
Abstract
We introduce a new acceleration to the standard splat-
ting volume rendering algorithm. Our method achieves
full colour (32-bit), depth-sorted and shaded volume
rendering significantly faster than standard splatting.
The speedup is due to a 3-dimensional adjacency data
structure that efficiently skips transparent parts of the
data and stores only the voxels that are potentially visi-
ble. Our algorithm is robust and flexible, allowing for
depth sorting of the data, including correct back-to-
front ordering for perspective projections. This makes
interactive splatting possible for applications such as
medical visualizations that rely on structure and depth
information.
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software acceleration

1.  Introduction
The simplification of three-dimensional (3D) volu-

metric data sets is a critical step in the exploration of
the underlying data. The display of key features of the
volume (e.g. iso-regions for scalar data sets [5, 16],
stream-lines, stream-surfaces and stream-volumes for
vector data sets [2]) allows for better comprehension of
a 2D projection of the volume. Rendering only those
key features al lows faster drawing speeds, and also
helps prevent important information f rom being
obscured by less important clutter. This enables inter-
action with the volume, enhancing the 3D understand-
ing of the data.

Iso-surface extraction, as introduced by Lorensen et.
al. [16] and other researchers [10, 31] is still one of the
most popular visualization techniques for the display of
volumetric data sets. It displays a 3D object by render-
ing a surface that represents a constant intensity. This
might include one or two transparent or translucent sur-
faces. However, iso-surface extraction cannot display
certain qualities such as light attenuation due to opacity
and depth. These can only be accomplished through
direct volume rendering algorithms.

How do we efficiently skip the unnecessary part of
the data while still maintaining the full context of the

part we want to see? This paper answers that question
insofar as it pertains to splatting algorithms.

2.  Previous Work
A variety of different volume rendering algorithms

have been proposed. There are five different concepts
for direct volume rendering: ray-casting [6, 14, 29], the
shear-warp algori thm [12], splatting [34] , fourier
domain volume rendering [17, 33], and texture slicing
[3]. A comprehensive comparison of most of these
algorithms was conducted by Meißner et. al. [20].

One of the most common image-based algorithms for
direct volume rendering is ray-casting, in which the
colour and intensity of a pixel  on the viewplane is
determined by following a ray of light through the vol-
ume. Ray-casting consti tutes a f lexible and robust
numerical integration of the rendering integral [19]
wi th a user-def ined step size. Hence i t is easy to
achieve very accurate, high-quality images. However,
ray-casting is also relatively slow. Many suggestions
have been made to speed up this algorithm. Early ray
termination [14] avoids the traversal of regions of the
volume that are obscured by other data. The use of
coherency as suggested for traditional ray-tracing algo-
rithms [7] was successfully implemented for volumet-
ric ray-casting. This resulted in space-leaping [35],
template based ray-casting [36] and the implementa-
tion of bounding boxes [30]. All of these techniques
thrive on the idea of quickly disregarding irrelevant or
“empty”  voxels. Despite these advances, ray-casting is
regarded as one of the slowest volume rendering algo-
rithms.

Mitsubishi’s VolumePro is a special purpose hard-
ware implementation of the ray-casting algorithm on a
single circuit board [26]. It uses 4 parallel processing
pipelines to perform all the necessary operations to
achieve 30 frames per second for a 512x512x512 (12-
bit) volume. While its speed is astounding, it is hin-
dered by its lack of flexibility. Currently, it is only able
to perform maximum and minimum intensity projec-
tions. It is also limited to parallel projections.

The UltraVis system by Knittel [11] is an assembler
implementation of ray-casting which makes efficient
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use of the MMX and SSE instruction sets of the Intel
Pentium III. It achieves amazing frame rates for a ray-
casting application, but is unfortunately l imited to a
very specific type of CPU. Knittel notes that one of the
bottlenecks of volume rendering is the limited band-
width between the CPU, the graphics card, and main
memory. He designs a data structure that is wasteful in
its overall memory requirement but optimal in its cache
coherency. He demonstrates that his data structure pro-
duces a cache hit rate of over 99% and claims this is a
major factor for the high performance of his system.

