
Truly Selective Refinement of Progressive Meshes

Junho Kim
victor@postech.ac.kr

Seungyong Lee
leesy@postech.ac.kr

Department of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)

Pohang, 790-784, Korea
http://graphics.postech.ac.kr/

Abstract
This paper presents a novel selective refinement scheme of

progressive meshes. In previous schemes, topology information
in the neighborhood of a collapsed edge is stored in the analysis
phase. A vertex split or edge collapse transformation is possible
in the synthesis phase only if the configuration of neighborhood
vertices in the current mesh corresponds to the stored topology
information. In contrast, the proposed scheme makes it possible
to apply a vertex split or an edge collapse to any selected vertex
or edge in the current mesh without a precondition. Our main
observation is that the concept of a dual piece can be used to
clearly enumerate and visualize the set of all possible selectively
refined meshes for a given mesh. Our refinement scheme is truly
selective in the sense that each vertex split or edge collapse can
be performed without incurring additional vertex split and/or
edge collapse transformations.

Key words: Selective refinement, progressive mesh, dual piece,
progressive transitive mesh space, topological detail, cut ver-
tex.

1 Introduction
With the development of 3D scanners, very large-scale polyg-
onal meshes are widely used to represent highly detailed mod-
els of complicated objects. To achieve fast visualization and
processing of large polygonal meshes, much research has been
done on mesh simplification [23, 21, 11, 18, 4, 15] and the mul-
tiresolution representation of meshes [2, 8, 20, 6]. Multires-
olution mesh representations offer continuous levels-of-detail
meshes by using mesh simplification operators and their inverse
operators. Various simplification operators have been intro-
duced, such as vertex unification, vertex removal & retriangula-
tion, edge collapse, and face collapse. To accelerate the render-
ing further, or to allow the locally adaptive processing of a large-
scale mesh, several adaptive refinement schemes have been pro-
posed for multiresolution representations [8, 24, 9, 25, 3].

A progressive mesh is the multiresolution representation of
an irregular mesh based on edge collapse and vertex split trans-
formations [8]. To build the progressive mesh representation,
a given mesh is reduced to a base mesh by a sequence of edge
collapse transformations. Similar to wavelet analysis, each edge
collapse transformation reserves detail information to recover
the previous mesh. This progressive analysis of a given mesh
is generally performed during an off-line preprocessing, which

we call the analysis phase. Given a base mesh and the set of de-
tail information, continuous sequence of levels-of-detail meshes
can be generated with successive vertex split transformations.
Furthermore, by applying a chosen set of vertex split transfor-
mations, a progressive mesh can be selectively refined, depend-
ing on certain criteria such as rendering parameters. We call
this run-time processing of a progressive mesh to construct a
selectively refined mesh the synthesis phase.

Previous selective refinement schemes of progressive meshes
reserve a 1-ring neighbor configuration of an edge as the topo-
logical detail information of an edge collapse transformation
in the analysis phase [8, 24, 9, 3]. In the synthesis phase, a
vertex split or edge collapse transformation is possible only if
the 1-ring neighborhood in the current mesh corresponds to the
stored information. If this precondition is not met, additional
vertex splits and/or edge collapses are incrementally applied to
the neighborhood until the transformed configuration matches
the stored topology. These incremental approaches, however,
have the fundamental limitation that the resolution of a refined
mesh must change gradually.

This paper proposes a truly selective refinement scheme for
progressive meshes. With the scheme, a vertex split or an edge
collapse transformation can always be applied to a selectively
refined mesh without preconditions. In other words, when a
vertex is split and an edge is collapsed selectively, this does not
incur other vertex or edge transformation, regardless of the con-
figuration of the neighborhood. Further, the selectively refined
mesh is updated locally only in the vicinity of a split vertex or
collapsed edge.

Our main observation is that the concept of the dual piece can
be used to clearly enumerate and visualize the set of all possi-
ble selectively refined meshes, when the set is fixed after the
analysis phase. We define the set as the progressive transitive
mesh space. In the progressive transitive mesh space, a selec-
tively refined mesh is an element, and a vertex split or edge
collapse transformation is an operator which maps an element
in the space to an adjacent element. We provide new definitions
of vertex split and edge collapse transformations, which make it
possible to traverse the whole progressive transitive mesh space.

Since the selective refinement of progressive meshes was in-
vestigated to accelerate the rendering of a complicated mesh,
research in this area was concerned with the design of efficient
visual error metrics such as back-face culling and screen-space

vsi
vli

vri

vui

vti

vli

vri

ecoli(vsi ; vti ; vui ; vli ; vri)

�

detail

+

vspliti(vsi ; vti ; vui ; vli ; vri)

Figure 1: Edge collapse and vertex split transformations

error. Several elegant methods for fast visual error measurement
have been proposed [16, 9, 10]. In this paper, we do not consider
a visual error metric because we do not intend to present a new
view-dependent rendering framework for progressive meshes.

In this paper, we refer a progressive mesh to any multiresolu-
tion representation of a mesh based on edge collapse and vertex
split transformations. That is, the proposed selective refinement
scheme can be applied to any mesh, once the vertex hierarchy
has been constructed through edge collapse sequences, regard-
less of the strategies for selecting the collapsed edge and deter-
mining the position of the new vertex.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review previous work. We analyze the progressive
transitive mesh space in Section 3 and propose the truly selec-
tive refinement scheme of progressive meshes in Section 4. We
present experimental results in Section 5. Section 6 concludes
the paper.

