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Abstract 
Many problems in computer graphics concern the pre-
cise positioning of a human figure, and in particular, the 
positioning of the joints in the upper body as a virtual 
character performs some action.  We explore a new 
technique for precisely positioning the joints in the 
arms of a human figure to achieve a desired posture.  
We focus on an analytic solution for the IK chains of 
the model's arms and an interface for conveniently 
specifying a desired targeting point, or articulator, on 
the model's hand.  Also, we consider the problem of 
specifying a target for that articulator in space or in 
contact with the model's own body.  These methods 
recast the seven degrees of freedom in the arm to pro-
vide a more intuitive interface for animation.  We dem-
onstrate the efficacy and efficiency of these techniques 
in positioning a virtual American Sign Language inter-
preter. 
 
Key words:  Analytic Algorithms, Inverse Kinematics, 
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1 Introduction 
Many applications in Computer Graphics (CG) require 
the positioning and animation of articulated figures 
containing joints with multiple degrees of freedom [1].  
In the case of the human body, the animator must 
coordinate the positioning of dozens of joints.  The two 
arms of a virtual human may contain over 30 joints in 
the shoulder, elbow, wrist and knuckles [6].  Animators 
use a range of techniques to manage this complexity, of 
which the many Inverse Kinematics (IK) methods are 
among the most widely used [2].   
 IK techniques were first used in robotics to position 
a series of joints, so as to place an end-effector on the 
robot's arm at a position and orientation necessary to 
perform some task [7].  Compared to robotics, character 
animation requires finer nuances in a character's mo-
tion.  
 Another application requiring fine nuances in mo-
tion is animating American Sign Language (ASL) [6].  
ASL is a natural language used by the North American 

Deaf community and is the fourth most widely used 
language in North America [8].  The purpose for ani-
mating ASL is to support the development of a syn-
thetic interpreter for cases when human translators are 
unavailable or too expensive [12].  
 In ASL, subtleties in motion, position and configu-
ration of the arms can make an enormous difference in 
meaning.  One example is the differences between the 
signs for EYEGLASSES and GALLAUDET UNI-
VERSITY.  See Figure 1 in Appendix A.  They both 
have the same hand configuration (handshape) and both 
have the same basic movement, but EYEGLASSES 
happens on the front of the face around the eye, while 
GALLAUDET happens just to the side of the eye, pull-
ing back towards the ear [10]. 
 There is always a tradeoff between the amount of 
accuracy and control an application achieves, on one 
hand, and the speed at which an animator can express 
their intent, on the other.  Applications such as charac-
ter animation and ASL require computational methods 
and interfaces that make such fine control easy and in-
tuitive, so that the animator can produce precise and 
expressive animations.   
 This paper describes a direct, analytic IK technique 
that supports an interface allowing animators to tran-
scribe signs in ASL quickly and precisely.  This same 
technique could also be incorporated into any general 
animation system for specifying arm movements. 

2 Description of the Problem 
Building a general system for animating ASL requires 
highly complex and intuitive controls for the model, 
two goals that are often at odds.  In particular, ASL 
signs often require that the model's hand be in contact 
with the other hand or some part of the body or face.  
For more information on the linguistics of ASL, see [5] 
or [9]. 
 It is imperative that the positions recorded by the 
animator be precise enough that the model's fingers do 
not wind up in collision with the model's own body.  
Moreover, the specific part of the hand contacting the 
body will vary from sign to sign.  In Figure 2 of Ap-
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pendix A, the sign for IDEA places the tip of the index 
finger in contact with the face, whereas the sign for 
CHOCOLATE uses the lower part of the thumb as the 
point of contact [10].  We define an articulator to be a 
point on the hand used for targeting. 
 Since we wanted the computational methods to be 
as efficient and as stable as possible we rejected the 
more traditional inverse Jacobean and iterative IK 
methods.  Certainly, other applications call for specify-
ing a target position for the wrist in space, but these can 
be handled by current analytic IK methods [3] [4].  
However, for our application, in addition to the simple 
case, we also needed to  

1. Allow the user to specify several key global orien-
tations for the wrist (such as up, down, in, out, 
etc.) that are specified at times in ASL grammar, 
both in spatial positioning and in contact situa-
tions. 

2. Specify a target for an articulator on the hand, 
while giving the user complete control over the 
local rotation at the wrist joint, and then, allow the 
user to manipulate the local wrist orientation 
without affecting the position of the articulator. 