General purpose graphics hardware, including hard-
ware texturing implementations, has become popular
and powerful in the last five years. Hence the use of
texturing hardware for volume rendering has become a
key aspect for interactive applications. Cabral et. al. [3]
suggested loading the entire volume into specialized
video memory where the graphics processor can oper-
ate on it efficiently. The volume is resliced so that its
slice planes are parallel to the view plane, and its scan
lines are aligned with those of the view plane. This
requires 3D texture memory which is currently uncom-
mon. Using multi-texturing, Rezk-Salama et. al. [27]
proposed a solution to the aliasing problems that occur
for 2D texture memory that cannot support view-
aligned re-slicing of the data. Although data slicing in
hardware texture memory allows for interactive frame
rates, the limited precision hardware operations yield
poor quality [20].

The shear-warp algorithm of Lacroute and Levoy
[12] is a software implementation of the ray-casting
method. It achieves fast rendering times by employing
a run-length encoding of the data and by decomposit-
ing the transformation matrix into 2D shears. The algo-
rithm maintains an opacity value for each screen pixel,
terminating the line integral calculation once the opac-
ity exceeds a given threshold. The data structure then
excludes these pixels from subsequent scan line pro-
cessing. Since the shear-warp algorithm gains speed by
reducing the interpolation operations to an efficient 2D
interpolation, the accuracy of the algorithm is sacri-
ficed. Hence the quality of the images produced by the
shear-warp algorithm has been found inadequate in a
recent comparative study [20].

Fourier domain volume rendering, introduced by
Malzbender [17], and extended by Totsuka and Levoy
[33], is a direct volume rendering algorithm that is sig-
ni f icantly di fferent f rom al l  the others mentioned
above. It reduces the algorithmic complexity of render-
ing by traversing the volume in the frequency domain.
By the Fourier projection-slice theorem [1], one can

avoid scanning the whole volume by simply taking a
single slice from the frequency domain representation
of the volume. The slice needs to be inverse-Fourier
transformed to arrive at an X-ray type projection of the
volume. The resulting algorithmic complexity becomes

, whereas visiting every voxel just once
has algorithmic complexity . By premultiplying
the frequency data, one can also achieve depth shading
and diffuse lighting effects. The idea of Fourier volume
rendering was combined with the wavelet transform by
Lippert and Gross [15] as a multi-resolution accelera-
tion to the algorithm. Their method also benefits from
the fact that the Fourier transforms of the wavelets and
scaling functions can be done analytically. However,
all of the Fourier volume rendering algorithms are lim-
ited to parallel projections and X-ray type rendering.
Since the accuracy of the slicing operation has tremen-
dous effects on the image quality, hardware accelerated
slicing may cause unwanted artefacts.

Splatting, an object-based direct volume rendering
method developed by Westover [34], reverses the inter-
polation and compositing steps of the volume render-
ing pipeline efficiently. The principle of his algorithm
is to place interpolation kernels at the center of each
voxel  which i s then “ splatted”  onto the screen.
Although inaccuracies result that become visible as
“popping”  artifacts [22, 23], Mueller et. al. [20, 21]
have shown that through a sheet-buffer implementation
of splatting, the accuracy of this algorithm can be com-
petitive to ray-casting. Mueller [24] also demonstrates
an efficient perspective implementation of splatting.

Crawfis et. al. [4] proposed a fast implementation of
splatting using rendering hardware. Later, Crawfis
introduced an implementation using a special  data
structure, assuring that only splats in a certain iso-range
are rendered [5]. Though fast, the technique suffers
from the fact that no depth sorting is done, and sorting
“on-the-fly”  would slow down the algorithm making
interactive manipulation impossible. While his tech-
nique proves effective for constant-colour cloud-like
volumes, it cannot be used for visualizations where
depth information and shape preserving rendering is
necessary.

Laur and Hanrahan [13] suggested the use of octrees
to store the data in a hierarchical form. This data struc-
ture creates a more efficient way to traverse and splat
the voxels. Their technique recursively divides the data
into smaller blocks, and thus forms a tree structure. If
an entire subtree of voxels have the same intensity, they
can be lumped together and splatted more efficiently.
However, non-visible voxels are not always organized
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in such a spatial ly coherent way. Furthermore, this
algori thm produces arti facts at the “ seams”  of  the
octree-nodes. The data structure proposed in this paper
does not suffer from these drawbacks, and outperforms
the octree implementation for practical scenarios (see
Section 4).