2 Previous Work

2.1 Progressive Meshes
Hoppe [8] introduced progressive mesh representation based on
edge collapse and vertex split transformations. In the analysis
phase, a base mesh M

0 and details are obtained from the given
mesh M̂ by n times successive edge collapse transformations.

M̂ = M
n

ecoln�1

�! M
n�1 ecoln�2

�! � � �
ecol0
�! M

0

In each ecoli(vsi ; vti ; vui ; vli ; vri) transformation from M
i+1

to M
i, detail information di is reserved for recovering M

i+1

from M
i in the synthesis phase. Each detail di generally con-

sists of information about topology (i.e., connectivity), geom-
etry, and other mesh data (e.g., texture coordinates, material
id, etc.) (see Figure 1). The i-th resolution mesh M

i can
simply be reconstructed by applying the vertex split sequence,
fvsplit0; vsplit1; :::; vspliti�1g, to the base mesh M

0.

M
0
vsplit0

ecol0

M
1
vsplit1

ecol1

� � �

vsplitn�1

ecoln�1

M
n

This sequential refinement scheme of progressive meshes has
been successful in mesh transformation, mesh compression, and
mesh editing [8, 14, 7, 17].

2.2 Selective Refinement of Progressive Meshes
In selective refinement of progressive meshes, a chosen sub-
sequence of fvsplit0; vsplit1; :::; vsplitn�1g is applied to the

base mesh M
0 [9]. Equivalently, any vertex split or edge col-

lapse transformation related to a vertex or an edge in the current
mesh can be performed in the synthesis phase. In this case, how-
ever, we confront vexing dependency problems, which are in-
herited from the correlation among the topological details. For
example, it is not clear how we can split the vertex vsi into two
vertices vti and vui when vli and/or vri are not present in the
current mesh. To resolve this dependency problem, several se-
lective refinement schemes have been proposed [8, 24, 9, 3].

Hoppe [8] suggested two conditions of a legal vsplit trans-
formation for selective refinement of progressive meshes. The
first condition of vsplit(vsi ; � � �) is the activeness of the ver-
tices vli and vri . If vli or vri is absent from the current mesh,
additional vsplit transformations are invoked to activate the ab-
sent vertices. He also indicated that if the current mesh contains
active ancestors of vli and vri , vsplit(vsi ; � � �) with these ac-
tive ancestor vertices is legal. However, he did not clearly ana-
lyze the vsplit case when the descendent of vli or vri is active.

Xia and Varshney [24] introduced an incremental selective
refinement scheme for progressive meshes. After each halfedge
collapse, esiti ! vsi , 1-ring neighbor vertices of vsi are re-
served as topological details in the analysis phase. In the syn-
thesis phase, both vsplit(vsi ; vti ; � � �) and ecol(vsi ; vti ; � � �)
are valid only when the current neighbor of vsi is identical to
the reserved topological details. If any vertex of the topologi-
cal details does not exist in the current mesh, additional vsplit
and/or ecol transformations are required to activate the vertex
prior to vsplit(vsi ; vti ; � � �) or ecol(vsi ; vti ; � � �) transforma-
tion. Dependency among the transformations is checked using
the merge tree structure.

Hoppe [9] noticed that the full set of the neighborhood
vertices is not necessary. Instead, he stored four faces
(fn0; fn1; fn2; fn3) adjacent to the collapsed faces (fl; fr)
as topological details in the analysis phase (cf. Figure 2
in [9]). In the synthesis phase, the two vertices vll; vrr for the
vsplit(vsi ; vti ; vui ; vll; vrr) and ecol(vsi ; vti ; vui ; vll; vrr)
transformations are obtained from the configuration of the four
faces. Since three vertices of a triangle dynamically change in
the selective refinement process, the two vertices vll and vrr are
generally not the same as vertices vli and vri , which were the
two opposite vertices of the edge etiui in the analysis phase.

El-sana and Varshney [3] extended the condition of Xia and
Varshney [24] to implicit representation and also made the
genus-change possible with the vertex pair collapse transfor-
mation. In the analysis phase, increasing vertex-ids are given
to the vertices produced from vertex pair collapses, and there-
fore the vertex-id of each vertex retains the generation order of
the vertex. To reserve topological details in an implicit fash-
ion, each vertex reserves min/max vertex-ids among its 1-ring
neighbor vertices in the analysis phase. In the synthesis phase,
the min/max vertex-ids are used for a validity test of a vsplit or
ecol transformation.

2.3 Limitation of Previous Schemes
Table 1 summarizes the selective refinement schemes for pro-
gressive meshes. Although topological details differ from each
other, previous schemes share a common factor. That is, the
topological details reserved in the analysis phase are the entities

Author Topological details Year

Hoppe [8] vli and vri on M i 1996
Xia et al. [24] 1-ring neighbor vertices of vsi

on M i

1996

Hoppe [9] four adjacent faces on Mi 1997
El-sana et al. [3] min/max vertex-ids among the

1-ring neighbor vertices of vsi
on M i

1999

Our scheme v̂li and v̂ri on M̂ 2001

Table 1: Taxonomy of the topological details for selective re-
finement schemes

on the simplified mesh Mi, not on the original mesh M̂ . When
we intend to perform vsplit(vsi ; � � �) or ecol(vsi ; � � �) in the
synthesis phase, the topological details may not be available in
the current mesh because a selectively refined mesh changes
dynamically. To restore the required topological details into the
current mesh, additional vertex split and/or edge collapse trans-
formations around the vertex vsi are inevitable. This restriction
prohibits an abrupt change in levels-of-detail between different
parts of a selectively refined mesh.

