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Figure 1: Painted sphere and a cat under changing light and view directions.

Abstract
The high dimensionality of the BRDF makes it difficult
to use measured data for hardware rendering. Common
solutions to overcome this problem include expressing a
BRDF as a sum of basis functions or factorizing it into
several functions of smaller dimensions which can be
sampled into a texture.

In this paper we will focus on homomorphic factoriza-
tion, which can be accelerated by preinverting the con-
straint matrix if the sampling pattern and the layout of
the samples in the representation are fixed. Applying the
preinverted constraint matrix is very fast and can be used
to calculate factorization and material maps at interactive
rates. We use this to derive shaders from painted exam-
ples. The technique presented in this paper allows in-
teractive definition of materials, and, although based on
physical parameters, this method can realize a variety of
non-photorealistic effects.

Key words: BRDF, homomorphic factorization, inverse
rendering, painting, hardware acceleration

1 Introduction

This paper presents an extension to the homomorphic
factorization technique [17]. The extension permits fast
computation of approximations to BRDFs. It is possible
to reduce factorization time to less than a few seconds
(a speedup of a factor of over 1000) by precomputing a
pseudo-inverse of the constraint matrix. The precompu-
tation time is still on the order of several minutes, but
consecutive calculations of new factors can be performed
at interactive rates.

This algorithm allows us to approximate a BRDF
quickly from any sample value set with predefined pa-
rameters. We use it as a tool for defining an arbitrary
spatially variant BRDF by integrating the homomorphic
factorization with a painting application.

In such an application, the user is presented with the
scene setup (a view of a 3D object and a light position)
and is allowed to color the image to define the appearance
of the object in this setup. Instead of painting, a photo
could also be used after overlaying it on a 3D model. Our
new factorization algorithm is invoked to calculate the
BRDF approximation from the painted images. Our sys-
tem is capable of recovering a variety of reflectance mod-
els ranging from non-photorealistic to physically based,
including multi-material composition and spatially vary-
ing BRDFs. Non-homogeneous surfaces are approxi-
mated using material maps that combine several BRDFs
using texture mapped blending coefficients.

In Section 2 we present previous work related to re-
flectance models and measuring BRDFs. Section 3 sum-
marizes homomorphic factorization and describes exten-
sions that enable fast calculations. The use of painted
images as BRDF samples is described in Section 4 and
implementation details are presented in Section 5. We
show and discuss our results in Section 6 and conclude
the paper in Section 8.

2 Related Work

The idea of representing a BRDF by several functions of
smaller dimensions was introduced by Fournier [2], who
used SVD factorization, and Heidrich and Seidel [5], who
used analytic factorization. Later, Kautz and McCool



[9] reparameterized the SVD approach to better approxi-
mate reflectance models. McCool, Ang and Ahmad [17]
presented a factorization method that solved some of the
drawbacks of the previous methods. This new approach,
homomorphic factorization, permits the factorization of
functions of arbitrary dimension into products of several
functions of smaller dimensions, allows the use of arbi-
trary parameterizations, and does not require a separate
resampling step.

Other methods of BRDF representation rely on the
summation of basis functions, for example, spherical har-
monics [18]. Malzbender, Gelb and Wolters [14] used a
polynomial basis to reconstruct surface color under vary-
ing light direction. This method captures spatial variation
of reflectance over surfaces [10, 13] and is similar to the
use of spherical harmonics. McAllister, Lastra and Hei-
drich [16] fitted Lafortune lobes [11] to measured data
and stored the coefficients in texture maps, allowing real-
time rendering of spatially varying BRDFs.

Lensch et al. [13] were successful in recovering spa-
tially variant materials by grouping samples into clusters
representing a single material. More recently Hertzmann
and Seitz [6] developed an algorithm to recover both ma-
terials and normals based on a clustering method. An ad-
vantage of these algorithms is the high accuracy obtained.
However, they suffer from long computational times.

Measured data was used by Marschner et al. [15] to
find reflectance models of human skin [1]. Our work
borrows from their approach, but differs in BRDF repre-
sentation, and, instead of photographing the objects, we
use interactive painting. Painting has been explored by
Hanrahan and Haeberli [4] and Kalnins et al. [8] to in-
teractively apply material onto a parametrized 3D model.
Sloan et al. [19] explored painting as a method to capture
shading for non-photorealistic rendering. They used the
projection of the surface normal onto the viewing plane
as a shading parameter. In contrast, our method incorpo-
rates a view vector, a light vector and texture coordinates
as function parameters, thus allowing greater flexibility.

