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Figure 1: Painted sphere and a cat under changing light and view directions.

Abstract This algorithm allows us to approximate a BRDF

The high dimensionality of the BRDF makes it difficult quickly from any sample value set with predefined pa-
to use measured data for hardware rendering. Comméameters. We use it as a tool for defining an arbitrary
solutions to overcome this problem include expressing gpatially variant BRDF by integrating the homomorphic
BRDF as a sum of basis functions or factorizing it intofactorization with a painting application.
several functions of smaller dimensions which can be In such an application, the user is presented with the
sampled into a texture. scene setup (a view of a 3D object and a light position)

In this paper we will focus on homomorphic factoriza-and is allowed to color the image to define the appearance
tion, which can be accelerated by preinverting the corff the object in this setup. Instead of painting, a photo
straint matrix if the sampling pattern and the layout ofould also be used after overlaying it on a 3D model. Our
the samples in the representation are fixed. Applying theew factorization algorithm is invoked to calculate the
preinverted constraint matrix is very fast and can be usd#RDF approximation from the painted images. Our sys-
to calculate factorization and material maps at interactii€m is capable of recovering a variety of reflectance mod-
rates. We use this to derive shaders from painted exar@ls ranging from non-photorealistic to physically based,
ples. The technique presented in this paper allows ifAcluding multi-material composition and spatially vary-
teractive definition of materials, and, although based oilg BRDFs. Non-homogeneous surfaces are approxi-
physical parameters, this method can realize a variety 61ated using material maps that combine several BRDFs
non-photorealistic effects. using texture mapped blending coefficients.

In Section[2 we present previous work related to re-

Key words: BRDF, homomorphic factorization, inverselectance models and measuring BRDFs. Se¢fjon 3 sum-
rendering, painting, hardware acceleration marizes homomorphic factorization and describes exten-
sions that enable fast calculations. The use of painted
images as BRDF samples is described in Se¢tjon 4 and
This paper presents an extension to the homomorphimplementation details are presented in Sedfibn 5. We
factorization technique [17]. The extension permits fasshow and discuss our results in Secfién 6 and conclude
computation of approximations to BRDFs. It is possibléhe paper in Sectidn 8.
to reduce factorization time to less than a few seconds
(a speedup of a factor of over 1000) by precomputing & Related Work
pseudo-inverse of the constraint matrix. The precompuFhe idea of representing a BRDF by several functions of
tation time is still on the order of several minutes, busmaller dimensions was introduced by Fourriiér [2], who
consecutive calculations of new factors can be performaded SVD factorization, and Heidrich and Seidel [5], who
at interactive rates. used analytic factorization. Later, Kautz and McCool

1 Introduction



[9] reparameterized the SVD approach to better approxiheref is a vector of data points to be fitted (logarithms
mate reflectance models. McCool, Ang and Ahmad [176f sample values of afV-dimensional functiony), the
presented a factorization method that solved some of tigg are logarithms of samples of lower-dimensional func-
drawbacks of the previous methods. This new approactipnsp; (which f project onto), the matrices; describe
homomorphic factorization, permits the factorization othe projections of samples onto each factor as a set of
functions of arbitrary dimension into products of severatonstraints, and finally the matrices are Laplacian op-
functions of smaller dimensions, allows the use of arbierators that estimate the curvature of the functipps
trary parameterizations, and does not require a separd&dg setting these equal to zero we damp out ripples in
resampling step. the solution and interpolate over gaps. This overdeter-

Other methods of BRDF representation rely on théined system of linear constraints can be written more
summation of basis functions, for example, spherical hafompactly ag = By.
monics [18]. Malzbender, Gelb and Wolters [14] used & 1 1D Factors

polynomial basis to reconstruct surface color under varyrq application of homomorphic factorization to BRDFs
ing light direction. This method captures spatial Variatiorbresented by McCool, Ang and Ahmad [17] can han-
of reflectance over surfaces [10] 13] and is similar to thge poth isotropic and anisotropic materials. It uses a
use of spherical harmonics. McAllister, Lastra and Heiparabolic map to project the parameters from BRDF's
drich [1€] fitted Lafortune lobes [11] to measured datgqr dgimensions onto two dimensional factor functions.
and stored the coefficients in texture maps, allowing reajyo\vever, if a BRDF is isotropic, the factor functions are
time rendering of spatially varying BRDFs. radially symmetric under their parameterization (see Fig-
Lensch et al.[[13] were successful in recovering spaire[2) and thus are really one dimensional. In practice
tially variant materials by grouping samples into clustershe size of the constraint matrix is a linear function of the
representing a single material. More recently Hertzmannumber of texels. Therefore, changing the dimensional-
and Seitz([6] developed an algorithm to recover both maty of factors from 2D to 1D yields a large reduction in
terials and normals based on a clustering method. An aghatrix size.
vantage of these algorithms is the high accuracy obtained.