The scheme provided by Xia and Varshney acts like a quad-
tree refinement, as Hoppe [9] pointed out. The scheme of El-
sana and Varshney has the same limitation because it extend the
scheme of Xia and Varshney with implicit representation. The
four-face condition of Hoppe [9] is more flexible than previ-
ous schemes but is still dependent on the activeness of the four
faces. This activeness condition could produce a long depen-
dency chain. For example, to satisfy the condition for a vertex
split transformation, the current mesh may be refined up to the
original mesh in the worst case (see Figure 2).

In contrast to previous work, we represent the topological de-
tails by the vertices in the original mesh M̂ . With this represen-
tation, additional vertex split and/or edge collapse transforma-
tions are not necessary for vsplit(vsi ; � � �) or ecol(vsi ; � � �).

vu1 vu2 vu3 vu4 vu5

vt1 vt2 vt3 vt4 vt5

vs1 vs2 vs3 vs4
vs5

base

original
mesh

mesh

M̂

M0

Figure 2: Worst case of the four-face scheme of Hoppe [9]:
Assume that the base mesh M0 is obtained by the edge collapse
sequence, ecol5, ecol4, � � � , ecol1. To split the vertex vs5 , M0

must be refined to the original mesh M̂ .

bv

D(bv)

(a) a fundamental dual piece

v̂0 v8 v̂4 v9

v7 v̂3 v̂5 v̂6

v̂1 v̂2

v10 v11

v12

(b) a subtree in the vertex hierarchy: v̂0; v̂1; � � � ; v̂6 are the
vertices in the original mesh M̂ .

v12

D(v12)

M M̂

(c) the dual piece of v12

Figure 3: Dual piece of a vertex in the vertex hierarchy

3 Transitive Space of Progressive Meshes
In this section, we introduce the progressive transitive mesh
space of a given mesh M̂ . The progressive transitive mesh
space SH(M̂) consists of all selectively refined meshes that
can be obtained from the base mesh M

0. Note that the space
SH(M̂) is fixed when the vertex hierarchy H has been con-
structed by a simplification process. Although the given mesh
M̂ is the same, SH(M̂) is changed if M̂ is simplified in a dif-
ferent way. With the analysis of the progressive transitive mesh
space, we obtain important clues to the design of more effective
vertex split and edge collapse transformations. We use the hat
notation to denote an entity related to the given mesh M̂ ; for
example, v̂ denotes a vertex in M̂ .

3.1 Hierarchical Partitioning Property
A vertex hierarchy is constructed by the sequence of edge
collapses in the analysis phase [9]. In each edge collapse
ecoli(vsi ; vti ; vui ; vli ; vri), the edge etiui is collapsed to a
new vertex vsi and the parent-children relationship is estab-
lished between vsi and vti=vui . After n successive edge col-
lapse transformations from the given mesh M̂ , we obtain a base
mesh M0 and a vertex hierarchy H , which is a forest structure.
The root nodes of H are the vertices of the base mesh M

0 and
all leaf nodes of H are the vertices of the given mesh M̂ .

To explain the hidden linkage between a selectively refined

(a) M4 (b) M16 (c) M32 (d) M64

(e) dual pieces of M4 (f) dual pieces of M16 (g) dual pieces of M32 (h) dual pieces of M64

Figure 4: Progressive meshes and the corresponding dual pieces overlaid on the original mesh

vsi

vti

vui
vli

vri

vli

vri

vspliti(vsi ; vti ; vui ; vli ; vri)

ecoli(vsi ; vti ; vui ; vli ; vri)

M i
M i+1

(a) meshes M i and M
i+1

(b) corresponding dual pieces on the original mesh

Figure 5: Dual perspective of vsplit and ecol transformations

mesh M and the finest resolution mesh M̂ , we first define the
fundamental dual piece of a vertex v̂ in M̂ . The dual of a planar
graph is constructed by assigning a dual vertex to each face of
the graph and connecting a pair of dual vertices with a dual edge
if the corresponding faces share an edge in the graph. In this
fashion, the fundamental dual piece of v̂ is defined as the closed
region over a given mesh M̂ , and surrounded by dual edges that
connect the dual vertices corresponding to the faces adjacent to
v̂ (see Figure 3(a)). We also define the dual piece D(v) of a
vertex v in the vertex hierarchy H as the union of fundamental
dual pieces of all leaf nodes in the subtree of H whose root is
v (see Figure 3(b) and (c)). Note that the dual piece D(v) of a
vertex v in H is always defined over a given mesh M̂ .

For the dual pieces of vertices in the vertex hierarchy H , the
following properties hold.

� D(vsi) = D(vti) [D(vui) and D(vti) \ D(vui) = ;,
for all i.

� D(vti) and D(vui) are adjacent to each other, for all i.

� D(vq) � D(vp) if vp is an ancestor of vq in H .

� D(vp) \ D(vq) = ; if vp and vq have no ancestor-
descendent relationship in H .