3 Homomorphic Factorization and Its Extensions

In order to perform homomorphic factorization [17] of a
BRDF (or other high-dimensionality function) it is nec-
essary to solve, in a minimum-residual or least-squares
sense, an overconstrained linear system of the form

[
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0

]
=
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Wheref̃ is a vector of data points to be fitted (logarithms
of sample values of anN -dimensional functionf ), the
p̃j are logarithms of samples of lower-dimensional func-
tionspj (which f project onto), the matricesAj describe
the projections of samples onto each factor as a set of
constraints, and finally the matricesLj are Laplacian op-
erators that estimate the curvature of the functionsp̃j .
By setting these equal to zero we damp out ripples in
the solution and interpolate over gaps. This overdeter-
mined system of linear constraints can be written more
compactly asg = By.

3.1 1D Factors
The application of homomorphic factorization to BRDFs
presented by McCool, Ang and Ahmad [17] can han-
dle both isotropic and anisotropic materials. It uses a
parabolic map to project the parameters from BRDF’s
four dimensions onto two dimensional factor functions.
However, if a BRDF is isotropic, the factor functions are
radially symmetric under their parameterization (see Fig-
ure 2) and thus are really one dimensional. In practice
the size of the constraint matrix is a linear function of the
number of texels. Therefore, changing the dimensional-
ity of factors from 2D to 1D yields a large reduction in
matrix size.

Figure 2: The 2D factors produced by homomorphic
factorization of an isotropic material.

Given a set of samples, a constraint matrix is formed.
We use three-factor product approximation where each
factor is a 1D function. The projection transformations
we use for mapping 4D BRDF parameters into a 1D pa-
rameter space for each factor are:

πp(ω̂i, ω̂o) = |ω̂i − n̂ (ω̂i · n̂)| (2)

πq(ω̂i, ω̂o) = |ĥ− n̂ (ĥ · n̂)| (3)

πr(ω̂i, ω̂o) = |ω̂o − n̂ (ω̂o · n̂)| (4)

where ĥ = ω̂i+ω̂o

|ω̂i+ω̂o| . These transformations return the
length of the vector projected on the plane orthogonal to
the surface normal̂n.

3.2 Preinverted Matrix
The minimum-residual solution of the sparse constraint
system can be obtained by iterative methods. However,
this is slow and only gives one solution for one set of



data. The least-squares solution of the system can also
be found using the pseudo-inverseB+ of B. The pseudo-
inverse can be computed using an SVD factorization:

B = USVT =
N−1∑
i=0

siuivT
i (5)

B+ = VS−1UT =
N−1∑
i=0

1
si

viuT
i (6)

Since the singular values can go to zero for singular ma-
trices, this summation is usually truncated for sufficiently
small values ofsi. Small singular values can also be
damped out for greater stability:

B+ ≈
N−1∑
i=0

si

s2
i + α2

viuT
i , (7)

but this does not give as much computational advantage
as simple truncation. A compromise would be to lin-
early damp out higher singular values. Letpos (x) =
max(x, 0). Then compute the linearly damped SVD with

B+ ≈
N−1∑
i=0

pos (1 − iγ)
si

viuT
i , (8)

whereγ = K−1 for K non-zero weights.
Consider the computation of the approximate solution

y∗ in detail:

y∗ = B+g =
N−1∑
i=0

pos (1 − iγ)
si

viuT
i g (9)

Note thatuT
i g = ui · g, and the result is a scalar. How-

ever, in our particular problem, many entries ofg are zero
(due to the smoothing constraints), so we can just omit
that part ofui from the summation involved in the com-
putation of(ui ·g). Letu′

i be the appropriately truncated
version ofui so that(u′

i · f) = (ui · g).
The vectorsu′

i can be considered to be “analysis” func-
tions and the vectorsvi can be considered to be “basis”
functions:

βi =
pos (1 − iγ)

si
(u′

i · f), (10)

y∗ =
N−1∑
i=0

βivi. (11)

The matrixB (andB+) depends only on the projection
functions used and the sampling pattern. It doesnot de-
pend on the data. Therefore, if we perform the factoriza-
tion once, we can apply it to many different data sets.

In practice, the singular values do not always vanish to
zero very quickly, which implies that different data sets
can emphasize different basis vectors. Nevertheless, mul-
tiplying the pseudo-inverse by the sample vector is still
much faster than performing an SVD from scratch and
then applying the result to find the BRDF approximation.