However, they suffer from long computational times. F |
Measured data was used by Marschner et al. [15] tq
find reflectance models of human skif [1]. Our work O ﬂ O
borrows from their approach, but differs in BRDF repre-
sentation, and, instead of photographing the objects, we l 4

use interactive painting. Painting has been explored by

Hanrahan and Haeberlil[4] and Kalnins et &l. [8] to indigure 2:  The 2D factors produced by homomorphic
teractively apply material onto a parametrized 3D modefactorization of an isotropic material.

Sloan et al.[[19] explored painting as a method to capture

shading for non-photorealistic rendering. They used the Given a set of samples, a constraint matrix is formed.
projection of the surface normal onto the viewing plan&Ve use three-factor product approximation where each
as a shading parameter. In contrast, our method incorpfactor is a 1D function. The projection transformations
rates a view vector, a light vector and texture coordinatese use for mapping 4D BRDF parameters into a 1D pa-
as function parameters, thus allowing greater flexibility. rameter space for each factor are:

3 Homomorphic Factorization and Its Extensions (03, Do) = |@; — 0 (s - D) 2
In order to perform homomorphic factorizatidn [17] of a Tq(@iswo) = |[h—n(h-n) 3)
BRDF (or other high-dimensionality function) it is nec- (05, 00) = |@o — 0 (D, - D) 4)
essary to solve, in a minimum-residual or least-squares
sense, an overconstrained linear system of the form  whereh = ‘ii‘:‘ These transformations return the
length of the vector projected on the plane orthogonal to
AL Ay - Ay B the surface normai.
b1
i ALy Po 3.2 Preinverted Matrix
[ 0 ] = AL : (1)  The minimum-residual solution of the sparse constraint

system can be obtained by iterative methods. However,
ALy pJ this is slow and only gives one solution for one set of



data. The least-squares solution of the system can alsoln practice, the singular values do not always vanish to

be found using the pseudo-inve3& of B. The pseudo- zero very quickly, which implies that different data sets

inverse can be computed using an SVD factorization: can emphasize different basis vectors. Nevertheless, mul-
tiplying the pseudo-inverse by the sample vector is still

N-1 .
B T T much faster than performing an SVD from scratch and
B = Usvi= Z; SiliVi ) then applying the result to find the BRDF approximation.
Z_Nfl Finding the coefficients in Equatidn |10 is analogous

Bt — vs—1yT — Z lviu;; (6) to finding the coeﬁipients for a spherical harmonic repre-
; sentation by summing the products of samples and corre-

sponding values of basis functions. However, for spheri-

Since the singular values can go to zero for singular maal harmonics, or any other basis, it would also be neces-

trices, this summation is usually truncated for sufficientlsary to weigh the products with an inverse of the sample

small values ofs;. Small singular values can also bedensity function.

damped out for greater stability:

i=0 "°

3.3 Fast Factorization

N Nl Y T An interesting way to compute the factorization is to uti-
BT = Z 2 4oz it ™ ize graphics hardware [[7, 12]. Suppoag andf are
=0 stored in texture maps. Then, for eaghve can perform

but this does not give as much computational advantageSingle dot product by rendering a rectangle contain-
as simple truncation. A compromise would be to lining these texture maps, multiplying them together, and
early damp out higher singular values. Lsis(z) = then using recursive reduction operations to add up all

max(z, 0). Then compute the linearly damped SVD withthe products. Alternatively, we could perform several dot
products in parallel by storing the components of all anal-

N-1 pos(l—iv) ysis functions together in a single texture map, and using
BT = Z . Vil (8)  compositing operators to perform the summation over all
i=0 ! components.

wherey = K~ for K non-zero weights. _ When done, Fhe necessary coefficients should be stored
Consider the computation of the approximate solutioff! & Puffer, which can be transferred to a texture map.
y* in detail: Once such an approximation is computed, a given BRDF
(or other function) can be represented by the co-
N-1 o efficients alone (stored in a texture with only pix-
y" = Btg= Z MWU?% (9) els), assuming the basis functioms and scale factors
i=0 5 pos (1 —iv)/s; are separately known (i.e. are also stored
in texture maps). With this approach, the basis functions

. . : only need to be stored once regardless of the number of
ever, in our particular problem, many entriesgare zero RDFs stored in the system. For higher performance the
(due to the smoothing constraints), so we can just omﬁ . 1€ system. gherp .
that part ofu; from the summation involved in the com- summation of basis functions can be performed (again,

. B ) . possibly using hardware acceleration) during a precom-
Sg;tzit(l)(:]n O?Ifu; ogtzl'al{g,uif?e t?iapgp)roprlately truncated putation phase to compute the necessary factors and store
i i )= (Ui - g).

