
Virtual Sculpting with Haptic Displacement Maps

Robert Jagnow Julie Dorsey

Massachusetts Institute of Technology

Abstract
This paper presents an efficient data structure that fa-

cilitates high-speed haptic (force feedback) interaction
with detailed digital models. Models are partitioned into
coarseslabs, which collectively define a piecewise con-
tinuous vector field over a thick volumetric region sur-
rounding the surface of the model. Within each slab, the
surface is represented as a displacement map, which uses
the vector field to define a relationship between points
in space and corresponding points on the model’s sur-
face. This representation facilitates efficient haptic inter-
action without compromising the visual complexity of the
scene. Furthermore, the data structure provides a basis
for interactive local editing of a model’s color and geom-
etry using the haptic interface. We describe implementa-
tion details and demonstrate the use of the data structure
with a variety of digital models.

Key words: Haptic, displacement map, sculpt, slab

1 Introduction

The pursuit of intuitive human-machine interfaces has
led researchers to investigate the potential of haptic
hardware – force-feedback devices capable of facilitat-
ing tactile interaction with digital models. This new gen-
eration of interface devices offers the promise of more
immersive virtual environments that engage the tactual
senses in much the same way that animation and sound
engage the visual and auditory senses. But as with any
fledgling technology, haptics comes with its own unique
set of challenges.

Haptic devices require far faster update rates than vi-
sual output devices. For instance, thePHANToMsystem
by Sensable Technologies Inc. requires updates at 1000
Hz – a constraint imposed by the inherent sensitivity of
human tactile sensation. If this constraint is not met, un-
acceptable tactile artifacts, and possibly even hardware
instability may result. Thus, the data structures that are
useful for generating visually convincing scenes are often
not efficient enough for haptic rendering.

The problem of generating an efficient haptic rendering
system is exacerbated if we desire to modify the geomet-
ric data interactively, as it limits the amount of precom-
putation that we can perform on the model.

Figure 1: A familiar model, edited in a few minutes with
a haptic device.

In this paper, we introduce a data structure that facili-
tates haptic rendering of complex scenes and accommo-
dates local modifications to a model’s surface characteris-
tics, including, but not limited to, its geometry and color.
We have implemented a system that uses the data struc-
ture for intuitive local editing of digital models.

(a) (b)

Figure 2: A geometrically detailed object (a) and its slab
representation (b). Red regions in the displacement maps
represent the largest displacements from the interior slab
boundaries.



1.1 Related Work
This paper builds on a foundation of related research for
improving the efficiency and flexibility of haptic render-
ing, as well as the efficiency of graphic rendering. The
simplest method for decreasing the computational bur-
den on a haptic system is to decrease the complexity of
the digital model. In some instances, this can be accom-
plished with minimal impact on the apparent complex-
ity of the scene. Morgenbesser [10] demonstrated that in
some situations, a coarse polygonal mesh can suffice to
represent the tactile feedback of a more complex geomet-
ric surface. He uses aforce shadingalgorithm to pro-
vide the tactile illusion of a smoothly curved surface in
much the same way that Phong shading provides a visual
illusion of smoothness [11]. Normal vectors are precom-
puted at each vertex in a coarse mesh so that a local nor-
mal can be calculated as a weighted average of the nor-
mals at adjacent vertices. Morgenbesser performed user
experiments using simple models consisting of three or
fewer polygons, but did not address the haptic rendering
of models of arbitrary complexity.

Other researchers considered alternative haptic data
structures. McNeely et al. [9] implemented a voxel-based
system to accelerate haptic collision detection in complex
environments, but their geometric models were not in-
tended for interactive modification. SensAble Technolo-
gies, Inc. [14] commercially produces a volume-based
modeling system. Their system is powerful and intuitive,
but exhibits common voxel rendering artifacts. Other re-
lated data representations include voxel-based systems
with isosurfaces extraction [5], B-spline surfaces [3], and
subdivision surfaces [6], all of which are suitable for in-
teractive geometric editing of models with low to moder-
ate visual complexity.

Here, we explore the use of displacement maps [2] for
representing visually complex surfaces in a manner that
is amenable to high-speed haptic interaction with lim-
ited geometric modification. A similar data structure was
used by Lee et al. [8] for displacing subdivision sur-
faces, but not for the purpose of haptic rendering. The
most closely related data structure is thevolumetric sur-
face, introduced by Dorsey et al. [4], which consists of a
set of extruded quadrilateral slabs that form a thick skin
of varying depth around the surface of a model. Dorsey
used this representation for simulation of surface erosion
rather than for haptic editing.