Figure 4 shows several sequential levels-of-detail versions Mi

of a horse mesh and the dual pieces of vertices in M
i over-

laid on M̂ . Note that an edge between a pair of vertices in M
i

emerges as an adjacency between the corresponding dual pieces
on M̂ .

For a selectively refined mesh M , the set of vertices V in
M has the following properties: i) any pair of vertices in V

has no ancestor-descendent relationship, and ii) a leaf node in
H has only one ancestor node in V . So, we observe that the
dual pieces of vertices in V cover the original mesh M̂ without
overlaps and holes. In other words, the dual pieces from M

partition the surface of M̂ . Further, the partitioning becomes
locally finer when a vertex in M is split.

3.2 Progressive Transitive Mesh Space
With the hierarchical partitioning property, the progressive tran-
sitive mesh space SH(M̂) of a given mesh M̂ can be well de-
fined. Consider a set of vertices V in the vertex hierarchy H .
We define the vertex set V to be valid if it satisfies the following
properties.

� The dual pieces of V cover the original mesh M̂ without
overlaps and holes.

� The dual pieces of V are simply connected. That is, any
two adjacent dual pieces share only one portion of their
boundaries.1

For a valid vertex set V in H , we can easily construct the cor-
responding selectively refined mesh M . The vertices of M is
naturally identical with V . The edges of M are derived from the
adjacency among the dual pieces of V . Hence, the progressive
transitive mesh space SH(M̂) is isomorphic to the set of valid
vertex sets in H .

Moreover, we can consider the selective refinement of a
progressive mesh as the traversal of the progressive transi-
tive mesh space with vertex split and edge collapse transfor-
mations. Let M be the current selectively refined mesh de-
fined by a valid vertex set V . Then, vsplit(vsi ; vti ; vui ; � � �)
is expected to transform the mesh M to the selectively re-
fined mesh defined by (V � fvsig) [fvti ; vuig. Similarly,
ecol(vsi ; vti ; vui ; � � �) should produce the selectively refined
mesh defined by (V � fvti ; vuig) [fvsig from the mesh M .
However, all previous schemes do not provide this truly se-
lective refinement property with vertex split and edge collapse
transformations, as mentioned in Section 2.3.

3.3 Dual Perspective of Progressive Mesh Transfor-
mation

From this dual perspective, we can see that it is feasi-
ble to design vertex split and edge collapse transforma-
tions with the truly selective refinement property. Figure 5
shows the dual perspective of vspliti(vsi ; vti ; vui ; vli ; vri)
and ecoli(vsi ; vti ; vui ; vli ; vri). In the dual space, a vsplit

transformation corresponds to re-tiling a piece D(vsi) with
two adjacent pieces D(vti) and D(vui). Similarly, with an
ecol transformation, two adjacent dual pieces are merged into
one. Note that the dual pieces of 1-ring neighbor vertices
of vsi are invariant under vspliti(vsi ; vti ; vri ; vli ; vri) or
ecoli(vsi ; vti ; vui ; vli ; vri). This implies that it is possible to
split a vertex or collapse an edge in a selectively refined mesh
without affecting the neighbor vertices.

As shown in Figure 5(a), two vertices vli and vri determine
the connection among vti=vui and the 1-ring neighbor vertices
N(vsi) of vsi after vspliti(vsi ; vti ; vui ; vli ; vri). In the dual
perspective of Figure 5(b), vli and vri are only the vertices
among N(vsi) whose dual pieces are consecutively adjacent to
both D(vti) and D(vui).

Suppose that we wish to split vertex vsi when it resides
in a selectively refined mesh M . Since the current 1-ring

1The simply connectedness constraint is inherited from the fact that
vsplit and ecol transformations can only deal with simply connected
meshes. See more details in Sec 4.2

v
a

l

vsplitnew

ecolnew

v
a

l = ActiveAncestor(bvli)
v
a

r = ActiveAncestor(bvri)

vsi
v
a

l

vui

vti

v
a

r

bvri

bvli

v
a

r

bvri

bvli

Figure 6: New definitions of vsplit and ecol transformations

neighbor of vsi is dynamically changed in the synthesis phase,
it may differ from the 1-ring neighbor of vsi at the time
when ecoli(vsi ; vti ; vui ; vli ; vri) was performed at the anal-
ysis phase. Therefore, to split vsi in M , we must find two
vertices among N(vsi) which play the roles of vli and vri in
vspliti(vsi ; vti ; vui ; vli ; vri). We designate two such vertices
as the cut vertices of vsi in M .

From the dual perspective, we can see that the cut vertices of
vsi are the vertices in the current 1-ring neighbor whose dual
pieces are consecutively adjacent to both D(vti) and D(vui),
and that they always exist. However, in the mesh space, it is not
clear how to locate the cut vertices in the current 1-ring neighbor
of vsi .

4 Truly Selective Refinement Scheme
In this section, we propose a truly selective refinement scheme
of progressive meshes, based on the dual perspective presented
in Section 3. We first design vertex split and edge collapse trans-
formations with the truly selective refinement property. Next,
we explain how to reserve the required topological details in
the analysis phase. We also explain the operation of the trans-
formations using the topological details in the synthesis phase.
Finally, we comment on degenerate cases.