The vectorai can be considered to be “analysis” func—them In texture maps.
tions and the vectors; can be considered to be “basis”3.4 Mapping Between Linear and Log Spaces

Note thatu!'g = u; - g, and the result is a scalar. How-

functions: In order to convert a product into a sum, which is required
pos (1 —iv) for se'_[ting_ up a system of I_inear equations,_homomorphic
Bi = f(ui 1), (10)  factorization takes a logarithm of the equatipe- [] p;.
N1 ! It was noted in the original paper [[17] that sample values
y* = Z Biv. (11) close to zero are transformed into Iarge ne_gauye values.
pard Those values may dominate the equation, yielding a poor

approximation that depicts an extremely absorbing mate-
The matrixB (and B™) depends only on the projection rial. At the preinversion stage, there is no general solution
functions used and the sampling pattern. It doesde- to this problem since the described effect stems from the
pend on the data. Therefore, if we perform the factorizesample values themselves. However, during approxima-
tion once, we can apply it to many different data sets. tion calculation, the mapping from linear to logarithmic



space can be modified to avoid this problem. 4.1 Factorized Approximations from Images

For instance, a mapping of samplfs= a + f before  pajnted images can be easily used as input to the fast ho-
taking the logarithm, momorphic factorization if the pixels are thought of as
o= log(f') = log(a + f), (12) BRDF samples (assuming point source iIIumi_nation, for
now). A pixel can be used as a sample only if there are
assigns more equal significance to all values of samplgght, view, and normal vectors associated with it. In or-
because the steep portion of the logarithmic function cager to obtain light and view vectors, we can render a 3D
be avoided. Now, the factorp’ found by multiply- model into an image and calculate the required vectors
ing the pseudo-inverse Wy will approximate the values for each pixel from the scene setup (objects, single light,
f' = a + f instead of the sample valugs To find the and camera positions). The rendered image defines the

approximation of the BRDF, apply the inverse: regions where the object is present and we can also store
, images containing view vectors, normals, and light vec-
o= (Hpj) - a (13)  tors. A new picture is then painted using the rendered
Subtracting: means thaff may be negative. This rarely image fo_r guidaqce. The pixels in the painted picture to-
happens providing the samples are consistent. gether with the light and view vectors calculated for the

Although it is usually desirable to assign all Samp|e§orresponding pixels in the original image can be _treated
equal influence on the solution, there may be situatior®S @ BRDF sample set, and then used as an input to
when de-emphasizing or emphasizing certain values the homomorphic factorization (or other approximation
preferred. To emphasize the base color of a surface, W&En€me).
can use the usual identity mappirf§ = f. However, In this application we do not have to recompute the
in situations where relatively few samples capture spe@seudo-inverse because the light and view vectors have
ular highlights and the approximated material is shiny, ifot changed for the scene. To obtain a new BRDF ap-
is necessary to use a mapping that puts emphasis on laRjéximation, we would use fast homomorphic factoriza-
values. The mapping’ = a — f, wherea is the largest tion to multiply new pixel values by the pseudo-inverse.

Samp|e Va|ue, leads to the fo”owing This multiplication is very fast. The user can see the re-
;) , sulting BRDF right away, and if needed, make correc-
fr= log(f') =log(a — f). (14)  tonsto the painting, and recompute the BRDF, thus clos-

This maps sample values closedan linear space into g the iterative loop.
large negative numbers in logarithmic space. This magr > Extensions
ping can be used only if the samplgs [0,a). As in the

. . o Setting up pixels as samples, described above, constitutes
previous case, when computing the factorization, a s

e core idea of several techniques we have developed

lution obtained by multiplying the pseudo-inverse of thqhat iry to recover more complex, spatially varying re-
constraint matrix by the vectdt yields the solution that flectance models from paintings '
{ .

is an approximation to transformed samples and not to
the samples themselves. An inverse mapping is requirégatially Varying BRDF (4-Factor Product)
to obtain an approximation to the original BRDF: The homomorphic factorization in the form presented
N ;L in the original paper[[17] assumes spatially invariant
fox a-f=a- Hpj (15) " BRrDFs. Objects rendered using such BRDFs appear to
Again a problem with negative BRDF approximationsbe made of uniform materials (e.g., plastic). In the paint-
arises wherf > a, but if samples are coherent such situing application, the user has freedom to paint objects in
ation do not occur very often. If they do, they are handle@ny style, and the samples can be, and usually are, in-
by clamping to zero, as in the previous case (with someonsistent. That is, there may be two pixels that have the

additional error). same sample parameters (light and view vectors) but very
_ different color values. Such situations may be uninten-
4 Recovering BRDFs from Images tional, in which case the pixel with a different color will