1.2 Goals and Contributions
In this paper, we introduce a data structure that facilitates
high-speed haptic interaction with visually complex mod-
els. A model is represented as a collection of extruded
triangularslabs– small volumetric regions in which the
local geometry is expressed as an array of scalar displace-

ments embedded between the inner and outer extents of
the slab. Adjacent slabs are seamlessly stitched together
to provide both visual and tactile continuity.

The advantage of this representation lies in its simplic-
ity and flexibility. The natural hierarchical division be-
tween coarse and fine features allows for rapid computa-
tion of local surface features, making the data structure
ideal for rapid collision detection for a haptic interface.
Furthermore, since local features are represented by an
array of scalar values, limited editing of the local geom-
etry can be done rapidly by modifying the values in the
displacement map.

In addition to the displacement values, supplementary
arrays may be used to represent surface properties such
as color, friction, hardness, or specularity. Other fields
may represent the depth of various materials underneath
or above the visible surface – materials that may be ex-
posed or added by an edit operation.

In the remainder of this paper, we provide an overview
of haptic displacement maps (Section 2), introduce a
method for high-speed haptic collision detection and re-
sponse (Section 3) and discuss methods for modifying the
local geometry and color of the model (Sections 4 and 5).
We then address graphic rendering concerns (Section 6)
and describe our implementation, showing some exam-
ple models (Section 7). Finally, we discuss the limita-
tions of the algorithm and directions for future research
(Section 8).

2 Haptic Displacement Maps

In the haptic displacement map data structure, slabs are
arranged to completely and unambiguously enclose fea-
tures of a detailed mesh while maintaining the full detail
of the model by representing local features as displace-
ments between the interior and exterior slab boundaries.
This hybrid data structure offers the detail of a surface
representation with the flexibility and physical intuition
of a volumetric representation. Unlike many voxel repre-
sentations, haptic displacement maps avoid common ar-
tifacts by orienting the slabs to coincide with the orienta-
tion of the local surface.

Figure 2 shows an object that appears to be highly tes-
sellated with fine geometric details; however, the under-
lying representation is a simple slab mesh with the de-
tailed features stored as displacement maps at each sur-
face.

Each slab is defined as a region of space enclosed by
six vertices: three on the interior of the model, and three
on the exterior. The interior and exterior faces of the
slab are planes defined by the three interior and exterior
vertices respectively. The three other faces of the slab
are bilinear patches defined by linearly interpolating be-



tween two interior and two exterior vertices. This results
in a consistent definition of boundaries between slabs as
shown in Figure 3.

Interior slab surfaces

Exterior slab surfaces

Figure 3: A bilinear patch between adjacent slabs.

Within each slab, displacement values are stored in a
uniform triangular grid. In practice, this triangular grid is
stored in the lower triangular region of a two-dimensional
array, as shown in Figure 5c. The direction of surface
projection is interpolated between the three rays at the
corners of the slab, forming a detailedsubmeshas shown
in Figure 4. Each displacement value along the edge of
a slab is duplicated in the adjacent slab. T-vertices are
disallowed in the slab mesh to insure correspondence of
submesh vertices along the edges of adjacent slabs.

Figure 4: A detailed submesh formed by offsetting the
interior slab surface.

3 Haptic Collision Detection and Response

One of the primary advantages of the displacement map
data structure described in Section 2 is its efficiency for
use with haptic collision detection. Within a slab, a con-
tinuous vector field directed from the interior plane to
the exterior plane can be defined by linearly interpolat-
ing between the rays at the corners of the slab. At slab
boundaries, this vector field remains continuous due to a
consistent definition of the bilinear patches that separate
adjacent regions. In this section, we demonstrate how this

continuous vector field is used to define a relationship be-
tween arbitrary points in space and corresponding points
on the model’s surface – a mapping that can be used for
efficient haptic collision detection and response.

