. Fig. 6 shows a model at three
levels of resolution, the rendering sequence for the high-
est resolution, and the rendering sequences generated for
the two lower resolutions by the smart update algorithm.

It is obvious that the rendering sequence, updated as the
resolution is decreased, will accumulate distortions such
that after many updates it might cease to perform well.
The key to the effectiveness of the procedure is graceful
degradation of the performance. A good way to quantify
the degradation is to compare the ACMR of the updated
rendering sequence to that of a rendering sequence gen-
erated (using one of our methods) specifically for the
given resolution. Fig. 7 plots the ACMR of the irregular
mesh of Fig. 3 as a function of the triangle count, for a
cache of size 16, and compares it to the ACMR that
would have resulted had the rendering sequence been
computed independently at each resolution. As is to be
expected, the simple update algorithm performs quite
poorly, accumulating significant distortion by the time a
large number of vertices are removed. In contrast, the
smart update algorithm performs almost as well as ren-

dering sequences generated specifically for the mesh at
that resolution, degrading very gracefully.

4 Experimental Results
We claim that both the methods presented above for
generating rendering sequences are universal in the
sense that they perform well for all cache sizes, and de-
grade gracefully when applied to progressive meshes
with given simplification histories. To quantify this, we
have run our algorithms on a variety of test meshes, and
measured the ACMR empirically for different values of
cache size and mesh resolution. Some of the vital statis-
tics and algorithm runtimes on a 550MHz Pentium III
PC with 128MB RAM for our test meshes appear in
Table 1.

Fig. 8 shows plots of the ACMR of the test meshes, as a
function of both cache size and mesh resolution, for the
two rendering sequence generators described in Section
3. Quite surprisingly, the recursive cut algorithm gener-
ates rendering sequences which perform almost identi-
cally for all meshes, both as a function of cache size and
as a function of mesh resolution. The MLA algorithm
generates rendering sequences which exhibit some vari-
ance in the ACMR between meshes.

Figs. 8a and 8c show also the ACMR measured by
Hoppe [12] for his algorithm run on the bunny4000
model (the famous Stanford bunny decimated to 4000

Figure 7: Performance of rendering sequence of irregular
mesh (of Fig. 3) during geometric resolution reduction, com-
paring our update algorithms to what would have been ob-
tained had the rendering sequence been generated specifically
for each resolution. Vertex cache size = 16. The mesh simplifi-
cation history, i.e. the sequence of vertex removals and retri-
angulations, was generated by a commercial simplifier avail-
able from www.virtue3d.com.

1020304050607080901000.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ACMR

Resolution (%)

Smart update
Generated specifically
Simple update

http://www.virtue3d.com/

L – List of adjacency lists
L(t) - List of triangles that have com-
mon vertex with triangle t
S - Rendering sequence
S(t) - Index of triangle t in S
t1..tn – Triangles removed from mesh
T1..Tn-2 – Triangles inserted into mesh
S’ – Updated rendering sequence

Input: S, t1..tn, T1..Tn-2
Output: S'

// Initialize S'
S’ = S;
for i = 1 to n
S’(ti) = empty;

endfor

// Assignment due to two common vertices
for i = 1 to n-2
for j = 1 to n
if Ti and tj have exactly 2 common
vertices then
S'(Ti) = S(tj);
S(tj) = empty;

endif
endfor

endfor

// Initialization of adjacency lists
for i = 1 to n-2
if S'(Ti) is empty
for j = 1 to n
if S(tj) is not empty and Ti and tj
have at least one common vertex
add tj to L(Ti);

endif
endfor

endif
endfor

// Assignment due to one common vertex

while there exists at least one non-empty list in L
let L(T) be a list with minimum length;
let t = head of L(T);
S'(T) = S(t);
S(t) = empty;
empty L(T);
remove all occurences of t from other lists in L;

endwhile

// Assign the remaining faces to whatever places are
left

for i = 1 to n-2
if S'(Ti) is empty
for j = 1 to n
if S(tj) is not empty
S'(Ti) = S(tj);
S(tj) = empty;

endif
endfor

endif
endfor

Figure 5: Pseudo-code of the smart sequence update algorithm to account for a vertex removal.

(a) (b) (c)
Figure 6: Smart update of a rendering sequence during geometric resolution reduction. Thick lines mark the edges of the “star”
whose center – the fat vertex - is to be removed. Dashed lines mark the edges of the retriangulated “hole”. (a) High resolution. (b)
One vertex removed. (c) Two vertices removed.

vertices). The values are slightly better than those of our
rendering sequences. Recall, however, that Hoppe gen-
erates a different sequence for every cache size. Consid-
ering that we use just one universal sequence, our results
are very competitive.