Problem 1 can be handled quite easily with an applica-
tion of the techniques in [4].  But an extension of these 
techniques is necessary to solve problem 2.  Tolani, 
Goswami and Badler [11] considered a problem related 
to 2, but stopped short of a full direct solution, relying 
instead on optimization techniques to calculate the el-
bow's bend angle. 
 The key difference between problems 1 and 2 is 
how the user specifies the orientation of the wrist.  Case 
1 is identical to the grasping task problem encountered 
in robotics and ergonomics studies.  In many grasping 
tasks the orientation of the palm is specified relative to 
the object being grasped, i.e. in world coordinates  [4].  
Given this orientation, the solution is a simple matter of 
subtracting a vector aligned along the palm to calculate 
where the wrist must be placed.  After this, one can 
solve the triangle formed by the shoulder, elbow and 
wrist to get the complete orientation of the arm, see 
Figure 1. 
 In animating ASL signs, the primary focus is 
slightly different, as specified in case 2.  Of primary 
importance is how the wrist and shoulder look in rela-
tionship to the rest of the body.  Neither joint must look 
unduly strained.  To make such subtle relationships 
easy to achieve, an animator must be given direct con-
trol over the orientation of the wrist relative to the fore-
arm.  For the purposes of the IK calculation, we con-
sider the wrist as a fixed rotation relative to the forearm 
and calculate rotations for the shoulder and elbow nec-
essary to place the articulator in the desired position. 

 This is similar to the aiming task considered in [11], 
the key difference being that there they do not specify 
the distance to the target point.  As previously men-
tioned, their technique requires iterative optimization to 
calculate the elbow's bend angle in the most general 
case.  However, it turns out that an extension of 
Kondo's geometric method solves our problem com-
pletely and directly. 

3 Analytic IK Solutions 
Two popular IK methods are the inverse Jacobean and 
optimization approaches, each of which requires the 
calculation of a series of approximations converging to 
the desired solution.  Such algorithms are quite effec-
tive for general IK problems, but when confronted with 
a simpler problem such as the orientation of the arm, 
with only three joints, a more stable, direct solution 
may be achieved depending on the specific problem and 
constraints.  For more information, [11] has a nice 
overview of classical analytic and numerical algorithms 
for IK. 
 One of the key problems with iterative solutions is 
their unpredictability and instability in the presence of 
an underdetermined system, such as the human arm.  
Consider that, even when placing the wrist at a desired 
point in space, there are an infinite number of solutions 
parameterized by the rotation of the system about an 
axis through the shoulder and wrist, see Figure 1. 

 
Figure 1:  Triangle for Placing Wrist 

 In a system for positioning a human model, the 
animator should be given an intuitive set of controls for 
choosing a desired configuration amongst all of the 
available solutions.  This is not provided by general 
iterative methods, which most often give unpredictable 
results for redundant degrees of freedom. 
 Another key problem is that such techniques can be 
highly unstable near targets where the iterative solution 
is ill conditioned.  For example, when the Jacobean 
matrix fails to have full rank or near targets for which 
there is no solution, iterative methods can become 
highly unstable, causing the system to fluctuate wildly 
and never reach an optimal solution [11].  
 Lastly, iterative methods are computationally ineffi-
cient compared to analytic solutions.  Therefore, we 



desired a direct analytic solution that was stable, easy to 
control and which would allow the user to explore the 
redundant degrees of freedom in an intuitive manner. 
 As mentioned previously, there have been several 
efforts in this direction, for analytic solutions including  

1. Traditional IK chains where the shoulder and el-
bow joints control the positioning of the wrist and 
the palm is simply an end-effector which will be 
placed in a desired orientation.  It does not affect 
the IK chain unless the desired position would 
violate a rotational constraint [2]. 

2. Grasping tasks where the global orientation of the 
end-effector is known, and therefore, also is the 
wrist position [4].  Solving this problem requires 
solving a triangle, whereas when specifying a lo-
cal orientation of the wrist, the solution requires 
calculating the angles of a general tetrahedron, as 
we shall see momentarily. 

We achieved our goals by extending the methods of 
Kondo to place an arbitrary point on the hand at a given 
position, and given parameters for the redundant de-
grees of freedom defined by the animator.  In addition, 
the redundant degrees of freedom correspond to intui-
tive motions of the shoulder and wrist. 