S0 T0

R0

R1

S1
T1

Rα

Tα
Sα

(a) (b)

S0 T0

R0

R1

S1
T1

Rα

Tα
Sα

(0,0)

(0,n)

(n,0)

(n,n)

HM -1

Sα

Rα Tα

Unused
Coordinates

x

y

(c)

(d)

Figure 5: The haptic collision detection process: (a)
Check the cursor against an axis-aligned bounding box.
(b) Calculate the position of the interpolated plane con-
taining the cursor. (c) Cast the cursor into a homogeneous
coordinate space. (d) Reconstruct the surface.

3.1 Determining Slab Intersections
The first step in the haptic collision detection process is
determining which slab, if any, contains the haptic cursor.
Although the cursor is visualized as having volume, we
treat it as a point for purposes of collision detection. The
algorithm begins with a conservative check to see if the
haptic cursor lies inside of an axis-aligned bounding box
that encloses the slab (Figure 5a). If this succeeds, the
next step is to determine how far the cursor has penetrated
into the interior of the slab.

Each slab can be thought of as the region of space
swept out by a triangle whose vertices are linearly inter-
polated from the interior slab plane to the exterior slab
plane. At any distance between the interior plane, which
has an interpolation value of zero, and the exterior plane,
which has an interpolation value of one, this triangle de-



notes a surface of constant penetrationα between zero
and one. An example alpha-plane is shown in Figure 5b.
To determine penetration, we solve for anα interpolation
value that defines the plane at the same penetration depth
as the haptic cursor.

Each alpha-plane is expressed in terms of its three cor-
ner verticesRα, Sα, andTα:

f(α) = Aαx+Bαy + Cαz +Dα = 0, (1)

where

Aα =

 1 Rαy Rαz
1 Sαy Sαz
1 Tαy Tαz

 ,
Bα =

 Rαx 1 Rαz
Sαx 1 Sαz
Tαx 1 Tαz

 ,
Cα =

 Rαx Rαy 1
Sαx Sαy 1
Tαx Tαy 1

 ,
Dα = −

 Rαx Rαy Rαz
Sαx Sαy Sαz
Tαx Tαy Tαz

 .
Each ofRα, Sα, andTα are, in turn, defined as inter-
polants between the slab’s extremaR0, R1, S0, S1, T0,
andT1:

Rα = (R1 −R0)α+R0

Sα = (S1 − S0)α+ S0

Tα = (T1 − T0)α+ T0.

When expanded, this series of equations yields quadratic
expressions forAα, Bα, andCα, and a cubic expression
for Dα:

Aα = A′′α2 +A′α+A

Bα = B′′α2 +B′α+B

Cα = C ′′α2 + C ′α+ C

Dα = D′′′α3 +D′′α2 +D′α+D.

Each of the termsA, throughD′′′ depends only on the six
points that define a slab boundary. Thus, these constants
can be precomputed for each slab. Looking again at ex-
pression (1), we can redistribute the terms to express the
alpha-plane as a cubic function inα:

f(α) = D′′′α3 + [A′′x+B′′y + C ′′z +D′′]α2

+ [A′x+B′y + C ′z +D′]α (2)

+ [A+B + C +D] = 0

Thus, given the location of the haptic cursorp, we can
solve forα by using the general solution to the cubic or,
more simply, by using an iterative approach.

To begin the iterative solution process, we check if the
point p lies between the inner and outer extents of the
slab, which haveα-values zero and one respectively. If
f(0) andf(1) have the same sign, then the haptic cursor
lies outside of the slab. But if they have opposite signs,
thenp is bounded by the interior and exterior planes, in
which case we can approximate a value forα by using
a binary search algorithm. The search process repeatedly
divides the search area in half, insuring that the upper and
lower search bounds always yield opposite signs when
entered into Equation 2. In practice, 15 iterations is suffi-
cient, yielding an answer forα within an error of1/215.

Now that we have determined where the haptic cursor
lies between the inner and outer slab boundaries, we can
check its position against the bilinear patches at the other
three slab faces. This is done by casting the pointp into
a homogeneous coordinate system where the boundary
check becomes trivial. We begin by defining two matri-
ces,M andH. The former transforms coordinates into
a system with basisRα Sα Tα. The latter transforms
coordinates into the homogeneous displacement map co-
ordinate system shown in Figure 5c. These matrices are
defined as follows, wheren is the width of the displace-
ment map:

M =

 Rαx Sαx Tαx
Rαy Sαy Tαy
Rαz Sαz Tαz


and H =

 0 0 n
0 n 0
0 0 0

 .
We can now useHM−1 to transform the pointp from
its position in the interpolated alpha-plane to the homo-
geneous coordinate system as illustrated in Figure 5c.M
is invertible if Rα, Sα, andTα are noncollinear, which
should always be the case with a well-formed slab.