Table 2 shows the actual frame/sec rendering rates
measured on a ASUS GeForce 2 graphics card contain-
ing a vertex buffer with ten entries, using our rendering
sequence. This is compared to the frames rates achieved
when an arbitrary rendering sequence is used, and the
frame rates achieved by triangle stripping. It is evident
that the frame rate speedup is quite consistent with that
predicted by the ratio between the corresponding
ACMR’s, which can be up to factor 3.

5 Summary and Conclusion
This work describes two (related) methods to generate
rendering sequences for meshes which should be very
useful in the age of 3D hardware with vertex buffers.
They may be precomputed once per mesh and then used
for any cache size. These rendering sequences have also
been shown to be useful in progressive mesh applica-
tions and apply to all types of 3D meshes, including
non-manifold and non genus-0 meshes.

Software executables demonstrating the concepts de-
scribed in this paper may be found at
http://www.cs.technion.ac.il/~gotsman/caching.
An interesting result is that the rendering sequences
seem to perform equally well on meshes of all sizes (as
a function of cache size). This seems to be another posi-
tive indication of the “universality” of the sequences.

Future work will include improvements of the algo-
rithms, optimization of the implementations, and more
sophisticated updates to the progressive rendering se-
quence.

Acknowledgements
Thanks to Reuven Bar-Yehuda, Guy Even, Jon Feldman
and Seffi Naor for helpful inputs on mesh partitioning
and embedding algorithms, and making available their
software for the MLA. The bunny and buddha meshes
are courtesy of the Stanford University Computer
Graphics Laboratory.

This work was partially supported by Israel-German
fund (GIF) grant I-627-45.6/99 and the Technion VP for
Research Fund.

Mesh Number
of vertices

Number
of trian-
gles

Recursive
cut runtime
(sec)

Regular32 561 1,024 0.3
Bunny (sim-
plified)

1,092 2,084 0.6

Flipper 6,179 12,337 5.4
Face 12,530 24,118 9.5
Horse 19,851 39,698 18
Buddha 32,316 67,240 27
Bunny 34,834 69,451 32

Table 1: Characteristics of meshes used in our tests.

http://www.cs.technion.ac.il/~gotsman/caching

(a)

(c)
Figure 8: ACMR results on test
size in (b) and (d) is 16.

Mesh Origin

Buddha 1.00
Bunny 1.00
Bunny simp. 2.76
Face 1.34
Flipper 1.84
Horse 2.83

Table 2. Rendering spee
cache of size 10. The ren
tive vertex cache size of
VRML file). “Rec Cut”
Strips” – rendering sequ
tri-strip primitive.

Buddha
Bunny (simplified)
Bunny
Face
Flipper
Horse
Regular32

0 8 16 24 30.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Cache

ACMR 1

1.1

1.2

1.3

1.4

1.5

ACMR

0 8 16 24 30.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Cache

ACMR
Buddha
Bunny (simplified)
Bunny
Face
Flipper
Horse
Regular32
Bunny4000 by Hoppe
(b)

(d)
meshes of Table 1. (a)-(b) Recursive cut algorithm. (c)-(d) MLA algorithm. The cache

ACMR Rendering Speed (frames/sec)
al Rec. Cut Triangle

Strips
Original Rec. Cut Triangle

Strips
0.81 1.08 227 240 236
0.83 1.08 228 229 185
0.81 1.06 1299 2439 2222
0.83 1.10 418 680 546
0.83 1.10 508 1299 787
0.81 1.09 98 327 205

dups using vertex buffer. The ACMR was measured by simulation of a vertex
dering speed was measured on the ASUS GeForce 2 GTS, which has an effec-
10 entries. “Original” – arbitrary rendering sequence (as appeared in original
– rendering sequence as generated by our recursive cut algorithm. “Triangle

ence generated by the triangle stripper of [24], and rendered using the OpenGL

2 40 48 56 64

size

1020304050607080901000.5

0.6

0.7

0.8

0.9

Resolution (%)

1020304050607080901000.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Resolution (%)

ACMR

Bunny (simplified)
Flipper
Regular32

2 40 48 56 64

size

Bunny (simplified)
Flipper
Regular32
Bunny4000 by Hoppe

References

[1] Akeley, K. Haeberli, P., and Burns, D. The
tomesh.c program. Available on SGI computers
and developers toolbox CD. (1990).

[2] Bartholdi, J. J. and Goldsman, P., A continuous
spatial index of a triangulated surface. Ph.D.
Thesis, Industrial Engineering Dept., Georgia
Inst. of Technology, 1999.