Finding the coefficients in Equation 10 is analogous
to finding the coefficients for a spherical harmonic repre-
sentation by summing the products of samples and corre-
sponding values of basis functions. However, for spheri-
cal harmonics, or any other basis, it would also be neces-
sary to weigh the products with an inverse of the sample
density function.

3.3 Fast Factorization

An interesting way to compute the factorization is to uti-
lize graphics hardware [7, 12]. Supposeu′

i and f are
stored in texture maps. Then, for eachi, we can perform
a single dot product by rendering a rectangle contain-
ing these texture maps, multiplying them together, and
then using recursive reduction operations to add up all
the products. Alternatively, we could perform several dot
products in parallel by storing the components of all anal-
ysis functions together in a single texture map, and using
compositing operators to perform the summation over all
components.

When done, the necessary coefficients should be stored
in a buffer, which can be transferred to a texture map.
Once such an approximation is computed, a given BRDF
(or other function) can be represented by theβi co-
efficients alone (stored in a texture with onlyK pix-
els), assuming the basis functionsvi and scale factors
pos (1− iγ)/si are separately known (i.e. are also stored
in texture maps). With this approach, the basis functions
only need to be stored once regardless of the number of
BRDFs stored in the system. For higher performance the
summation of basis functions can be performed (again,
possibly using hardware acceleration) during a precom-
putation phase to compute the necessary factors and store
them in texture maps.

3.4 Mapping Between Linear and Log Spaces

In order to convert a product into a sum, which is required
for setting up a system of linear equations, homomorphic
factorization takes a logarithm of the equationf =

∏
pj .

It was noted in the original paper [17] that sample values
close to zero are transformed into large negative values.
Those values may dominate the equation, yielding a poor
approximation that depicts an extremely absorbing mate-
rial. At the preinversion stage, there is no general solution
to this problem since the described effect stems from the
sample values themselves. However, during approxima-
tion calculation, the mapping from linear to logarithmic



space can be modified to avoid this problem.
For instance, a mapping of samplesf ′ = a + f before

taking the logarithm,

f̃ ′ = log(f ′) = log(a + f), (12)

assigns more equal significance to all values of samples
because the steep portion of the logarithmic function can
be avoided. Now, the factorsp′

j found by multiply-

ing the pseudo-inverse bỹf ′ will approximate the values
f ′ = a + f instead of the sample valuesf . To find the
approximation of the BRDF, apply the inverse:

f ≈ (
∏

p′j)− a. (13)

Subtractinga means thatf may be negative. This rarely
happens providing the samples are consistent.

Although it is usually desirable to assign all samples
equal influence on the solution, there may be situations
when de-emphasizing or emphasizing certain values is
preferred. To emphasize the base color of a surface, we
can use the usual identity mappingf ′ = f . However,
in situations where relatively few samples capture spec-
ular highlights and the approximated material is shiny, it
is necessary to use a mapping that puts emphasis on large
values. The mappingf ′ = a − f , wherea is the largest
sample value, leads to the following

f̃ ′ = log(f ′) = log(a− f). (14)

This maps sample values close toa in linear space into
large negative numbers in logarithmic space. This map-
ping can be used only if the samplesf ∈ [0, a). As in the
previous case, when computing the factorization, a so-
lution obtained by multiplying the pseudo-inverse of the
constraint matrix by the vector̃f ′ yields the solution that
is an approximation to transformed samples and not to
the samples themselves. An inverse mapping is required
to obtain an approximation to the original BRDF:

f ≈ a− f̂ = a−
∏

pj (15)

Again a problem with negative BRDF approximations
arises when̂f > a, but if samples are coherent such situ-
ation do not occur very often. If they do, they are handled
by clamping to zero, as in the previous case (with some
additional error).

4 Recovering BRDFs from Images

From an artist’s point of view, painting is a much more
natural tool for defining reflectance models than mathe-
matical descriptions. Instead of programming a compli-
cated shader, it is conceptually much more appealing to
paint an image and let the program compute the textures
and reflectance models from it. We will now describe
such an application.