4.1 Design of New Transformations
The key to locating the cut vertices of vsi in the current neigh-
borhood is to use the hierarchical partitioning property of dual
pieces. Recall that the dual pieces of the cut vertices of vsi are
consecutively adjacent to both D(vti) and D(vui). Let v̂ be
a leaf node in the vertex hierarchy H whose fundamental dual
pieceD(v̂) has adjacency to bothD(vti) andD(vui). Then, the
dual piece D(va) of any active ancestor va of v̂ has the same
adjacency because D(v̂) � D(va). We define the fundamental
cut vertices of the vertex vsi as the two leaf nodes v̂li and v̂ri

in H such that D(v̂li) and D(v̂ri) are adjacent to both D(vti)
and D(vui). We can determine the cut vertices of vsi in the
current neighborhood of M by finding the active ancestors of
the fundamental cut vertices v̂li and v̂ri .

Now we introduce new definitions of vertex split and edge
collapse transformations for truly selective refinement of pro-

gressive meshes. For ecoli(vsi ; vti ; vui ; vli ; vri) in the analy-
sis phase, we reserve the fundamental cut vertices v̂li and v̂ri of
vsi as topological details. In the synthesis phase, a vertex split
or edge collapse transformation about vsi is performed with the
cut vertices of vsi that are dynamically determined by finding
the active ancestors of v̂li and v̂ri . We define the vsplitnew and
ecolnew transformations in the synthesis phase as follows (see
Figure 6).

vsplitnew(vsi ; vti ; vui ; v̂li ; v̂ri)

= vsplit(vsi ; vti ; vui ; v
a

l ; v
a

r)

ecolnew(vsi ; vti ; vui ; v̂li ; v̂ri)

= ecol(vsi ; vti ; vui ; v
a

l ; v
a

r);

where

v
a

l = ActiveAncestor(v̂li)

v
a

r = ActiveAncestor(v̂ri):

4.2 Analysis Phase
Now we show how to locate the fundamental cut vertices v̂li and
v̂ri for each ecoli(vsi ; vti ; vui ; vli ; vri) in the analysis phase.
The basic idea is to use the correspondence of the faces be-
tween a simplified mesh M

i and the original mesh M̂ . Let
f = 4(v̂p; v̂q ; v̂r) be a triangle in M̂ . As edge collapse trans-
formations are performed, face f is relabeled with active ances-
tors of v̂p, v̂q , and v̂r . Therefore, face f remains alive in M

i

only when all three vertices of f have different ancestors.
Let fl = 4(vti ; vui ; vli) and fr = 4(vui ; vti ; vri) be the

two faces collapsed by ecoli(vsi ; vti ; vui ; vli ; vri). Suppose
that4(v̂tli ; v̂uli ; v̂li) and4(v̂uri ; v̂tri ; v̂ri) are the faces in M̂
that correspond to fl and fr , respectively (see Figure 7). It fol-
lows that vli = ActiveAncestor(v̂li) and similar relationships
for other pairs of vertices. The fundamental dual piece of v̂li is
adjacent to those of v̂tli and v̂uli because v̂tli , v̂uli , and v̂li are
the vertices of a triangle in M̂ . From that D(v̂tli) � D(vti)
and D(v̂uli) � D(vui), D(v̂li) has adjacency to both D(vti)
and D(vui). Hence, v̂li is a fundamental cut vertices of vsi .
Similarly, v̂ri is another fundamental cut vertex of vsi .

vsi

vli

vri

vui

vti

vli

ecoli(vsi ; vti ; vui ; vli ; vri)

�

detail

vri

bvri

bvli

topological detail: bvli , bvri

Figure 7: New topological details reserved in the analysis
phase: The shaded regions denote the dual pieces of the fun-
damental cut vertices of vs.

In the analysis phase, our data structure for a triangle face
contains three current vertices fvp; vq ; vrg in M

i and their

corresponding vertices fv̂p; v̂q ; v̂rg in the original mesh M̂ .
When we perform an ecoli(vsi ; vti ; vui ; vli ; vri) transforma-
tion, we reserve v̂li and v̂ri obtained from the two triangles,
4(vti ; vui ; vli) and 4(vui ; vti ; vri), as topological details of
vsi . If etiui is a boundary edge, we reserve only one vertex,
either v̂li or v̂ri . With this approach, additional �(3n) storage
is required to store the original vertices in each triangle, where
n is the number of triangles in M̂ . However, the additional stor-
age is required only in the analysis phase and is not necessary
in the synthesis phase.

4.3 Synthesis Phase
Let etiui be an edge in a selectively refined mesh M . To ap-
ply ecolnew(vsi ; vti ; vui ; v̂li ; v̂ri) to the edge, we must know
the cut vertices val and var of vsi , which are the active ancestors
of v̂li and v̂ri , respectively. In this case, however, we can im-
mediately locate the cut vertices, val and v

a

r , among the neigh-
borhood of vti=vui without referring to v̂li and v̂ri . Since the
opposite vertices of etiui are adjacent to both vti and vui , their
dual pieces are also adjacent to bothD(vti) andD(vui). There-
fore, the opposite vertices of etiui are always the active ances-
tors of v̂li and v̂ri .