From an artist's point of view, painting is a much morebe treated as an outlier if there are many other similarly
natural tool for defining reflectance models than mathegparametrized samples with consistent color. On the other
matical descriptions. Instead of programming a complihand, the user may intentionally paint spatially varying
cated shader, it is conceptually much more appealing &plors to depict several materials in different regions of
paint an image and let the program compute the textur@e object.

and reflectance models from it. We will now describe In order to handle such cases we need to use a spatial
such an application. bidirectional reflectance distribution function (SBRDF)



[16]. It is a six dimensional function, and in addition tophic factorization.
the usual parameters of a standard BRDF, it has two vari-

ables that parameterize the location on the surface much A = f-cf>=0 (18)
like texture coordinates. This function describes a rela- f/f if f<f

: . . L : wherec =

tion between incoming and outgoing light at a particu- 1 otherwise

lar point on the surface. In order to factorize a SBRDF,

at least one factor must depend on the surface parame-The scaling value can be thought of as a blending fac-

terization. We first tried a straightforward factorizationtor for this BRDF when evaluating material maps using

that takesu andwv texture coordinates of the surface adinear combinations of BRDFs

input parameters, and so we obtained an approximation J

consi§tin9 of four factorsp(m, (Wi, &s)), q(mq(&s, @5)), o= ch fi (19)

r(m (W, @,)), ands(rms(u, v)). These four factors can be =

calculated in the usual manner using homomorphic fac-

torization from SBRDF samples that have the following Because we are using a 3-factor approximation, the co-

projection parameters: light vector, view vector, and texefficient is not involved in the homomorphic factoriza-

ture coordinates. tion, and therefore we avoid the problem of limited res-
Faithful approximation of SBRDFs by this four fac- olution which we encountered previously in the four fac-

tor approximation depends on the resolution of the fourttor approximation. The resolution of the coefficient can

factor. The maximum practical resolution is bounded bye arbitrarily large, and high frequency variations can be

the limited size of the pseudo-inverse matrix. Since thaccurately reproduced, as long as the factorg andr

number of columns is equal to the number of texels in attan approximate the sample values.

factors, and the number of rows is equal to the number of An issue encountered during implementation is co-

samples, the maximum usable factor resolution depenéficient interpolation for material map approximation.

on the number of samples. When the 2D coefficient for each BRDF is being com-

puted, the samples may fall sparsely on the coefficient do-

Material Mapping Recovery. . . main. If the resolution of the material map is large, many
Another approach to capturing spatially varying BRDF?exels will not be set properly. The values of the texels

'S materllal mapping. In th!s method, the final color at ?Jetween where the samples fall need to be interpolated

given pomtqn the surface is as_sumed to be the result o 8ee Figur¢]3). An easy way to perform interpolation is

linear combination of several simple BRDFs. We assun\% render the sample values using a p-buffer: the texels in

the sample value can be computed by between the samples will be assigned appropriate values
during rasterization.

D eju, v) f5(@i, o) (16) -
j=1 H H ]
A ]
for unknown BRDFsf;. \ NEE m
An algorithm that strives to recover these BRDFs and u ;’
their coefficients can be based on an iterative approxima- = 1 O ]
tion refinement process. When computing a factorized :Hf/ H:’ H ] m| ]

approximation assuming spatial invariance of a BRDF
using the three factor approach, there will be a large resid-
ual grrorin cases when the paintegl reflectance is spati<':1_1lt)[gure 3:  Left: coefficient texels set by sparse sam-
varying. We may calculate the res!dua! error and try to f'})ljng. Right: unconstrained coefficient texels interpo-
it with another three factor approximation: lated through rasterization in texture space.

A = f-plmx)qlmg(x)) r(m(x))  (17) Hybrid Method

wherex = (@;, @,). The material mapping technique presented in the previ-
Unfortunately, to fit the residual error using homomor-ous section uses the standard 3-factor approximations as
phic factorization, the error must be positive. We thererepresentations for subsequent BRDFs that compose a
fore scale the approximating values so that they are legs/en material. However, the material mapping and the
than any sample value. Then, the residual error will ald-factor approximation methods are not mutually exclu-
ways be positive and lends itself to repeated homomosive, and they can be combined. In this case, material



mapping would use 4-factor instead of 3-factor approxtight and view vectors) can be recorded and used to build
imations. Apart from that change, the procedure of cal constraint matrix.