4.1 Factorized Approximations from Images

Painted images can be easily used as input to the fast ho-
momorphic factorization if the pixels are thought of as
BRDF samples (assuming point source illumination, for
now). A pixel can be used as a sample only if there are
light, view, and normal vectors associated with it. In or-
der to obtain light and view vectors, we can render a 3D
model into an image and calculate the required vectors
for each pixel from the scene setup (objects, single light,
and camera positions). The rendered image defines the
regions where the object is present and we can also store
images containing view vectors, normals, and light vec-
tors. A new picture is then painted using the rendered
image for guidance. The pixels in the painted picture to-
gether with the light and view vectors calculated for the
corresponding pixels in the original image can be treated
as a BRDF sample set, and then used as an input to
the homomorphic factorization (or other approximation
scheme).

In this application we do not have to recompute the
pseudo-inverse because the light and view vectors have
not changed for the scene. To obtain a new BRDF ap-
proximation, we would use fast homomorphic factoriza-
tion to multiply new pixel values by the pseudo-inverse.
This multiplication is very fast. The user can see the re-
sulting BRDF right away, and if needed, make correc-
tions to the painting, and recompute the BRDF, thus clos-
ing the iterative loop.

4.2 Extensions

Setting up pixels as samples, described above, constitutes
the core idea of several techniques we have developed
that try to recover more complex, spatially varying re-
flectance models from paintings.

Spatially Varying BRDF (4-Factor Product)

The homomorphic factorization in the form presented
in the original paper [17] assumes spatially invariant
BRDFs. Objects rendered using such BRDFs appear to
be made of uniform materials (e.g., plastic). In the paint-
ing application, the user has freedom to paint objects in
any style, and the samples can be, and usually are, in-
consistent. That is, there may be two pixels that have the
same sample parameters (light and view vectors) but very
different color values. Such situations may be uninten-
tional, in which case the pixel with a different color will
be treated as an outlier if there are many other similarly
parametrized samples with consistent color. On the other
hand, the user may intentionally paint spatially varying
colors to depict several materials in different regions of
one object.

In order to handle such cases we need to use a spatial
bidirectional reflectance distribution function (SBRDF)



[16]. It is a six dimensional function, and in addition to
the usual parameters of a standard BRDF, it has two vari-
ables that parameterize the location on the surface much
like texture coordinates. This function describes a rela-
tion between incoming and outgoing light at a particu-
lar point on the surface. In order to factorize a SBRDF,
at least one factor must depend on the surface parame-
terization. We first tried a straightforward factorization
that takesu andv texture coordinates of the surface as
input parameters, and so we obtained an approximation
consisting of four factors:p(πp(ω̂i, ω̂o)), q(πq(ω̂i, ω̂o)),
r(πr(ω̂i, ω̂o)), ands(πs(u, v)). These four factors can be
calculated in the usual manner using homomorphic fac-
torization from SBRDF samples that have the following
projection parameters: light vector, view vector, and tex-
ture coordinates.

Faithful approximation of SBRDFs by this four fac-
tor approximation depends on the resolution of the fourth
factor. The maximum practical resolution is bounded by
the limited size of the pseudo-inverse matrix. Since the
number of columns is equal to the number of texels in all
factors, and the number of rows is equal to the number of
samples, the maximum usable factor resolution depends
on the number of samples.

Material Mapping Recovery
Another approach to capturing spatially varying BRDFs
is material mapping. In this method, the final color at a
given point on the surface is assumed to be the result of a
linear combination of several simple BRDFs. We assume
the sample value can be computed by

J∑
j=1

cj(u, v)fj(ω̂i, ω̂o) (16)

for unknown BRDFsfj .
An algorithm that strives to recover these BRDFs and

their coefficients can be based on an iterative approxima-
tion refinement process. When computing a factorized
approximation assuming spatial invariance of a BRDF
using the three factor approach, there will be a large resid-
ual error in cases when the painted reflectance is spatially
varying. We may calculate the residual error and try to fit
it with another three factor approximation:

∆ = f − p(πp(x)) q(πq(x)) r(πr(x)) (17)

wherex = (ω̂i, ω̂o).
Unfortunately, to fit the residual error using homomor-

phic factorization, the error must be positive. We there-
fore scale the approximating values so that they are less
than any sample value. Then, the residual error will al-
ways be positive and lends itself to repeated homomor-

phic factorization.

∆ = f − c f̂ >= 0 (18)

wherec =
{

f/f̂ if f < f̂
1 otherwise

The scaling value can be thought of as a blending fac-
tor for this BRDF when evaluating material maps using
linear combinations of BRDFs

f =
J∑

j=1

cj f̂j (19)

Because we are using a 3-factor approximation, the co-
efficient is not involved in the homomorphic factoriza-
tion, and therefore we avoid the problem of limited res-
olution which we encountered previously in the four fac-
tor approximation. The resolution of the coefficient can
be arbitrarily large, and high frequency variations can be
accurately reproduced, as long as the factorsp, q, andr
can approximate the sample values.