Unlike an ecolnew transformation, in the case of vsplitnew ,
it is difficult to find the cut vertices val and v

a

r without refer-
ring to v̂li and v̂ri . A straightforward approach to find v

a

l and
v
a

r from v̂li and v̂ri is to use the ActiveAncestor() procedure,
which climbs up the vertex hierarchy H from a leaf node un-
til an active node is reached. With this approach, a vsplitnew
transformation takes O(log n) time in the worst case even when
the vertex hierarchy is balanced, where n is the number of ver-
tices in the given mesh M̂ .

To speed up vsplitnew transformations, we index each node
in the vertex hierarchy H with the <tree-id, node-id> notation
before starting the synthesis phase. The nodes in the same tree
of H have the same tree-id. In a tree, we assign a proper node-id
to each node in a similar manner to the array implementation of
a heap [13]. We design an IsAncestor(vi, vj) procedure to test
whether vi is an ancestor of vj or not by using a binary shift op-
eration. When the tree-ids of vi and vj are different, the proce-
dure simply returns false. Otherwise, it shifts the node-id of vj
to the right by the amount of the level difference between vi and
vj , and then compares the result with node-id of vi. With this
simple test, we can determine whether vi is an ancestor of vj
or not within O(1) time. In our experiments, a 64-bit unsigned
integer was sufficient for the<tree-id, node-id> representation.

To locate the cut vertices val and var from v̂li and v̂ri , we test
each vertex vn in the current 1-ring neighborhood N(vsi) of vsi
with IsAncestor(vn; v̂li) and IsAncestor(vn; v̂ri). Then, we
determine the cut vertices val and v

a

r among N(vsi) in O(k)
time, where k is the number of vertices in N(vsi). Note that
O(k) time complexity is essential for a vsplitnew transforma-
tion to update the mesh connectivity of N(vsi).

4.4 Degenerate Cases
When the vertices vt and vu have a common neighbor vertex in
addition to vl and vr , ecol(vs; vt; vu; vl; vr) results in a mesh
whose graph structure is not simply connected. Hoppe et al.
considered this ecol transformation to be illegal and did not al-

low it in a simplification process (cf. Theorem 4. in the ap-
pendix of [12]). In this paper, if this case occurs in the synthesis
phase, we postpone ecol(vsi ; vti ; vui ; v

a

l ; v
a

r) until all common
neighbor vertices of vti and vui other than val and var disappear
by vertex split transformations.

A degenerate case may also occur in a vertex split transfor-
mation in the synthesis phase. When the two cut vertices val
and v

a

r are the same, vsplit(vsi ; vti ; vui ; v
a

l ; v
a

r) operator is
not well defined. If we enforce the vsplit transformation in
this case, the resulting mesh will not be simply connected. This
situation can be resolved by performing vsplit(val ; � � �) prior
to vsplit(vsi ; vti ; vui ; v

a

l ; v
a

r). Note that this additional vertex
split is necessary just to maintain the simply connectedness of a
selectively refined mesh, not to satisfy the preconditions given
by the reserved topological details, as in previous work.

5 Experimental Results
To demonstrate the benefit of the proposed selective refinement
scheme of progressive meshes, we applied the scheme to the
following three types of mesh models with different refinement
criteria.

� 2 1

2
D terrain data (Figure 8)

� 2D regular mesh constructed from an image (Figure 9)

� 3D polygonal mesh models (Figures 10 and 11)

In the experiments, the error quadrics proposed by Garland and
Hackbert [4, 5] were used to determine the order of edge col-
lapses in the analysis phase.

In Figure 8, we compared the proposed scheme with previous
approaches [24, 9] in a view-dependent rendering framework,
where the view-frustum test was used to selectively refine the
Grand Canyon terrain data. The statistics of the numbers of
vertices and faces are reported in the ‘Terrain1’ column of Ta-
ble 2. From Figure 8 and Table 2, we can see that the proposed
scheme generates a selectively refined mesh with smaller num-
bers of vertices and faces than previous schemes. This results
from the fact that the proposed scheme does not incur additional
vertex splits around the selected vertices to be refined except
the degenerate cases, while additional vertices may be split in
previous schemes to satisfy the preconditions for the selected
vertices.

Figure 9 shows the results when our and previous selective
refinement schemes were applied to recover an image with a
small number of triangles. A regular mesh M̂ was obtained
from the ‘Lena’ image of 128 � 128 size, where each vertex
was centered in a pixel and assigned the pixel color. The fea-
ture points of M̂ were selected by using the Sobel mask. Figure
9(a) shows the original image and the selected feature points. In
the analysis phase, the original mesh M̂ was simplified to a base
mesh M

0 by using error quadrics with color [5]. In the synthe-
sis phase, we selectively refined the base mesh M

0 to recover
all the feature points. With this refinement criterion, all selec-
tive refinement schemes generated images with a visual quality
similar to the original image, as shown in the top row of Fig-
ure 9. However, our scheme has the maximum locality in terms
of the finally refined vertices, as illustrated in the bottom row

of Figure 9. Again, this is due to the truly selective refinement
property of our scheme.

Figure 10 shows an example of view-dependent refinement
of a 3D mesh model generated by the proposed scheme. In this
example, we adapted the view-frustum and back-face culling
tests as the refinement criteria. Figure 10(a) shows the wire-
frame image of the face in a selectively refined mesh M and
the original bunny model M̂ with the view frustum. In Figure
10(b), the mesh M is rendered from another view direction in
a wireframe image. Figure 10(c) shows the dual pieces of M
overlaid on the original mesh M̂ .