Besides ray-casting, splatting is the only rendering
technique that is not restricted to regular grids and
orthogonal projections [32]. Extensions to curvilinear
and even irregular grids have been introduced in the
past [18]. Just recently, splatting-like ideas have also
been implemented to render polygonal objects with
high polygon count [25, 28]. Unlike ray-casting, splat-
ting can be accelerated using commonly available tex-
ture mapping hardware. Hence, we believe splatting is
among the most powerful algorithms for rendering, and
research into faster and better splatting algorithms will
have a substantial impact.

The method proposed in this paper takes ideas from a
number of techniques, including the hardware acceler-
ated splatting of Crawfis, the skipping of empty cells
like space-leaping, and a 3D data structure like that of
Frisken-Gibson [8]. Our goal is to integrate these tech-
niques to produce high quality 3D direct volume ren-
derings with interactive frame rates.

3.  Adjacency Data Structure
Frisken-Gibson [8] used a three-dimensional linked

list data structure, which she referred to as a linked vol-
ume. Her goal was to model the behaviour of elastic
materials and to mimic tissue properties for surgical
simulation. Volume elements have l inks to adjacent
elements, signifying physical proximity and an elastic
force interaction between them. The volume can be cut,
breaking these connections, while new volume ele-
ments are dynamically added to smooth the cut edges.
From each volume element, one can determine i ts
neighbours by following the adjacency pointers. The
volume elements need not be aligned on a grid.

Our rendering algorithm uses a similar l inked l ist
data structure to that of Frisken-Gibson. However, our
links represent empty space, and do not necessarily link
elements that are close together. The motivation of our
data structure is rendering speed and encoding com-
pression, while hers is efficient and flexible physical
volume modelling.

We assume that the scalar volume data is organized
on a regular rectangular grid. An opaci ty value is
assigned to every voxel based on the transfer function
of Levoy [14]. Many voxels will  have an opacity of
zero. Splatting these voxels offers no advantage since
they have no effect on the f inal  image. Hence, we

endeavour to efficiently render only those voxels that
are visible, and skip those with zero opacity, while
maintaining the spatial context of each voxel.

The identi f ication of visible voxels and invisible
voxels is carried out in a pre-processing step. For the
purpose of this paper, we will define a voxel as “visi-
ble”  if its opacity is non-zero. Thus far, the algorithm
resembles that of Crawfis [5]. However, we extend this
method by inserting the visible voxels into a single 3D
data structure that holds all the information needed to
render the voxels in back-to-front scan-plane order
from any angle. Voxels point along scan l ines to the
next visible voxel, thereby allowing the rendering algo-
rithm to skip the invisible voxels. The data structure is
similar to the 3D linked volume used by Frisken-Gib-
son [8] since it involves links between voxels. The data
structure also resembles the run-length encoding used
in the shear-warp algorithm proposed by Lacroute and
Levoy [12].

Rendering an image of the volume simply involves
traversal of the data structure in scan line order from
back to front, visiting only those voxels that we wish to
splat. The data structure allows for efficient depth sort-
ing with little overhead, thus maintaining the ability to
shade the image without sacrificing speed.

If the set of visible voxels changes, the data structure
can be updated dynamically to add or remove voxels
with minimal overhead. For example, the viewer may
wish to change the lower opacity threshold (to remove
the most transparent of the visible voxels). The data
structure can be incrementally updated accordingly.

3.1  Data Structure Definition

From this point forward, we will define two voxels
as “adjacent”  if they are in the same scan line and have
no visible voxels between them. A structure containing
6 indices is associated with each voxel. It keeps the
index of the next visible voxel in each direction along
each principal axis. We will call this structure an “adja-
cency structure” .

An adjacency structure has two indices for each axis.
These indices direct us along the scan line to an adja-
cent voxel (the next visible voxel). In order to detect
when we have reached the end of a scan line, we cap
both ends of the scan line with a “virtual voxel” . These
virtual voxels do not hold volume data, but have an
adjacency structure that points to the first visible voxel
in its scan line, as well as to adjacent virtual voxels cor-
responding to other scan lines. By this mechanism, the
data volume is encapsulated in a box of virtual voxels.



These virtual voxels play a key role in traversing the
volume efficiently.

There are three levels of virtual voxels: box face, box
edge, and box corner. Each one acts as a scan-line cap
for the previous level. Figure 1 illustrates the location
and hierarchy of these voxels.