An issue encountered during implementation is co-
efficient interpolation for material map approximation.
When the 2D coefficient for each BRDF is being com-
puted, the samples may fall sparsely on the coefficient do-
main. If the resolution of the material map is large, many
texels will not be set properly. The values of the texels
between where the samples fall need to be interpolated
(see Figure 3). An easy way to perform interpolation is
to render the sample values using a p-buffer: the texels in
between the samples will be assigned appropriate values
during rasterization.

Figure 3: Left: coefficient texels set by sparse sam-
pling. Right: unconstrained coefficient texels interpo-
lated through rasterization in texture space.

Hybrid Method
The material mapping technique presented in the previ-
ous section uses the standard 3-factor approximations as
representations for subsequent BRDFs that compose a
given material. However, the material mapping and the
4-factor approximation methods are not mutually exclu-
sive, and they can be combined. In this case, material



mapping would use 4-factor instead of 3-factor approx-
imations. Apart from that change, the procedure of cal-
culating such representations is unaltered. The resulting
SBRDF approximation takes slightly more space since
2D factors are used in addition to the usual 1D factors,
but the solution tends to converge faster on the desired
solution.

Integration of Multiple Views
When defining spatially varying BRDFs on an object, it
is important to paint the whole surface in order to define
material variation everywhere. Otherwise, during render-
ing or retargeting, the portions of an object that were lack-
ing samples will not have a defined reflectance behavior.

One painted view is not enough to visually encom-
pass all portions of the object. We need to use several
paintings of the illuminated model capturing views from
different directions. Integration of the information con-
tained in each view may be challenging, especially if the
paintings on different views are inconsistent with one an-
other. However, assuming some degree of coherence, it
is possible to find factorized approximations using sev-
eral views.

In order to find a three or four factor approximation,
each valid pixel in each view will participate in setting
up the constraint matrix. The views can differ in lighting
conditions (e.g., light position) but each painting must be
consistent with its own lighting. Setting up the constraint
matrix is conducted in the usual way: for each pixel the
projected parameters are used to set up entries in the ma-
trix. Finding the factorization using the pseudo-inverse
is also the same. The pixel values are multiplied by the
pseudo-inverse to obtain the factors.

Recovering a material map from several views is more
tricky. If we want to use homomorphic factorization, we
need to ensure that the residuals are always positive for
each iteration of the algorithm. Thus, during one iter-
ation for each view we calculate the coefficient texture
that makes the residual positive for this particular view.
Then we merge the coefficient textures, always keeping
the smallest value. Keeping the smallest value ensures
that the contributing BRDF is scaled down enough to be
less than any sample from any view.

5 Testbed

We implemented a simple painting program that allows
the user to paint 2D views of a 3D object and incorporates
a factorizer. Twelve views are positioned at the vertices of
an icosahedron to ensure full visual coverage of an object
and for each view a light position is defined. A pixel in
any view represents a BRDF sample; it corresponds to a
place on an object for which light and view directions are
known. So, for each such pixel, sample parameters (i.e.,

light and view vectors) can be recorded and used to build
a constraint matrix.

Once the pseudo-inverse has been calculated the pixel
RGB triplet can be used as sample values. The user
is allowed to paint spatially varying BRDFs. In these
instances, the application will attempt to recover the
SBRDF by either four factor factorization or material
mapping techniques, or both

If material mapping is chosen, each iteration of ho-
momorphic factorization calculates one BRDF and its
coefficient. Minimizing the error means that the resid-
ual becomes smaller and smaller. Because residual er-
ror is treated as samples for subsequent BRDF calcula-
tions, those values will approach zero for samples that are
closely approximated by the factorization. If the painting
has variation in color, some sample residuals will stay
high exactly in the areas of different BRDF domination
which will be recovered in the following iterations.

6 Results

Table 1 gives time measurements of SVD computation
and factorization using 7884 samples. The calculation
times for 4-factor approximation are much larger than for
3-factor factorization because of the number of texels that
the 2D factor introduced into the approximation. In all
cases, however, the factorization time using preinverted
constraint matrices are orders of magnitude smaller than
performing the calculations from scratch.