4 Our Solution 
Consider the IK chain displayed in Figure 2 represent-
ing the human arm.  This chain has three joints:  the 
shoulder S, the elbow E and the wrist W.  The articula-
tor A lies on the hand, but does not necessarily lie on 
the central axis of the hand, as shown in the Figure.  
This must be taken into account in our calculation, but 
does little more than add a fixed rotation into the kine-
matic chain.  The articulator may be placed anywhere 
on the hand, or at the wrist, which then reduces to 
Kondo's case. 

 
Figure 2:  The IK Chain for the Human Arm  

The shoulder S is a ball joint with 3 degrees of rota-
tional freedom including a radial twist.  The elbow is a 

hinge joint with only one rotational direction, while the 
wrist has two degrees of freedom, flexion/extension, 
and abduction/adduction.  The radial twist of the fore-
arm-wrist complex happens as the two forearm bones, 
the radius and ulna, rotate with respect to each other.  In 
our model, we actually place this rotation at the elbow 
to facilitate deformations in the forearm mesh, but for 
this discussion we will place that radial twist at the 
wrist.  
 When considering the placement of the articulator A 
at an arbitrary target point P in space, our system has 
several redundant degrees of freedom.  The first is a 
rotation ψ  of the arm about a line from the shoulder 
through the articulator A.  See Figure 3.  The other de-
grees we will discuss later.  For now, we will assume 
that we have chosen a fixed orientation R for the wrist.  
With the choices of R and ψ, the system is no longer 
underdetermined. 
 Thus, given an orientation R of the wrist, and a cho-
sen rotation ψ  of the system about the shoulder-
articulator axis, SA, we wish to calculate the rotations 
of the shoulder and elbow that will place the articulator 
A at the chosen target P.  We will represent the orienta-
tion of the upper arm SE in spherical coordinates, which 
can be converted from there into Euler angles if the 
application so dictates.  Also, we will initially calculate 
the orientation of the system in a chosen default orien-
tation of ψ = 0.   

 

Figure 3:  The Tetrahedron Formed by the Arm 

 To facilitate the definition of a spherical coordinate 
system for the upper arm, define a local coordinate sys-
tem with origin at S, and with z-axis pointing towards 
the negative vertical in the world system.  This choice 
is compatible with the physiology of the arm because 
the rest position of the arm places the elbow and wrist 
below the shoulder in a vertical line against the body.  
From here, we define two spherical angles φs, θs as 
shown in Figure 4.  The third degree of freedom for the 
shoulder is then the radial twist τs, which doesn't enter 
this calculation until we consider the rotation ψ. 
 The solution follows in several steps by basic trigo-
nometry, since the points in this system define a tetra-
hedron formed by the convex hull of the four points {S, 
E, W, A}. Figure 3 displays this tetrahedron with the 
original arm chain in bold.  The solution of this prob-



lem amounts to solving for the dimensions and orienta-
tion of this tetrahedron in space.  The main degenerate 
case we need to worry about is if the tetrahedron col-
lapses to a line.   

 
Figure 4:  The Shoulder Coordinate System 

4.1 Calculating the Elbow Bend Angle 
Since we are given the dimensions of the arm's compo-
nents, the fixed position of A relative to W, and the de-
sired location of the articulator, A = P, we know the 
following five lengths 
 

u = |SE| f = |EW| 

h = |WA| d = |SA| 

l = |EA|  

From now on, we will not distinguish between A and P.  
Since we know all sides of the front triangle SEA, we 
can solve for its angles with the law of cosines 
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Note that we are not given the position of W, nor do we 
yet know the orientation of the tetrahedron, so we do 
not know the global direction of the vector A – W.    
More importantly, we do not know the key angle 
γ = SEW, shown in Figure 5, which is the desired elbow 
rotation.   

 
Figure 5:  The elbow rotation γ 

To find γ we must first reorient the tetrahedron to facili-
tate certain calculations.  Rotate the tetrahedron so that 
EW lies on the vertical z-axis and S lies in the positive x 

portion of the x,z-coordinate plane, as indicated in 
Figure 6.  Thus we are looking at the tetrahedron in the 
coordinate system of the elbow joint, a system that al-
lows us to effectively leverage the given information.   
 We are given the fixed orientation of the wrist and 
position of the articulator.  Combining this into a single 
transformation, we can calculate the coordinates of A in 
the local coordinate system of the elbow 
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where θω 

, φω  are the spherical coordinates of A with 
respect to the wrist, and h is the length of the hand.  Let 
A' = (x, 0, z) be the projection of A to the x,z-plane, 
which means that the angle ε = ∠ WEA' = arctan(x/z).  