With this architecture, not only can we skip irrele-
vant voxels in a scan line by following the indices from
one end to the other, but we can skip entire scan lines
that have no visible voxels. We do this by also keeping
track of the adjacencies between the box face voxels. If
a box face voxel is not pointed to, it wil l be skipped
over. Continuing this philosophy, we exclude box edge
voxels that delimit empty planes.

Figure 2 shows a 2D analog of our data structure.
The black squares represent visible data voxels, while
whi te squares are invisible data voxels. The gray
squares are the virtual voxels that form a box around
the data volume. Both corner voxels and edge voxels

are present (box face voxels need a third dimension to
exist). The arrows represent voxel adjacencies, indicat-
ing that two voxels are pointing to each other. As one
follows the adjacencies through the data structure, none
of the invisible voxels are visited.

It is interesting to note that the box face voxels repre-
sent a binary parallel projection of the visible voxels.
The same is true for box edge and box corner voxels
for their corresponding projections.

3.2  Building the Data Structure

The structure is initial ized by adding the 8 corner
voxels of the volume block, each having 3 indices to
point to their adjacent corners. From that point on, the
structure grows as we add one data voxel at a time.
With the addition of a data voxel to the structure, a cas-
cade of virtual voxels is updated. For example, a data
voxel resides in three different scan lines, one for each
axis. There are six box face voxels that cap these three
scan lines, and they must also be part of the data struc-
ture. If these box face voxels are not already in the data
structure, they are added. The addition of a box face
voxel requires the inclusion of the appropriate box
edge voxels. This process continues up the hierarchy
unti l  i t reaches the box corner voxels, which are
already included in the data structure. Voxels can also
be removed from the data structure by a similar pro-
cess.

3.3  Data Structure Traversal

The beauty of the adjacency data structure is that it
faci l i tates fast and eff icient back-to-front ordering
without having to visit any invisible data voxels. The
structure is traversed in scan line order. The order in
which the axes are traversed is established by evaluat-
ing the dot product of the view vector with the unit vec-
tors along each of the three axes. The axis that yields
the largest dot product magnitude is closest to colinear
with the view vector, and hence defines the back-to-
front trajectory. For the purpose of this paper, we will
denote that axis as the “slow”  axis. Similarly, we will
refer to the “medium” axis and the “ fast”  axis as those
that correspond to the middle and smallest dot product
magnitudes, respectively. The computer implementa-
tion of this ordered traversal translates to nested loops
in which the slow axis corresponds to the outermost
loop and the fast axis corresponds to the innermost
loop.

The algorithm starts at the corner voxel farthest from
the eye posi tion. In f igure 3, the starting voxel  is
labelled with the letter A. Recall that the corner voxel

Box Edge
Voxel

Box Face
Voxel

Box Corner
Voxel

Data
Voxel

Figure 1. Voxel nomenclature. Every voxel resides
in a scan line. Every scan line is capped on both
ends by virtual voxels, which come in three variet-
ies: box face, box edge, and box corner.

Virtual
Voxel

V isible
Voxel

Invisible
Voxel

Figure 2. Two-dimensional adjacency structure.
This 2D example demonstrates how invisible data
voxels are not included in the data structure. The
arrows indicate voxel adjacencies.



has adjacency indices for each of the three axes. Fol-
lowing the adjacency along the slow axis, we arrive at a
box edge voxel, labelled B in the diagram. Notice that
voxel B need not be a neighbour of voxel A. Voxel B is
included in the data structure because it subtends the
first plane that contains at least one visible data voxel.
From voxel B, we follow the index that corresponds to
the medium axis to arrive at a box face voxel, labelled
C. Now we follow voxel C’s index along the fast axis
to our first data voxel, D.

From voxel D, the scan line is traversed until the box
face voxel on the far side is encountered, indicating the
end of the scan line. At that point, the traversal returns
to voxel  C and fol l ows the medium pointer and
traverses the next non-empty scan line. Once we have
reached the far end of the medium axis (shown as the
vertical axis in figure 3), we return to box edge voxel B
and simply jump to the next box edge voxel, and repeat
the whole process. Eventually, the process will encoun-
ter the corner voxel opposite the starting point, signal-
ling the end of the traversal.