culating such representations is unaltered. The resultingOnce the pseudo-inverse has been calculated the pixel
SBRDF approximation takes slightly more space sincRGB triplet can be used as sample values. The user
2D factors are used in addition to the usual 1D factords allowed to paint spatially varying BRDFs. In these
but the solution tends to converge faster on the desirédstances, the application will attempt to recover the
solution. SBRDF by either four factor factorization or material

Integration of Multiple Views mapping techniques, or both

- . : . .. If material mapping is chosen, each iteration of ho-
When defining sp.atlally varying BRDFS. on an ObJeCt’. Itmomorphic factorization calculates one BRDF and its
is important to paint the whole surface in order to defin

material variation everywhere. Otherwise, durin rende%oemdem' Minimizing the error means that the resid-
. . ywhere. ! 9 ual becomes smaller and smaller. Because residual er-
ing or retargeting, the portions of an object that were lack-

ing samples will not have a defined reflectance behavioror Is treated as samples for subsequent BRDF calcula-
9 pi€ o : [ions, those values will approach zero for samples that are
One painted view is not enough to visually enco

m- . . . . .
. . closely approximated by the factorization. If the painting
pass all portions of the object. We need to use severﬁgs variation in color, some sample residuals will stay

pgintings O.f th? illuminated r_nodel captgring Vie.WS fromhigh exactly in the areas of different BRDF domination
different directions. Integration of the information CoN- hich will be recovered in the following iterations.

tained in each view may be challenging, especially if the
paintings on different views are inconsistent with one ang  Results

other. However, assuming some degree of coherence,.l.gble[jr gives time measurements of SVD computation

Z;?,Si::,slse to find factorized approximations using seVémd factorization using 7884 samples. The calculation

| q find a th four ... times for 4-factor approximation are much larger than for
h order tq Inc a three or four actqr lapprquatl.on,s_factor factorization because of the number of texels that
each valid plxgl n eag:h view \.N'” participate in setting o 5 factor introduced into the approximation. In all
up tg'e' constralntllmr?trlx. .T.he VLeWS car? dlffer n IIghtmgcases, however, the factorization time using preinverted
con _|t|ons (e_.g.f '9 tpo_snu_)n) ut eac painting must_ Ronstraint matrices are orders of magnitude smaller than
consistent with its own lighting. Setting up the constrain erforming the calculations from scratch

matrix is conducted in the usual way: for each pixel th Table[2 shows similar measurements for approxima-
projected parameters are used to set up entries in the g

. - L . ) ns that used 2D functions. Again, the computation
trix. Finding the factorization using the pseudo—lnvers(?ime is much smaller in the fast homomorphic factor-

IS alsg the samet. Tgf .p'):ﬁl \;all{[es are multiplied by th‘rQZation cases. Especially for the 3-factor approximation,
pseudo-inverse fo obtain the factors. three 2D factors result in a huge constraint matrix inver-

_Recovering a material map from several views is Mmorg;,, * the sample count had to be reduced to around 300
tricky. If we want to use homomorphic factorization, Wej, o qer to bring the constraint matrix down to a manage-
need to ensure that the residuals are always positive f%'e size

each iteration of the algorithm. Thus, during one iter-

ation for each view we calculate the coefficient texture [res. | SVD computation| fast factorization
that makes the residual positive for this particular view. 3-factor | 4-factor | 3-factor | 4-factor
Then we merge the coefficient textures, always keeping [ 32 4.26 247.36 | 0.1834 | 1.2649
the smallest value. Keeping the smallest value ensures | g4 11.08 | 330.04 | 0.2868 | 1.3207
that the contributing BRDF is scaled down enough to be | gg 2158 | 397.37 | 0.3842 | 1.5919

less than any sample from any view. 128 | 38.06 | 506.11 | 0.4375| 1.6877

5 Testbed

We implemented a simple painting program that allowdable 1: SVD computation times for preinversion and

the user to paint 2D views of a 3D object and incorporatectorization in seconds for 1D factors using 7884 sam-

a factorizer. Twelve views are positioned at the vertices dg#les. The resolution of the fourth function in the 4-factor

an icosahedron to ensure full visual coverage of an objeBfoduct, which is 2D, is constant and equal to 32x32 tex-

and for each view a light position is defined. A pixel in¢ls- Resolution changes only for 1D factors.

any view represents a BRDF sample; it corresponds to a

place on an object for which light and view directions are Tablg 3 shows the time measurements for material map
known. So, for each such pixel, sample parameters (i.eecovery using 3-factor BRDF approximation for 7884




res.| SVD computation | fast factorization matically factorized into a product.
3-factor | 4-factor | 3-factor | 4-factor The standard parameterization of factors is capable of
16 | 1m43s | 3.77s | 0.0308s| 0.0160s handling non-photorealistic effects as shown in Figire 4.