[3] Bar-Yehuda, R., Even, G., Feldman, J. and
Naor, J. Computing an optimal orientation of a
balanced decomposition tree for linear arrange-
ment problems. Submitted, 2000. Software
available at
http://www.eng.tau.ac.il/~guy/Minla.

[4] Bar-Yehuda, R., and Gotsman, C., Time/space
tradeoffs for polygon mesh rendering. ACM
Transactions on Graphics 15, 2 (1996), 141-
152.

[5] Chow, M., Optimized geometry compression for
real-time rendering. In Visualization ’97 Pro-
ceedings (1997), IEEE, pp. 347-354.

[6] Deering, M., Geometry compression. Computer
Graphics (SIGGRAPH ’95 Proceedings) (1995),
13-20.

[7] El-Sana, J., Azanli, E., Varshney, A., Skip
Strips: Maintaining triangle strips for view-
dependent rendering. In Visualization ’99 Pro-
ceedings (1999), IEEE.

[8] Evans, F., Skiena, S., and Varshney, A., Opti-
mizing triangle strips for fast rendering. In Visu-
alization ’96 Proceedings (1996), IEEE, pp.
319-326.

[9] Gotsman, C., and Lindenbaum, M., On the met-
ric properties of discrete space-filling curves.
IEEE Transactions on Image Processing, Vol. 5,
No. 5, pp. 794-797, 1996.

[10] Hansen, M. D., Approximation algorithms for
geometric embeddings in the plane with applica-
tions to parallel processing problems. In Pro-
ceedings of the Conference on Foundations of
Computer Science, (1989), IEEE, pp. 604-609.

[11] Hoppe, H., Progressive meshes. Computer
Graphics (SIGGRAPH ’96 Proceedings),
(1996), pp. 99-108.

[12] Hoppe, H., Optimization of mesh locality for
transparent vertex caching. Computer Graphics
(SIGGRAPH ‘99 Proceedings) (1999), pp. 269-
276.

[13] Karypis, G., and Kumar, V., METIS – a soft-
ware package for partitioning unstructured
graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices. Ver. 4,
University of Minnesota. Available on WWW at
http://www-users.cs.umn.edu/~karypis/metis

[14] Lempel, A. and Ziv, J. Compression of two-
dimensional data. IEEE Trans. on Information
Theory, Vol 32, No. 1, pp.2-8, 1986.

[15] Lin, G. and Yu, T.P.-Y., A Non-recursive algo-
rithm for minimum-time rendering of meshes
with arbitrary genus. Preprint, RPI, 2001.

[16] Mitra, T. and Chiueh, T., A breadth-first ap-
proach to efficient mesh traversal. In Workshop
on Graphics Hardware Proceedings, (1998),
ACM.

[17] Orni, A. Measuring the locality of space-filling
curves. M.Sc. Thesis, Computer Science Dept.,
Technion – Israel Inst. of Technology, 1998.

[18] Sagan, H. Space-filling curves. Springer Verlag,
New York, (1994).

[19] Schroeder, W.J., Zarge, J. A. and Lorensen,
W.E. Decimation of triangle meshes. Computer
Graphics (SIGGRAPH ’92 Proceedings),
(1992), pp. 65-70.

[20] Sowizral, H., Rushforth K. and Deering, M. The
Java 3D API Specification (2nd Ed.). Sun Mi-
crosystems Press (Java Series), 2000.

[21] Stewart, J. Triangle strips for continuous level-
of-detail meshes. Graphics Interface 2001 Pro-
ceedings.

[22] Sun Microsystems Elite3D Series.
http://www.sun.com/desktop/products/Graphics/
elite3djtf.html

[23] Tutte, W.T. How to draw a graph. Proc. London
Math Society, Vol. 10 (1960), pp. 304-320.

[24] Xiang, X., Held, M., and Mitchell, J., Fast and
effective stripification of polygonal surface
models. In Symposium on Interactive 3D Graph-
ics Proceedings (1999), ACM, pp. 71-78.

http://www-users.cs.umn.edu/~karypis/metis/main.shtml
http://www.dgp.toronto.edu/~jstewart

	Universal Rendering Sequences for� Transparent Vertex Caching of Progressive Meshes
	
	
	
	Haifa 32000, Israel

	Introduction and Previous Work
	Generating Universal Rendering Sequences
	The Recursive Cut Algorithm
	The Minimum Linear Arrangement Approach

	Application to Progressive Meshes
	Experimental Results
	Summary and Conclusion
	Acknowledgements
	References