4.  Results
The adjacency algorithm was implemented in ANSI

C++ using the OpenGL and GLUT graphics packages.
Wherever possible, the transformations were imple-
mented using the OpenGL library since they are hard-
ware accelerated on many video cards. The splat was
made from a 2D Gaussian kernel and was saved as a
texture map, al lowing us to take advantage of more
hardware acceleration [4]. Timing benchmarks were
run on a Microsoft Windows 900MHz Pentium II I
workstation wi th 512Mb of  RAM and an NVidia
GeForce2 Ultra graphics card with 64Mb of  DDR
RAM. The program rendered to a 300x300 pixel win-
dow.

The adjacency volume splatting algorithm was com-
pared to three other splatting algorithms, all similarly
implemented: traditional splatting, the unordered splat-
ting of Crawfis [5], and octree splatting of Laur and
Hanrahan [13]. In a rendering pass of the traditional
splatting algorithm, every voxel in the volume is vis-
ited, splatting only those voxels that are deemed visible
by the chosen transfer function.

In the unordered splatting algorithm, a list of visible
voxels is established in a preprocessing step, and that
list is traversed in a spatially non-specific order, splat-
ting every voxel. It should be noted that our implemen-
tation of  the unordered splatting algori thm is not
designed to test the speed of Crawfis’  method, but
rather to use as a speed comparison to gauge the
amount of overhead introduced by the adjacency algo-
rithm’s depth-sorted traversal. In our unordered splat-
ting implementation, we store many values that are not
necessary for Crawfis’  splatting (normal vectors, adja-
cency indices, etc.). We chose to calculate and store
these values because they are used in the adjacency
splatting method, making for a more direct and mean-
ingful comparison. The unordered splatting algorithm
and the adjacency algori thm are not comparable in
terms of their output, since the adjacency algorithm
creates depth-sorted renderings with shading, while the
unordered algorithm is used to render cloud-like vol-
umes.

The splatting methods were benchmarked on five
di f f erent  data sets. The “ Jef f ”  data set  i s a
256x256x129 (8-bit) T1 weighted MRI scan of the
author’s head. The “Frog”  data set is a 500x470x136
(8-bit) segmented MRI volume of a frog. The “ CT
Abdomen”  data set is a 128x128x142 (8-bit) angio-
gram CT scan of a human abdomen. The “CT Head”
data set is a 128x128x93 (8-bit) CT scan of a human
head. Finally, the “HIPIPH” data set is a 64x64x64 (8-
bit) volume that shows the ψ function for a high poten-
tial iron protein molecule. Figure 4 shows adjacency
algorithm renderings of each of the data sets.All the
benchmark timings were done with parallel projection
rendering. However, in object-based rendering, the
occlusion in a perspective projection can be different
than that in a parallel projection. The issue of the cor-
rect back-to-f ront (or equivalently, f ront-to-back)
ordering for perspective splatting was published by
Swan [32]. They split the back-to-front rendering along
the scan plane containing the viewpoint, reversing the
order for each side of the plane. This enhancement was
easy to implement into the adjacency splatting algo-
rithm to give fast and accurate perspective projection

AB

C

D

slow

medium

fast

View
vector

Figure 3. Adjacency volume data structure tra-
versal. Corner voxel A is the farthest from the eye
point (the eye point is on the far side of the volume,
and to the left).



renderings. The timing difference between the parallel
and perspective projection versions of the adjacency
algorithm is negligible.

4.1  Rendering Speed

Table 1 gives the benchmark results for the four algo-
rithms on the five data sets. The frame rates are given

in units of frames per second, and were established by
averaging the f rame drawing time over 36 f rames
(rotating the volume through 360o in increments of
10o). The octree method could not be run on the “Frog”
data set because the algorithm ran out of memory dur-
ing preprocessing. The adjacency, unordered and
octree algorithms all exhibit similar frame rates for the

Table 1

Frame Rate (frames per second)