32 | 10lm12s| 13.76s | 0.1048s| 0.0418s A outline of a duck is painted and then captured by fac-
48 - 44.88s - 0.0853s torization.

64 - 121.55s - 0.1409s

Table 2: SVD computation times for preinversion and d d @

factorization in seconds using 317 samples. In 3-factor
products all three functions are 2D, and in 4-factor prod-
ucts the first three functions are 1D (kept at 32 texels) and

Figure 4: Painted and rendered duck model.

only the fourth factor is 2D. Resolution changes only for Figure[] shows a coarse painting of a highlight on a
2D factors. diffuse sphere, and, then a retargeting of this reflection
model to render a cat.
res. Num. of BRDFs Figure[8 compares the reconstruction of the painted
S 10 | 15 20 picture (a) by material mapping (b) and 4-factor approxi-
32 | 2.44|573| 891 | 12.09 mation (c). The material mapping uses five BRDFs each
128 | 3.96 | 8.66 | 12.64| 17.79 approximated by 3-factor factorization. Material map-

ping performs better if the rendering direction is similar
to the painted one, but starts deviating more than 4-factor
approximation for arbitrary directions (Figuré¢ 8(e) and
(f). The best results, when using only one painting, were
samples. The iterative calculations increased the calcuf@chieved by the hybrid method combining material map-
tion time, but the speed remained interactive. ping with a 4-factor factorization (Figuf¢ 8(d)).

The approximation error incurred by the approxima- "€ material mapping approach gives better results if
tion depends on the sample coherency. This is most elfl€ painting style is close to physically based shading.
ident in spatially varying paintings which are approxi-F'gurEﬂ shows reflectance recovery from multiple views
mated using 4-factor factorization and material map ré!Sing material mapping. Three images of one object are
covery techniques. The error between the approximat&f‘“med from different view directions. The fogrth image
and painted triceratops model from Fig(ie 8 is showshows a new rendered image from another direction.
in Table[4. The material mapping case approximate; Discussion
the samples better, but a 4-factor approximation gives in . ) . )
practice much better visual quality. To match this visual Nis section discusses issues accompanying the methods
quality for material mapping, paintings from several viewdescribed in this paper. We start with the fast factoriza-

Table 3: Material map computation time in seconds

directions are required. tion and then proceed to the recovery of BRDFs.
The gain in factorization speed is achieved by sacrific-
A-factor Num. of products ing flexibility of sampling. Thus, the only applications
1 2 3 4 5 that can take advantage of this improvement are the ones

RMS | 015 | 0181 0.11] 0.081 0.06] 0.05| for which the sampling pattern is fixed. If the light or
max 432 | 083|056]|049]| 046| 0.43| View direction changes from previous measurement set-
tings, the constraint matrix needs to be rebuilt and its
pseudoinverse recomputed. Fortunately, the limitation to
Table 4:  Error metrics for 4-factor approximation and  a fixed sampling pattern is not always an issue, as, for
material map approximations using between 1 and 5 example, in the painting tool case.
product components. (Sample values are in the interval Even when a fixed sampling pattern permits the use
[0,1]) of the fast homomorphic factorization, new issues may
still arise. The fast factorization uses a preinverted ma-
Figure[§ shows a rendering of a cow using standartlix whose size ranges from 10MB to 100MB, depending
OpenGL (left) and using a factorized approximation obn the number of samples and factors. For fastest perfor-
that lighting (right). It is interesting to see that 3-factormance, this matrix should be loaded to the main memory,
approximation captures both diffuse and specular reflegvhich may degrade performance on computers that have
tion of light, although the Phong model cannot be mathean inadequate amount of RAM. As described so far, the