Figure 11 shows an example of selective refinement around
the silhouette of a horse model. In this example, we applied
the silhouette test using the cone of normals [22] to each vertex.
Figure 11(a) shows the resulting selectively refined mesh M . In
Figure 11(b), the mesh M is viewed from a different direction.
Figure 11(c) shows the dual pieces ofM overlaid on the original
mesh M̂ .

Table 2 summarizes the statistics of the experiments in which
our and previous selective refinement schemes were applied to
several meshes with different refinement criteria. From Table 2,
we can see that our scheme always generates selectively refined
meshes with smaller numbers of vertices and faces than pre-
vious schemes. When we apply selective refinement to an in-
teractive application, such as a navigation system, the average
time for performing vsplit and ecol transformations is impor-
tant as well as the numbers of vertices and faces of the result-
ing meshes. In our implementation of the proposed scheme,
vsplitnew and ecolnew transformations take 0.022 msec and
0.017 msec on an 866MHz Pentium III system, respectively.
This speed shows that the process of finding the cut vertices in
vsplitnew and ecolnew transformations does not introduce any
strong computational overhead. Table 2 also shows the num-
bers of degenerate cases that happen in the experiments. The
degenerate cases come from the connectivity of selectively re-
fined meshes and cannot be avoided if we wish to preserve the
simply connectedness of the meshes.

6 Conclusion and Future Work
In this paper, we presented a truly selective refinement scheme
of progressive meshes. By using on-the-fly computation of ac-
tive cut vertices, it is possible to apply a vertex split or edge
collapse transformation to any selected vertex or edge without
affecting the neighborhood in a selectively refined mesh. The
concept of dual pieces provided the theoretical basis for the
proposed scheme. The dual piece concept can simply be ex-
tended for the design of a truly selective refinement scheme
of other progressive mesh representations, such as triangle-
collapse-based approach [6].

Due to the abrupt resolution change, the proposed scheme
could generate a flipped triangle in the synthesis phase. In this
paper, we focused on the connectivity (topology) of a selec-
tively refined mesh, not considering its geometry. We expect
that the triangle flipping problem can be resolved by introduc-
ing a refinement criterion that prevents drastic changes of face
normals.

The proposed selective refinement scheme will be useful in

applications that require local and hierarchical refinement of ir-
regular meshes, such as view-dependent simplification, mesh
editing, mesh morphing, and mesh reparameterization. We hope
that the proposed scheme will contribute to the expansion of the
application area of progressive meshes. For instance, a progres-
sive mesh with normal and texture maps [1, 19] can be used to
efficiently generate a realistic image when it is adaptively re-
fined at the silhouette by our refinement scheme.

For future work, we are currently investigating the theoretical
aspects of the proposed scheme, such as the optimality in the
number of vertices and faces for a given set of vertices to be
refined.

Acknowledgments
The authors would like to thank Sungyul Choe for help with
implementation and Minchoel Yoon for helpful comments on
the mathematical terminology. The bunny model is courtesy
of the Stanford Computer Graphics Laboratory, and the horse
model is courtesy of Cyberware. Grand Canyon terrain data is
obtained from The United States Geological Survey (USGS),
with processing by ‘Terra’ of Micheal Garland. This work was
supported by the Ministry of Education of Korea through the
Brain Korea 21 program.

References
[1] Jonathan Cohen, Marc Olano, and Dinesh Manocha.

Apperance-preserving simplification. ACM Computer
Graphics (Proc. of SIGGRAPH ’98), pages 115–122,
1998.

[2] Tony D. DeRose, Michael Lounsbery, and Joe Warren.
Multiresolution analysis for surfaces of arbitrary topolog-
ical type. Technical report, University of Washington,
1993. Technical Report Number 93–10–05.

[3] Jihad El-Sana and Amitabh Varshney. Generalized view-
dependent simplification. Computer Graphics Forum
(Proceedings of Eurographics ’99), 18(3):83–94, 1999.

[4] Michael Garland and Paul S. Heckbert. Surface sim-
plification using quadric error metrics. ACM Computer
Graphics (Proc. of SIGGRAPH ’97), 1997.

[5] Michael Garland and Paul S. Heckbert. Simplifying sur-
faces with color and texture using quadric error metrics.
IEEE Visualization ’98, pages 263–269, 1998.

[6] Tran Gieng, Bernd Hamann, Kenneth I. Joy, Greg L.
Schussman, and Issac J. Trotts. Constructing hierarchies
for triangle meshes. IEEE Trans. Visualization and Com-
puter Graphics, 4(2):145–161, 1998.

[7] Igor Guskov, Wim Sweldens, and Peter Schröder. Mul-
tiresolution signal processing for meshes. ACM Com-
puter Graphics (Proc. of SIGGRAPH ’99), pages 325–
334, 1999.

[8] Hugues Hoppe. Progressive meshes. ACM Computer
Graphics (Proc. of SIGGRAPH ’96), pages 99–108, 1996.

[9] Hugues Hoppe. View-dependent refinement of progres-
sive meshes. ACM Computer Graphics (Proc. of SIG-
GRAPH ’97), 1997.

[10] Hugues Hoppe. Smooth view-dependent level-of-detail
control and its application to terrain rendering. Proceed-
ings of Visulaization ’98, pages 35–42, 1998. IEEE Com-
puter Society Press.