In the homogeneous coordinate system, a pointh =
(hx, hy)T is known to lie on the interior of the slab if it
satisfies the following three conditions:

hx ≥ 0
hy ≥ 0

hx + hy ≤ n.

All other points lie outside of the slab boundaries.
If no hierarchical optimization is desired, slabs are

checked in sequence to determine the location of the hap-
tic cursor, yielding a cost that scales linearly with the
number of slabs in the model. Since slabs are designed to



be nonoverlapping, the algorithm can terminate collision
checks as soon as any intersecting slab is found. Since the
haptic cursor only moves small distances between time
steps, this search can be optimized by first checking the
slab found in the previous time step and its immediate
neighbors.

The following sections describe how the homogeneous
coordinates recovered by this process are used to recon-
struct the surface of the detailed mesh and to provide ap-
propriate haptic feedback.

3.2 Reconstructing the Surface
In the final stage of the collision detection process, we
transform the haptic cursor position into a homogeneous
coordinate system. The resulting 2D coordinates are used
to index into the displacement map to determine the lo-
cal surface displacement. Since the homogeneous coordi-
nates of the haptic cursor are unlikely to coincide directly
with integral coordinate values in the displacement map,
the algorithm calculates the displacement as a weighted
average of the values at the three nearest coordinates.
This simple interpolation scheme yields piecewise linear
connectivity between adjacent displacement map coordi-
nates.

For a known homogeneous coordinateh = (hx, hy)T

with a known displacementδ, the world coordinate of the
corresponding point on the surface of the detailed mesh
can be computed as follows. First, determine the vertices
at the corners of the alpha-plane:

Rδ = (R1 −R0)δ +R0

Sδ = (S1 − S0)δ + S0

Tδ = (T1 − T0)δ + T0.

Then, interpolate between these three points using the in-
terpolation weights:

Tweight = hx/n

Sweight = hy/n

Rweight = 1− Tweight − Sweight

to yield the surface point:

Rweight ∗Rδ + Sweight ∗ Sδ + Tweight ∗ Tδ.

3.3 Calculating Cursor Penetration
Displacement values are stored as normalized scalars that
indicate the relative depth of the surface between the in-
ner and outer extents of the slab. Thus, if theα value for
the cursor position (Section 3.1) is greater than the cor-
responding surface displacement valueδ (Section 3.2),
then the haptic cursor has not penetrated the surface of
the detailed mesh, and no force needs to be returned to

the haptic device. If, however, theα value is less than
the surface displacement value, then the cursor has pen-
etrated the mesh by a magnitude equal to the distance
between the cursor position and the corresponding point
on the surface of the mesh. In this case, a response force
should be applied proportional to the depth of penetra-
tion, as indicated in the following section.

3.4 Applying a Response Force

To return a force to the user, a haptic system requires
knowledge of thesurface contact point(SCP), orproxy
position– the point of interaction constrained to the sur-
face of the model – and the surface normal at the SCP.
Given this information, the system can account for sur-
face spring and damping characteristics, as well as the
effects of static and dynamic friction [12, 13].

Every small triangle in the displaced submesh of a par-
ticular slab can be considered to have its own local nor-
mal. But if the haptic feedback loop applies a response
force in the direction of this local normal, at a magnitude
proportional to the penetration distance, we encounter
problematic behavior near major concavities and convex-
ities in the surface of the model. Figure 6a shows five
adjacent vertices of a displaced surface. As the position
of the haptic cursor is moved along the dotted line, a force
is applied in the direction of the local surface normal. The
resulting surface feels as though it has a discontinuity at
the peak. Furthermore, the ambiguous forces at the con-
cavity can cause instabilities in the haptic device as op-
posing forces alternately attempt to achieve an unattain-
able equilibrium state.

(a)

(b)

Figure 6: Surface reconstruction using (a) piecewise nor-
mals and (b) interpolated normals. Haptic cursor pen-
etration through the model surface results in the recon-
structed surface slightly above the polygons of the origi-
nal mesh.