size of the pseudoinverse matrix and the fixed pattern rare required. This is because we are striving to define 4D
quirement are two major issues associated with fast hor 6D functions (for BRDFs and SBRDFs respectively)
momorphic factorization. In addition there are also som&om 2D images. One image can be thought as a 2D slice
issues regarding the painting and BRDF recovery. through a function of higher dimensions, and so many
One of the issues pertains to the specular highnghglices are needed to define it. However, the images have
which needs to be painted for correct definition of manyo be consistent, and in particular the spatial variations
reflectance functions. The fast factorization is very sensfust “stick” to the surface and their patterns must appear
tive to the exact placement of such highlights. If the highin the same places on the object in all of the images. This
light is centered incorrectly, the approximation will suffertask is difficult for hand drawn paintings, but required,
from ringing artifact showing as an alternating pattern obecause the factorization is sensitive to the mismatched
darker and lighter rings. This can be reduced by applyingPatial patterns.
the new mapping from linear to logarithmic space pre- Lensch et al.[[13], McAllister et al[ [16], and Hertz-
sented here. However, the only way to fully alleviate thenan et al.[[6] have accurately recovered spatially vary-
rings is by iterative corrections of the painting itself. ing materials from photographs of real objects by fitting
Achieving a desired reflectance model is not alway§ample data to a Lafortune’s reflectance model. Such an
easy. The problem arises from the conflict between th@Pproach yields superior results, but requires a solution
physically based shading parameterization used and tHea non-linear optimization problem. Available solvers
non-photorealisic nature of painting. A best fit solutiorfake hours to compute the result, and, thus, are not suited
solves some of the problems caused by this decoupling.fAr interactive applications. Our technique, on the other
most of the pixe|s are close to being in agreement with ré'].and, is fast and enables interactive iterations to remove
ality, the average is going to approximate the reflectandconsistencies in the paintings.
model well enough. However, if there are many discrep- The number of samples involved in the computations
ancies in the painting, a less desirable solution is praould contribute to the speed. Our system uses tens of
duced. Again, an iterative painting process needs to liBousands sample points, while the other techniques use
employed to converge on a satisfying solution. This camillions of samples. It would be interesting to investigate
be time consuming and does not even guarantee that tHe application of the techniques mentioned above to the
desired shading model can be approximated adequatelBRDF recovery from paintings.

For spatially varying materials, part of the reason wh
an approximation may not capture the intended shadi
model is an ambiguity between variation in a BRDF andVe have presented a refinement of the homomorphic fac-
a material itself. For example, a localized increase itorization that improves its performance, and we have
brightness on an object in one view can be attributed e#lso presented a tool that uses this new algorithm for
ther to the specular reflection or a brighter color (albedd)efining BRDFs and SBRDFs by painting examples of
of the material at that location. There is no clear solutiowbjects rendered using the intended reflectance model.
other than painting several other images from different The speed of the new fast homomorphic factorization
views or with different light directions in order to disam-algorithm stems from the precalculation of the pseudoin-
biguate the source of the brightness [6]. verse and ability to apply it to any samples that have sim-

Our techniques for capturing spatially varying mateilar pattern and layout. An additional speed improvement
rials are admittedly ad hoc and have some limitationgs gained by replacing 2D factors with 1D factors for the
For example, there is no guarantee that the residual ergpecial case of isotropic materials.
in material mapping technique can be factorized, since The painting tool was shown to reproduce a wide range
it may not resemble any form of reflectance functionof BRDFs. The overall accuracy of BRDF approxima-
Again, there is a trend that the paintings which divergéion depends on the painting style. Since the factoriza-
from physical plausibility will cause more problems thantion is based on physical attributes its strength lies in re-
the paintings having physical reflectance properties. Thivering physically plausible reflectance models. Never-
is illustrated in Figur¢]7 and Figufeé 8(e), where marblgheless, non-photorealistic effects were successfully cap-
is adequately captured by material mapping while nortured using this model. It would be interesting to investi-
photorealistic painting is not. As before, to pinpoint thegate other parameterizations that would be more suitable
correct shading model, more images are required frofior non-photorealistic imagery.
different views and for different lighting conditions. In our work we focused on the homomorphic approx-

A trend can be observed that for an adequate definitidmation technique. However, the same approach of us-
of a BRDF, paintings from many views or light directionsing painted values as BRDF samples could be used with

Conclusions



any approximation technique, such as linear PCA factor{5] Wolfgang Heidrich and Hans-Peter Seidel.

ization (using the SVD results we already have), spheri-

cal harmonics, polynomial texture mapping, or Lafortu

ne

Realistic,
Hardware-Accelerated Shading and Lighting. S3iG-
GRAPH 1999.

lobes, or a hybrid of these techniques, if they could be[6] Aaron Hertzmann and Steven M. Seitz. Shape and Mate-

made fast enough.

It would also be straightforward to generalize the ap-
proach to approximation of outgoing radiance valuesl”]
rather than just reflectance models under point illumina-
tion. The paintings would have to take into account the

environment instead of a single light source. The pai

ings would capture the view from different directions and

nt-

(8]

for different orientations of the object with respect to the

surrounding environment.
The clustering of samples that represent the same

ma-

terial has been shown to improve the quality of captured9]
SBRDFs|[[6/ 13]. These methods could potentially be ap-
plied to the homomorphic factorization if a sample subset

could be selected for participation in factorization.
Other future work could involve following up on previ

(10]

ous findings of Lensch [13], McAllister [16], and Hertz-

mann [6] to improve the performance of these algorithm

Recent advancements presented by Hillesland etlal.

UL

have reduced the computation time of non-linear opti-

mizers fivefold by exploiting graphics hardware. Desp

it‘?12]

these results, the performance is still far from being inter-

active, and more work needs to be done in this area.