 
Figure 6:  Solving for γ  

 Let δ be the angle that SE makes with the x-axis, 
and notice that the desired elbow angle γ = π/2 – δ.  So, 
we solve this problem by calculating δ.  To this end, 
notice that whatever δ is, we have the following rela-
tionships by trivially rewriting the given lengths. 
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Now using the expression for α given by the law of 
cosines, and a few trigonometric manipulations 
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We can use the expression which calculated ε to write x 



and y in terms of ε.  Let l' be the length of EA' as shown 
in the figure, then 
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and therefore, by the angle difference identity for sin 
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which then can be rewritten as  
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Since γ = π / 2 – δ, this completes the construction of 
the elbow's bend angle.  Note, however, that this calcu-
lation can fail in one of two situations.   

1. If l' = 0, then the orientation of the wrist combined 
with the location of the articulator relative to the 
wrist has placed A at the elbow.  Since this is im-
possible given the physiology of a normal human 
arm, we ignore this case.   

2. Second, is the possibility that  

1cos
'

abs >






 α
l
l  

This happens when the target is unreachable, and 
if we clamp this value to 1, we will get the closest 
attainable position for A. 

4.2 Calculating the Shoulder Orientation 
At this point we have calculated the angles of the tetra-
hedron.  From here, we just need to calculate the orien-
tation of this tetrahedron in space to determine the nec-
essary orientation of the shoulder joint S.  Note that we 
have two fixed points on the tetrahedron: S and A.  So, 
the only degree of freedom we have left is that of rotat-
ing the tetrahedron about the edge SA.  This angle is the 
control angle ψ  specified in the statement of the prob-
lem.    
 Remember, that we begin by finding the orientation 
of the tetrahedron in a standard position where ψ = 0, 
and then rotate the system by ψ  about SA from there.  
As a default reference orientation, we have three possi-
bilities: 

1. If S, E and W are not collinear, then we orient the 
tetrahedron so that S, E and W are all in the verti-
cal plane formed by S, W and the z-axis.  See 
Figure 7.   

2. If γ = π or γ = 0, meaning that S, E and W are col-
linear, then we set the default orientation to be 
when S, W, E and A are all coplanar with the z-
axis. 

3. If all four points are collinear, then the system is 
completely independent of ψ and so the system is 
already completely determined, and we just orient 
the shoulder to the same spherical coordinates, 
relative to S, as A itself. 

 
Figure 7:  The Spherical Coordinates of SE in the De-

fault Position 

 Also, we make the simplifying assumption that A 
lies along the x-axis in the shoulder's coordinate system 
so that the spherical orientation of A relative to S be-
comes φA = π / 2, θA = 0.  Once we find the orientation 
of the shoulder, (φ0, θ0) in this default case, we can sim-
ply add the spherical orientation of A to that of SE to 
obtain the final orientation: φs, θs. 
 The setup of this calculation is displayed in Figure 
7.  Notice that W may be above or below the x,y-plane, 
but that E lies directly below the line SW.  As indicated 
in the figure, φ0 is the angle formed by the z-axis and 
SE, which is π / 2 − ω0, as shown.  To obtain these an-
gles, we appeal, once again, to the projection A' of A to 
the plane formed by SEW.  Thus, 
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The only problem being that we don't know the position 
of E, or the position of W in this base coordinate sys-
tem.  But we do know their positions in the elbow's 
coordinate system, displayed in Figure 8.  In this coor-
dinate system,  
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Since we just calculated δ in the last section, we know 
the positions of each of these points, and so we can 
calculate all of the vectors required to determine φ0, θ0. 
Then if φA, θA are the spherical angles of A in the base 
coordinate system, we finish the construction by setting 
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Notice that this part of the construction will fail if  

1. |SA| = 0, in which case the target is at the shoulder. 
Thus, the tetrahedron collapses to a triangle and 
simpler methods may be used.  Physiologically, it 
is painful to place part of the hand in the center of 
the shoulder joint. 

2. |SA'| = 0, in which case the target and the wrist lie 
on perpendicular axes through the shoulder.  An 
example would be if the wrist lies on the x-axis in 
the shoulder's coordinate system and the wrist lies 
in the y,z-plane.  Thus φ0 = ±π /2, depending on 
the orientation of A with respect to W.  This corre-
sponds to a physical action of placing your wrist 
directly in front of your shoulder and the articula-
tor on the line coming horizontally out of the 
shoulder.  This position would certainly put strain 
on both the shoulder and the wrist.   