A better solution associates a normal vector with every
vertex in the displaced mesh. This supplementary vec-
tor can be computed for each vertex as the average of the
normals of the adjacent surfaces. At each point in the dis-
placement map, an interpolated normal can be calculated
as a weighted average of the normals of the three nearest
vertices.

Using the penetration distance and the local surface
normal, the collision response algorithm computes the
surface contact point using a method similar to Mor-
genbesser’s force shading algorithm. The surface contact
point is offset from the haptic cursor position in the di-
rection of the local surface normal, at a distance equal to
the penetration depth. As can be seen in Figure 6b, the
resulting point may not lie directly on the surface of the
displaced mesh, but the magnitude and direction of the
resulting force provide a convincing representation of the
local geometry, as verified by Morgenbesser’s user exper-
iments [10].

4 Modifying Geometry

Since the coordinates of the displacement maps provide
a uniform scaffolding that fully covers the surface of the
model, they provide an ideal framework for locally mod-
ifying geometry or color attributes. The displacement
maps within each slab have an inherent notion of adja-
cency and connectivity, and we can use precomputed ad-
jacency relationships along slab boundaries to seamlessly
span slabs as attributes are modified.

4.1 Removing Volume with Surface Clipping
3D sculpting or painting can be done by using a flood-fill
method that walks from vertex to vertex within a con-
strained region of the surface, modifying geometry or
color according to a desired function. To begin the sculpt-
ing process, our system first positions a tool that is used
to modify the geometry, such as a simple sphere that clips
away submesh vertices that intersect with its surface. As
part of the collision detection process, the haptics algo-
rithm already computes the local surface normal~n. To
allow the tool to penetrate the surface by an amount pro-
portional to the user-applied pressure, the sculpting rou-
tine positions the center of the tool as follows:

˙center = ˙cursor + ~n ∗ (r + k),

where ˙cursor designates the position of the haptic cur-
sor,r is the desired tool radius, andk is the thickness of
a resilient band of material at the model’s surface. The
resilience constantk allows the model surface to return
feedback forces without being sculpted until sufficient
force is applied (Figure 7).

Once the tool is positioned, the sculpting algorithm
clips the geometry that falls inside of the sphere. It begins

k

n

cursor

r
center

Figure 7: Positioning a spherical sculpting tool at the sur-
face of a slab.

by “seeding” a recursive process at the homogeneous co-
ordinate nearest to the haptic cursor. At each point in the
submesh, the algorithm computes the surface projection
line that passes through the homogeneous coordinate at
the interior and exterior slab boundaries. If this line in-
tersects the spherical sculpting tool at a point on the inte-
rior of the mesh, then the surface is clipped at the sphere
boundary. The procedure continues by recursing to all
adjacent displacement map coordinates that fall inside of
the spherical tool.

Since the sculpt routine adds some overhead to the ba-
sic collision-detection algorithm described in Section 3,
the routine is not executed with each iteration of the hap-
tic collision detection process. Instead, sculpting is per-
formed at 10Hz – approximately once per every 100 it-
erations of the haptic loop – with minimal impact on the
overall performance of the haptic rendering routine. The
tactile artifacts that result from this temporal quantization
can be reduced by increasing the frequency of the sculpt-
ing operations, at the expense of haptic rendering speed.

4.2 Adding Volume

By centering a spherical tool at the surface contact point,
a similar routine can be used foraddingmaterial to the
surface of the model. In this case, as the recursive algo-
rithm marches along the surface of the mesh, a thin layer
of material is deposited with a thickness linearly propor-
tional to the distance from each submesh vertex to the
center of the spherical tool. Thus, material is added in a
conical shape, at a constant speed, regardless of pressure.

4.3 Limitations

Although haptic displacement maps are well-suited for
limited local modification of a model’s surface, the algo-
rithms presented in this section are not intended for dra-
matic topological changes. For instance, slabs cannot be
modified in such a way as to add a new undercut surface
or to drill entirely through an object.



5 Haptic Painting

The challenge of precisely applying color to a three-
dimensional model has been pursued for some time –
initially using mouse-based interfaces [7], and more re-
cently, using haptic interfaces [1, 6]. The advantage of
the haptic interface is that it offers the intuitive simplic-
ity of a paintbrush. With the haptic displacement map
data structure, color can be applied to a surface by using
a straightforward modification to the sculpting algorithm
described in the previous section.