9 Acknowledgements

(13]

We would like to thank Selina Siu for many valuable
comments and for painting input images, Celine Latu-
lipe for revising our writing, and Alla Sheffer and Kevin

Moule for providing us with parametrized 3D models.

(14]

This research was funded by grants from the Nation

Science and Engineering Research Council of Can

ada

(NSERC), the Centre for Information Technology of On-
tario (CITO), the Canadian Foundation for Innovation

(CFI), the Ontario Innovation Trust (OIT), the Bell Uni
versity Labs initiative, and ATI Technologies.

References

" [16]

[1] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pietef17]
Duiker, Westley Sarokin, and Mark Sagar. Acquiring the

Reflectance Field of a Human Face SIGGRAPH 2000.

[2] Alain Fournier. Separating reflection functions for linear[18]

radiosity. InEurographics Rendering Workshat995.
(3]

Shirley, and Rich Riesenfeld. Interactive Technical lllu

tration. InSymposium on Interactive 3D Graphid999.

Pat Hanrahan and Paul E. Haeberli. Direct WYSIWY
Painting and Texturing on 3D Shapes. $HGGRAPH
1990.

[4]

Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter

19]

s_

G

rials by Example: A Photometric Stereo Approach.Iin
Proceedings of IEEE CVRRO003. To appear.

Karl E. Hillesland, Sergey Molinov, and Radek
Grzeszczuk. Nonlinear Optimization Framework for
Image-Based Modeling on Programmable Graphics Hard-
ware. INSIGGRAPH2003. To appear.

Robert D. Kalnins, Lee Markosian, Barbara J. Meier,
Michael A. Kowalski, Joseph C. Lee, Philip L. Davidson,
Matthew Webb, John F. Hughes, and Adam Finkelstein.
WYSIWYG NPR: Drawing Strokes Directly on 3D Mod-
els. INSIGGRAPH 2002.

Jan Kautz and Michael D. McCool. Interactive Rendering
with Arbitrary BRDFs using Separable Approximations.
In Eurographics Rendering Workshd999.

Jan Kautz and Hans-Peter Seidel. Towards Interactive
Bump Mapping with Anisotropic Shift-Variant BRDFs. In
SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware, 2000.

Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Tor-
rance, and Donald P. Greenberg. Non-Linear Approxima-
tion of Reflectance Functions. BIGGRAPH 1997.

E. Scott Larsen and David McAllister. Fast Matrix Mul-
tiplies Using Graphics Hardware. WCM/IEEE Confer-
ence on Supercomputing001.

Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolf-
gang Heidrich, and Hans-Peter Seidel. Image-Based Re-
construction of Spatially Varying Materials. Render-

ing Techniques 2001: Eurographics Rendering Workshop
2001.

Tom Malzbender, Dan Gelb, and Hans Wolters. Polyno-
mial Texture Maps. II5IGGRAPH 2001.

Stephen R. Marschner, Stephen H. Westin, Eric P. F.
Lafortune, Kenneth E. Torrance, and Donald P. Green-
berg. Image-based BRDF Measurement Including Human
Skin. InEurographics Rendering Workshafp99.

David McAllister, Anselmo Lastra, and Wolfgang Hei-
drich. Efficient Rendering of Spatial Bi-directional Re-
flectance Distribution Functions. IBIGGRAPH / Euro-
graphics Workshop on Graphics Hardwa2002.

Michael D. McCool, Jason Ang, and Anis Ahmad. Homo-
morphic Factorization of BRDFs for High-Performance
Rendering. IlSIGGRAPH 2001.

Ravi Ramamoorthi and Pat Hanrahan. A Signal-
Processing Framework for Inverse Rendering. SIG-
GRAPH 2001.

Peter-Pike Sloan, William Martin, Amy Gooch, and Bruce
Gooch. The Lit Sphere: A Model for Capturing NPR
Shading from Art. InGraphics Interface2001.



@) (b)

Figure 5: Painted and recovered shading models: (a) golden (b) yellow highlight with green and blue halos (c) velvet
(d) warm to cool (e) diffuse brick (f) wood consisting of two BRDFs.

l\! E
Figure 6: Diffuse and Phong specular reflectance Figure 7: Three views of a triceratops painted with

model. Top image was rendered analytically and bot- marble BRDFs and in bottom right a triceratops un-
tom one was rendered using factorization. der new lighting direction viewed from new angle.

" ® ®

()

Figure 8: Material captured from one painting: (a) painted triceratops (b) material map (c) 4-factor approximation.
Material rendered under new view and lighting directions: (d) hybrid of material map and 4-factor approximation (e)
just material map (f) just 4-factor factorization.
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