Algorithm

Jeff
256x256x129

513,799 splats
6.1% of voxels

Frog
500x470x136

354,894 splats
1.1% of voxels

CT Head
128x128x93

197,828 splats
13.0% of voxels

CT Abdomen
128x128x142

79,914 splats
3.9% of voxels

HIPIP
64x64x64
19,253 splats

7.3% of voxels

Adjacency 1.96 2.85 2.64 8.09 13.95

Unordered 2.99 3.89 2.58 8.07 13.95

Traditional 0.93 0.24 2.48 4.39 12.74

Octree 1.52 - 2.54 7.50 12.42

Figure 4. Images produced by the adjacency algorithm. Starting from the top-left and
proceeding clockwise, the volumes are “ Jeff” , “ Frog” , “ CT Head” , “ HIPIPH”  and
“ CT Abdomen” . See table 3 for more information on each of the renderings.



three smallest volumes. This phenomenon is likely a
result of the rendering speed being limited by the pixel
fi l l rate, since the splat sizes are relatively large. All
three accelerated splatting algorithms are faster than
the traditional method, particularly for large data sets.

Figure 4 plots the number of selected splats versus
rendering time (in seconds per frame) for the adjacency
and unordered splatting methods. The graph distin-
guishes between a displaying run, in which an image is
displayed on a computer monitor, and a non-displaying
run, which is identical except that the final graphics
command that actually draws the splat is not invoked.
The non-displaying benchmarks were created to test
the traversal time independently of the actual drawing.

The frame rendering times for the non-displaying
benchmarks are a l inear function of the number of
splats rendered. Furthermore, if the gradient and colour
graphics commands are also removed from the pro-
gram, the three algorithms perform at roughly the same
speed. The separation of the lines in figure 5 is likely
caused by a combination of the traversal efficiency and
cache coherence.

We did not carry out a formal study of the prepro-
cessing times for the different algorithms, but some
basic observations may shed some light on their gen-
eral performance. The preprocessing step of building
the data structure in the adjacency algorithm ranged
from 0.61 seconds (for the “HIPIPH”  data set) to 9.5
seconds (for the “ Jeff”  data set), and roughly corre-

sponded to the total number of voxels in the data struc-
ture. While the adjacency algorithm preprocessing has
to build the data structure, it saves time by only calcu-
lating a fraction of the number of gradient vectors and
voxel colours. The traditional algorithm does not have
to build the data structure, but computes gradient and
colour vectors for voxels that wil l  ultimately not be
splatted. The preprocessing times required by the two
algorithms was comparable. The octree splatting algo-
rithm required somewhat longer preprocessing times.

4.2  Memory Analysis

Our implementation of each algorithm pre-calculates
and saves relevant voxel properties. In the traditional
splatting algorithm, every voxel requires 17 bytes of
memory: 4 bytes for a colour vector (red, greed, blue,
alpha), 12 bytes for a 3-float gradient vector, and 1 byte
for the voxel intensity value. Thus, if  are the
dimensions of  the data volume, then the memory
required by the traditional method is .

For the adjacency rendering algorithm, there are two
levels of allocation, a small allocation for every voxel
in the volume, and a larger allocation for only those
voxels that wil l be in the data structure. First, every
voxel in the volume requires 5 bytes of memory: 1 byte
for its intensity value, and a 4-byte pointer to the larger
allocation that contains additional information. This
additional structure is only allocated for those voxels
that are included in the adjacency data structure, and
requires 28 bytes: 4 bytes for colour, 12 bytes for a gra-
dient vector, and 12 additional bytes in the form of 6
two-byte integers used as indices to adjacent voxels.
Recall that the adjacency algorithm requires the vol-
ume be encapsulated by vi rtual  voxels. Thus, i f

 are the dimensions of the data volume, then
 are the dimensions of the

total voxel allocation, which includes the box of virtual
voxels. So, if s is the number of data and virtual voxels
included in the data structure, then the memory, ,
used by this algorithm is, 

It is important to note that the adjacency data struc-
ture includes virtual voxels, as well as visible data vox-
els. For example, the data structure that was used to
create the rendering of “ Jeff”  in figure 4 has 513,799
data voxels (as noted in the figure caption), as well as
115,688 virtual voxels. Hence, the total number of vox-
els in the data structure is 629,487.

This may seem like an increased memory require-
ment compared to the traditional method. However, the
number of voxels that have a non-zero opacity is typi-
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cally only a fraction (less than 15% for the data sets
examined here) of the total number of voxels in the
data set.