In our system, the virtual paintbrush is represented as
a sphere, centered at the surface contact point. When the
user touches the surface of the model, the paint process
calculates the pressurep with which the paint should be
applied. This is based on the penetration distance, nor-
malized to a range between zero and one. Calculating the
pressure as zero for small penetration distances allows
the user to lightly touch the surface without modifying
any surface properties.

As with the geometry modification routine, the recur-
sive floodfill routine is “seeded” at the homogeneous co-
ordinate nearest to the haptic cursor. At each iteration of
the procedure, a new colorcn for the coordinate is cal-
culated based on the old colorco, the paintbrush color
cb, the pressurep, the brush radiusr, and the distanceδ
between the center of the brush and the submesh vertex.

The color is applied with a normalized intensityk
equal top∗(1− δ

r ). Thus, the most intense color is applied
with greater pressure, nearest to the center of the brush,
linearly decreasing out toward the edges of the sphere.
The new color is computed by blending the existing color
and the brush color as follows:

cn = cb ∗ k + co ∗ (1− k).

The procedure continues by recursing to all adjacent
texture coordinates that lie within the sphere of the paint-
brush, as is done in the haptic sculpting algorithm. Like
the sculpting algorithm, the paint routine is only executed
10 times per second to keep the basic collision detection
routine unencumbered.

6 Graphic Rendering

Interactive visual feedback forms an important compo-
nent of an effective haptic interface, so it is vital that the
graphic rendering algorithm for the slab data be carefully
optimized. Since the graphic and haptic routines require
different rates of execution, each is run as a separate pro-
cess to decouple the frame rate and haptic refresh.

Each slab maintains its own optimized display list to
help accelerate graphic rendering. If the haptic process
modifies a slab, a flag is set to indicate that the graphic

process should generate a new display list for that partic-
ular region of geometry. Thus, the graphic process is con-
cerned only with local updates for modified slabs while
reusing display lists for unmodified regions of geometry.
If graphic rendering is unacceptably slow, one alternative
is to generate the visible mesh from a coarse subset of the
coordinates in the displacement map.

Color is applied to the surface of each slab submesh
using a texture map rather than by assigning per-vertex
colors. This provides a speed advantage, and also decou-
ples the resolutions of the geometric data and the texture
data. Thus, color can be mapped to the surface of a slab
at a higher density than the displacement data with negli-
gible impact on rendering speed.

7 Implementation and Examples

We implemented our system on an SGI Octane with dual
250 MHz MIPS R10000 processors and 1.5 Gb memory,
running IRIX 6.5. For the haptic interface, we used the A-
modelPHANToM Premiumhaptic device from SensAble
Technologies, Inc. with theGHOSTSoftware Develop-
ment Toolkit, Version 3.0. Graphic rendering is done us-
ing OpenGL.

To initialize the slab data structure, we produced a dec-
imated triangle mesh for each model. This mesh was
grown inward and outward from the model surface to de-
fine the interior and exterior slab boundaries. For regions
with thin features, like the ears in the bunny model, the
resulting slabs were edited by hand to prevent overlap.
The displacement maps were constructed by calculating
where the projecting rays for the slab submesh intersect
the original polymesh geometry.

Figures 1, 8, and 9 present polygonal models that were
converted to the slab data structure and edited using the
haptic sculpting system. The head and pumpkin models
are formed with 200 slabs, and the bunny model with 150
slabs. Each slab stores displacement and color data with
16 values along each edge, forming a visually rendered
mesh with 225 polygons per slab. All edited models
were produced in approximately 15 minutes. In a typical
editing session, the geometry modification routines per-
form 20,000 to 80,000 discrete edit operations on 1,000
to 3,000 individual slab vertices.

With the most complex of these models, the haptic sys-
tem typically performs a single iteration of the collision
detection and response process in under 0.65 millisec-
onds, thus utilizing 65% of the available processor time.
The additional burden of performing sculpting or paint-
ing operations at 10Hz appears to have negligible impact
on overall computational cost. With each of the example
models, the graphic rendering system maintains a refresh
rate of approximately 10 Hz, with minimal performance



degradation during sculpting or painting operations.

Figure 8: The head model is composed of 200 slabs,
forming a visually rendered mesh with 45,000 triangles.

Figure 9: The pumpkin model is also formed with 200
slabs. The edited model was completed in approximately
15 minutes.