As long as we take care of these two exceptional cases, 
the construction is complete.  Note that the entire con-
struction is analytic and completely determined up to 
four redundant degrees of freedom, which we leave at 
the control of the user.  

 
Figure 8:  Angles in the Elbow's Coordinate System 

4.3 Degrees of Freedom 
In our complete kinematic chain for the human arm, 
there are a total of seven degrees of rotational freedom: 
three angles in the shoulder, one in the elbow, and three 
in the wrist.  Positioning the articulator gives the anima-
tor three degrees of freedom for working with the 
model.  There are four more degrees of freedom in the 

model, which the above algorithm conveniently param-
eterizes for the animator. 
 We have already discussed the fact that the rotation 
of the system about the axis through the shoulder and 
articulator is a redundant degree of freedom that the 
animator may use to achieve a desired posture.   
 The rotation of the wrist provides the remaining 
three degrees.  If the user changes the wrist orientation, 
but leaves the articulator target fixed, then the above 
algorithm can adjust the rest of the angles in the system 
to compensate, leaving the articulator position un-
changed.  This compound operation forms three degrees 
of freedom for the system parameterized by the three 
angles of rotation for the wrist.  Note the difference 
between this and the usual forward kinematic treatment 
of wrist rotations. 
 Thus, the user has full control over an intuitive 
parameterization of the seven degrees of freedom in this 
model, including the position of the articulator.   

5 Applying the Technique 
We applied this technique in a general system for tran-
scribing ASL signs.  First consider the positioning of 
the articulator.  This action forms the first three degrees 
of freedom described above.   

 
Figure 9:  Choosing Articulators on a Handshape 

In ASL, each specific configuration of the hand, or 
handshape has a number of different legal articulators 
defined by ASL linguistics.  See Figure 9.  Also, each 
articulator may be placed in contact with various points 
on the body, the face or the other hand.  This works for 
positioning either hand.  Figure 10 shows the interface 
for choosing such sites on the face.  These sites are also 
predetermined by the linguistics of ASL.  Our system 
also contains a method for specifying a spatial position 
when the articulator is not in contact with the body.   
 Once a target (either spatial or contact) has been 
chosen, the user is free to adjust the orientation of the 
wrist and the height of the elbow (our angle ψ) with the 
control panel displayed in Figure 3 of Appendix A.  
This figure displays the results obtained by flexing the 



wrist when the tip of the index finger is in contact with 
the model's cheek.   
 As the user is adjusting these controls, the above IK 
method automatically adjusts the orientation of the 
shoulder and elbow so that the articulator stays in place.  
This eliminates a process of successive refinements that 
would be necessary if the system used an ordinary IK 
chain where the wrist is set as an end-effector.  The user 
would have to successively rotate the wrist and then 
adjust the wrist's position to compensate, an operation 
automated by our IK technique. 
 

 
Figure 10: Choosing Targets on the Face 

6 Conclusion and Future Work 
The calculations of the shoulder and elbow angles θs, φs 
and ψ, detailed in section 4.2, provide an analytic 
parameterization of the seven degrees of freedom pre-
sent in the wrist and arm of the human body.  Using 
these parameters, we obtain an intuitive set of controls 
for choosing key positions for the arms of a human 
model.  These key positions can include hand/body 
contact, and can be easily interpolated to display anima-
tions of the character's motion.  
 We are currently integrating this system into a com-
plete model of the upper body, including the spine, 
neck and collarbone.  In particular, the model described 
in this paper assumes that the shoulders are fixed with 
respect to the torso, which is simply not true in a human 
model.  Nor is the motion of the shoulders a trivial one.  
It accounts for much of the expressiveness of the upper 
body especially for motions like shrugging and slump-
ing.  A complete, expressive human model must include 
such motions.   
 To make the animator's job easier we are currently 
working to create an automatic algorithm to coordinate 
some of the shoulder's motion with the arm's reach.  For 
example, when the model reaches for a target far from 
the body, the shoulder should automatically move for-
ward to extend the reach of the model. 
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Appendix A:  Signs and Controls 

 

    
Figure 1:  Sign for GLASSES (left two frames) and GALLAUDET UNIVERSITY (right two frames) 

 

  
Figure 2: Signs for IDEA (left) and CHOCOLATE (right) 

 

      

    

 

  
Figure 3:  Moving the Wrist Controls with an Articulator in Contact with the Face 
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