There is a more streamlined version of the adjacency
data structure that we did not implement. In our mem-
ory comparison, we will refer to this new version as
implementation B, while call ing the original imple-
mentation A. Method B discards the original volume
data once the data structure is built, so that only voxels
in the data structure have memory allocated to them.
This strategy does not allow for fast updating of the
data structure because the original volume data is no
longer in memory. In implementation B, each voxel in
the data structure takes 47 bytes of memory: 1 byte for
voxel intensity, 4 bytes for colour, 24 bytes in the form
of six 4-byte pointers (to adjacent voxels), 3 two-byte
integers for voxel position, and a 12-byte gradient vec-
tor. The data structure built on this format can take less
memory than method A, but affords less flexibility for
dynamic updating. We will label the amount of mem-
ory used by this method .

There are many ways to compare the memory
requirements for the adjacency algorithms A and B,
and the traditional splatting method. Before we do any
comparisons, we will generalize the methods by classi-
fying pieces of  information as “ cri tical ”  or “ addi-
tional” . For example, voxel intensity and pointers to
other voxels are critical to the operation of both adja-
cency implementations. These entities are categorized
as critical information. Except in adjacency implemen-
tation B, neither colour nor the gradient vector needs to
be kept in memory since each can be derived from
voxel intensity. They are classified as additional infor-
mation.

Table 2 outlines the memory requirements of the 3
algorithms by distinguishing between critical and addi-
tional information, as well as information needed for
every voxel, or just for those voxels that are included in
the adjacency data structure. In the table, k represents

the number of bytes allocated for additional informa-
tion, as outlined above. For simplicity, we will assume
that the volumes have dimensions  (for adja-
cency algorithms, the effective volume size is 
due to the box of virtual voxels surrounding the vol-
ume).

Define  to be the fraction of the total number of
voxels that are included in the adjacency data structure
(which includes both data voxels and virtual voxels).
Thus, we have

Now, we can look at the ratio of the memory required
by the two adjacency algorithm implementations.

Setting this ratio equal to 1, we see that the two algo-
rithms use the same amount of memory when 16.1% of
the total number of voxels are included in the adja-
cency data structure (i.e. when ). For fewer
voxels, method B uses less memory than method A.

The size of k also factors into the memory equation.
For every one-byte increase in the size of k, the tradi-
tional algorithm allocates N3 bytes of memory, whereas
the adjacency algorithms A and B allocate s bytes each.
Recal l  that s is l ikely much smaller than .
Hence, the bigger k is, the more of a memory advan-
tage the adjacency algorithms offer.

Table 3 shows the amount of memory required by the
traditional algorithm and each adjacency implementa-
tion for each of the 5 data sets. The table gives the
number of visible voxels, as well as s, the number of
voxels in the adjacency data structure (both visible
voxels and virtual voxels), and , the fraction of voxels
used in the data structure. The memory required by the
traditional rendering method does not depend on the
number of voxels splatted, so it is used as a baseline for
comparison. Memory requirements for the unordered
splatting algorithm are omitted here because there is no
need for the gradient vector when rendering a non-
depth-sorted data set, so memory comparison is irrele-
vant.

I t should be noted that as s increases, the total
amount of memory required by the adjacency methods
will eventually overtake that of the traditional method.
The exact value of s at which the adjacency implemen-
tation A overtakes the tradi tional  method can be
derived by setting  and solving for s. For each
of the 5 data sets, an -value of approximately 40%

Table 2

Memory Required (bytes)

Algorithm Required for 
every voxel

Required for each 
of s voxels in the 
adjacency data 

structure

Total Memory 
Requirement

Traditional 1+k 0 (1+k)N3

Adjacency A 5 12+k 5(N+2)3+
(12+k)s

Adjacency B 0 43+k (31+k)s

mB

N N N××
N 2+( )3

ŝ

ŝ s

N 2+( )3
--------------------  which implies that  s ŝ N 2+( )3

 .= =

mA

mB
-------

5 12 k+( )ŝ+( ) N 2+( )3

43 k+( )ŝ N 2+( )3
----------------------------------------------------------

5 12 k+( )ŝ+
43 k+( )ŝ

--------------------------------= =

ŝ 0.161=

N 2+( )3

ŝ

mT mA=
ŝ



would make the two methods use the same amount of
memory. This figure is much higher than the typical
range of 1% to 20% observed in our study, as shown by
table 3.