8 Conclusions and Future Work

Haptic displacement maps offer a step toward intuitive
methods of interaction for rapid editing of complex mod-
els. Still, this data structure does not solve all the dif-
ficulties of digital editing. Slabs are effective for per-
forming local modifications to a model in a thin region
surrounding the surface of the initial mesh, but different
techniques are needed for applying dramatic changes to
the underlying topology of an object.

There are additional limits on the types of models
that can be represented using haptic displacement maps.
Slabs are designed to be used with “thick” models, with
clear interior and exterior regions, and without thin or
overlapping topological features.

Despite these restrictions, there are certain applications
for which haptic displacement maps are particularly well
suited. Many physical phenomena limit their influence
to a thin region near the surface of a material, suggesting
that a number of interesting effects might be produced via
physical simulation or other forms of direct editing.

Other areas of future research include multiresolution
meshes that can increase submesh detail where desired

and multiple levels of detail obtained by rendering coarse
subsets of submesh vertices.

Acknowledgements

We would like to thank Barb Cutler, Leonard McMillan,
and Matthias M̈uller for helpful discussions. This work
was supported by NSF grants CCR-9988535 and EIA-
9802220 and by a gift from Pixar Animation Studios.

References
[1] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy.

“3D Painting on Scanned Surfaces,”1995 Symposium on
Interactive 3D Graphics, Monterey, CA, pp.145-150.

[2] Robert L. Cook.Shade Trees. In the Proceedings ofSIG-
GRAPH 1984.

[3] Frank Dachille IX, Hong Qin, Arie Kaufman, and Jihad
El-Sana. “Haptic Sculpting of Dynamic Surfaces,” In the
Proceedings ofSymposium on Interactive 3D Graphics
1999, pp 103-110.

[4] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin
Legakis, and Hans Kohling Pedersen. “Modeling and
Rendering of Weathered Stone,” In the Proceedings of
SIGGRAPH 1999, pp 225-234.

[5] Eric Ferley, Marie-Paule Cani, and Jean-Dominique Gas-
cuel. “Sculpture Virtuelle,” In the Proceedings ofLes
journées AFIG 99, Reims, November 1999.

[6] A. Gregroy, S. Ehmann and M. C. Lin. “inTouch: Inter-
active Multiresolution Modeling and 3D Painting with a
Haptic Interface,” In the Proceedings ofIEEE Virtual Re-
ality Conference 2000.

[7] Pat Hanrahan and Paul Haeberli. “Direct WYSIWYG
Painting and Texturing on 3D Shapes,” In the Proceed-
ings ofSIGGRAPH 1990, pp.215-223.

[8] Aaron Lee, Henry Moreton, and Hugues Hoppe. “Dis-
placed Subdivision Surfaces,” In the Proceedings ofSIG-
GRAPH 2000, pp 85-94.

[9] William A. Mcneely, Kevin D. Puterbaugh, and James
J. Troy. “Six Degree-of-Freedom Haptic Rendering Us-
ing Voxel Sampling,” In the Proceedings ofSIGGRAPH
1999, pp 401-408.

[10] H. B. Morgenbesser.Force Shading for Haptic Shape Per-
ception in Haptic Virtual Envornments. M.Eng. Thesis,
Massachusetts Institute of Technology, September 1995.

[11] B. T. Phong. “Illumination for Computer Generated Pic-
tures,”Communications of the ACM, 18(6), pp 311-317,
June 1975.

[12] Diego C. Ruspini, Krasimir Kolarov and Oussama Khatib.
“The Haptic Display of Complex Graphical Environ-
ments,” In the Proceedings ofSIGGRAPH 1997, pp 345-
352.

[13] SensAble Technologies, Inc.GHOST SDK Version 3:
General Haptic Open Software Toolkit. January, 1999.

[14] SensAble Technologies, Inc.FreeForm Modeling System.
http://www.sensable.com/freeform. 2001.


	Introduction
	Related Work
	Goals and Contributions

	Haptic Displacement Maps
	Haptic Collision Detection and Response
	Determining Slab Intersections
	Reconstructing the Surface
	Calculating Cursor Penetration
	Applying a Response Force

	Modifying Geometry
	Removing Volume with Surface Clipping
	Adding Volume
	Limitations

	Haptic Painting
	Graphic Rendering
	Implementation and Examples
	Conclusions and Future Work