[11] Hugues Hoppe, Tony DeRose, Tom Dunchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. ACM
Computer Graphics (Proc. of SIGGRAPH ’93), pages 19–
26, 1993.

[12] Hugues Hoppe, Tony DeRose, Tom Dunchamp, John Mc-
Donald, and Werner Stuetzle. Mesh optimization. Techni-
cal Report TR 93-01-01, University of Washington, 1993.

[13] Donald E. Knuth. Sorting and Searching, volume 2 of The
Art of Computer Programming. Addison-Wesley, 1973.

[14] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-
Peter Seidel. Interactive multi-resolution modeling on ar-
bitrary meshes. ACM Computer Graphics (Proc. of SIG-
GRAPH ’98), 1998.

[15] Peter Lindstrom. Out-of-core simplification of large
polygonal models. ACM Computer Graphics (Proc. of
SIGGRAPH 2000), pages 259–262, 2000.

[16] Peter Lindstrom, David Koller, William Ribarsky, Larry F.
Hodges, Nick Faust, and Gregory A. Turner. Real-time,
continuous level of detail rendering of height fields. ACM
Computer Graphics (Proc. of SIGGRAPH ’96), pages
109–118, 1996.

[17] Renato Pajarola and Jarek Rossignac. Compressed pro-
gressive meshes. IEEE Trans. on Visualization and Com-
puter Graphics, 6(1):79–93, 2000.

[18] R�emi Ronfard and Jarek Rossignac. Full-range approxi-
mation of triangulated polyhedra. Computer Graphics Fo-
rum (Proc. of Eurographics ’96), 15(3):67–76, 1996.

[19] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues
Hoppe, and John Snyder. Silhouette clipping. ACM Com-
puter Graphics (Proc. of SIGGRAPH 2000), pages 327–
334, 2000.

[20] William J. Schroeder. A topology modifying progressive
decimation algorithm. Proceedings of Visulaization ’97,
pages 205–212, 1997. IEEE Computer Society Press.

[21] William J. Schroeder, Jonathan A. Zarge, and William E.
Lorensen. Decimation of triangle meshes. ACM Computer
Graphics (Proc. of SIGGRAPH ’92), pages 65–70, 1992.

[22] Leon A. Shirman and Salim S. Abi-Ezzi. The cone of
normals technique for fast processing of curved patches.
Computer Graphics Forum(Proceedings of Eurographics
’93), 12(3), 1993.

[23] Greg Turk. Re-tiling polygonal surfaces. ACM Computer
Graphics (Proc. of SIGGRAPH ’92), pages 55–64, 1992.

[24] Julie C. Xia and Amitabh Varshney. Dynamic view-
dependent simplification for polygonal models. IEEE Vi-
sualization ’96, pages 327–334, 1996.

[25] Denis Zorin, Peter Schröder, and Wim Sweldens. Interac-
tive multiresolution mesh editing. ACM Computer Graph-
ics (Proc. of SIGGRAPH ’97), pages 259–268, 1997.

(a) (b) (c) (d)

Figure 8: View-dependent refinement: (a) terrain data; (b), (c), (d) selectively refined meshes with the schemes of [24], [9], and
ours, respectively. The view-frustum is denoted by bold lines

Model Lena Female Terrain1 Terrain2 Terrain3 Cow Horse Bunny
Type 2D 2D 2.5D 2.5D 2.5D 3D 3D 3D

Refinement V.F. & V.F. & V.F. &
Criteria

F.P. F.P. V.F. V.F. V.F.
B.F.C. B.F.C. B.F.C.

Original #V 16,384 11,008 30,000 30,000 30,000 19,851 19,851 34,834
Mesh #F 32,258 21,590 59,856 59,856 59,856 39,698 39,698 69,451

Xia & Varshney #V 10,617 5,521 14,218 3,510 7,779 15,144 15,144 8,220
[24] #F 20,871 10,876 28,327 6,941 15,496 30,284 30,284 16,413

Hoppe #V 7,335 3,243 11,504 1,216 5,341 12,049 12,049 4,768
[9] #F 14,437 6,395 22,934 2,404 10,567 24,094 24,094 9,527

#V 4,725 2,257 10,130 999 5,128 10,870 10,870 4,231
Our scheme #F 9,291 4,451 22,105 1,978 10,234 21,736 21,736 8,453

#DC 6 4 52 2 22 20 68 21

Table 2: Statistics of the experiments with several meshes and different refinement criteria (F.P.: feature points, V.F.: view-frustum,
B.F.C.: back-face culling, #V: the number of vertices, #F: the number of faces, #DC: the number of degenerate cases)

(a) (b) (c) (d)

Figure 9: Feature-based selective refinement: (a) original image (128�128 vertices) and its feature points; (b), (c), (d) selectively
refined meshes to recover the feature points with the schemes of [24], [9], and ours, respectively. The images of the top row were
obtained by Gouraud shading.

(a)

(b) (c)

Figure 10: View-dependent refinement of the bunny model: (a)
close-up view of the face and the original model; (b) wireframe
image of the selectively refined mesh from a different view di-
rection; (c) corresponding dual pieces of (b) over the original
model

(a)

(b) (c)

Figure 11: Silhouette refinement of a horse model: (a) selec-
tively refined mesh; (b) wireframe image of (a) from another
view direction; (c) corresponding dual pieces overlaid on the
original mesh