5.  Conclusions and Future Extensions
The adjacency data structure rendering algorithm is

capable of creating the same images as the traditional
splatting algorithm, but with considerably less process-
ing time. The benchmarks clearly demonstrate the
advantage of using the adjacency data structure over
the standard splatting algorithm, especially for large
data sets. The frame rates of the unordered algorithm
and the adjacency algorithm are comparable, particu-
larly for medium and small data sets. This finding rep-
resents a substantial improvement over the unordered
splatting algori thm, since the adjacency algori thm
affords depth ordering and directional shading with lit-
tle overhead. Furthermore, the adjacency data structure
is so robust and easy to navigate, that it allows for the
proper back-to-front ordering for perspective splatting
with a negligible processing cost. The adjacency algo-
rithm even outperforms the octree splatting algorithm.

The specific performance depends somewhat on the
distribution of visible voxels throughout the volume.
For example, contrast the situation in which 10,000
visible voxels form a tight clump, against the situation
in which 10,000 visible voxels are uniformly distrib-
uted throughout the volume. The latter case has its per-
tinent data spread over many scan l ines, forcing the
algorithm to traverse a greater number of virtual vox-
els. However, for all the data sets we tested, the speed
increases afforded by skipping invisible voxels out-
weighs the cost of traversing the adjacency data struc-
ture. 

It was noted above that the three accelerated splatting
algorithms all perform about the same for small data
sets. The most likely cause of this irregularity is pixel
fill rate. However, the non-displaying benchmarks sug-
gest that volume traversal and cache coherence both
contribute to rendering slowdown. In both the adja-
cency and the octree algorithms, voxels are not neces-
sari ly processed in a memory-sequential order, and
likely cause frequent cache misses. Our implementa-
tion of the unordered method does not suffer from this
handicap, since the voxels are stored in a sequential
array. The adjacency and octree implementations are
not optimized for cache coherency. Research into cache
coherent optimizations of these splatting algorithms
may yield considerable performance gains.

If gradient vectors and voxel colours are pre-com-
puted and stored in memory, the adjacency algorithm
takes far less memory than the traditional splatting
method for typical data sets. The savings come from
the fact that not al l  the gradient vectors and voxel
colours are required to render a scene, and the adja-
cency method takes advantage of that. Depending on
the distribution of visible voxels, the adjacency algo-
rithm required between 30% and 60% of the memory
used by the traditional method. However, further mem-
ory savings can be realized. Currently, all virtual vox-
els that are included in the data structure have the full
allotment of indices, even though not all of them are
used. For example, a box corner voxel only needs 3
adjacency pointers. This approach was taken simply for
programming ease. Furthermore, instead of recording
the index of the adjacent voxels, one could equivalently
record the distance to the adjacent voxel. These steps
will be shorter, and may require only one byte. If there
is a need for a step larger than 255, a “stepping voxel”
can be added with zero opacity. However, this strategy

Table 3

Memory Required (Megabytes) and
Percentage of Traditional (in parentheses)

Algorithm

Jeff
256x256x129

513,799 splats
s = 629,487

= 7.2% of voxels

Frog
500x470x136

354,894 splats
s = 600,979

= 1.8% of voxels

CT Head
128x128x93

197,828 splats
s = 257,365

= 16.0% of voxels

CT Abdomen
128x128x142

79,914 splats
s = 128,255

= 5.3% of voxels

HIPIP
64x64x64
19,253 splats
s = 31,372

= 10.9%

Traditional 137.06 518.15 24.70 37.72 4.25

Adjacency A 58.39 (42.6%) 171.97 (33.2%) 14.53 (58.8%) 15.03 (39.8%) 2.21 (52.2%)

Adjacency B 28.22 (20.6%) 26.94 (5.2%) 11.54 (46.7%) 5.75 (15.2%) 1.41 (33.1%)

ŝ ŝ ŝ ŝ ŝ



introduces a trade-off in traversal speed, and makes
building an optimal data structure more complex.

Despite the efficient way in which the voxels are vis-
ited, the adjacency data structure sti l l  renders many
voxels that are not seen. For example, voxels that are
surrounded by other opaque voxels (such as an inner
structure of the head) need not be splatted since they
will not be seen from any angle. Voxels can be added to
or removed from the data structure with minimal effort.
Hence, if an algorithm arises that can effectively deter-
mine which voxels are not seen from any angle, those
voxels can easily be removed from the structure. 
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