Table 2 shows similar measurements for approxima-
tions that used 2D functions. Again, the computation
time is much smaller in the fast homomorphic factor-
ization cases. Especially for the 3-factor approximation,
three 2D factors result in a huge constraint matrix inver-
sion. The sample count had to be reduced to around 300
in order to bring the constraint matrix down to a manage-
able size.

res. SVD computation fast factorization
3-factor 4-factor 3-factor 4-factor

32 4.26 247.36 0.1834 1.2649
64 11.08 330.04 0.2868 1.3207
96 21.58 397.37 0.3842 1.5919
128 38.06 506.11 0.4375 1.6877

Table 1: SVD computation times for preinversion and
factorization in seconds for 1D factors using 7884 sam-
ples. The resolution of the fourth function in the 4-factor
product, which is 2D, is constant and equal to 32x32 tex-
els. Resolution changes only for 1D factors.

Table 3 shows the time measurements for material map
recovery using 3-factor BRDF approximation for 7884



res. SVD computation fast factorization
3-factor 4-factor 3-factor 4-factor

16 1m 43s 3.77s 0.0308s 0.0160s
32 101m 12s 13.76s 0.1048s 0.0418s
48 - 44.88s - 0.0853s
64 - 121.55s - 0.1409s

Table 2: SVD computation times for preinversion and
factorization in seconds using 317 samples. In 3-factor
products all three functions are 2D, and in 4-factor prod-
ucts the first three functions are 1D (kept at 32 texels) and
only the fourth factor is 2D. Resolution changes only for
2D factors.

res. Num. of BRDFs
5 10 15 20

32 2.44 5.73 8.91 12.09
128 3.96 8.66 12.64 17.79

Table 3: Material map computation time in seconds

samples. The iterative calculations increased the calcula-
tion time, but the speed remained interactive.

The approximation error incurred by the approxima-
tion depends on the sample coherency. This is most ev-
ident in spatially varying paintings which are approxi-
mated using 4-factor factorization and material map re-
covery techniques. The error between the approximated
and painted triceratops model from Figure 8 is shown
in Table 4. The material mapping case approximates
the samples better, but a 4-factor approximation gives in
practice much better visual quality. To match this visual
quality for material mapping, paintings from several view
directions are required.

4-factor Num. of products
1 2 3 4 5

RMS 0.15 0.18 0.11 0.08 0.06 0.05
max 4.32 0.83 0.56 0.49 0.46 0.43

Table 4: Error metrics for 4-factor approximation and
material map approximations using between 1 and 5
product components. (Sample values are in the interval
[0, 1])

Figure 6 shows a rendering of a cow using standard
OpenGL (left) and using a factorized approximation of
that lighting (right). It is interesting to see that 3-factor
approximation captures both diffuse and specular reflec-
tion of light, although the Phong model cannot be mathe-

matically factorized into a product.
The standard parameterization of factors is capable of

handling non-photorealistic effects as shown in Figure 4.
A outline of a duck is painted and then captured by fac-
torization.

Figure 4: Painted and rendered duck model.

Figure 1 shows a coarse painting of a highlight on a
diffuse sphere, and, then a retargeting of this reflection
model to render a cat.

Figure 8 compares the reconstruction of the painted
picture (a) by material mapping (b) and 4-factor approxi-
mation (c). The material mapping uses five BRDFs each
approximated by 3-factor factorization. Material map-
ping performs better if the rendering direction is similar
to the painted one, but starts deviating more than 4-factor
approximation for arbitrary directions (Figure 8(e) and
(f)). The best results, when using only one painting, were
achieved by the hybrid method combining material map-
ping with a 4-factor factorization (Figure 8(d)).

The material mapping approach gives better results if
the painting style is close to physically based shading.
Figure 7 shows reflectance recovery from multiple views
using material mapping. Three images of one object are
painted from different view directions. The fourth image
shows a new rendered image from another direction.

7 Discussion

This section discusses issues accompanying the methods
described in this paper. We start with the fast factoriza-
tion and then proceed to the recovery of BRDFs.

The gain in factorization speed is achieved by sacrific-
ing flexibility of sampling. Thus, the only applications
that can take advantage of this improvement are the ones
for which the sampling pattern is fixed. If the light or
view direction changes from previous measurement set-
tings, the constraint matrix needs to be rebuilt and its
pseudoinverse recomputed. Fortunately, the limitation to
a fixed sampling pattern is not always an issue, as, for
example, in the painting tool case.

Even when a fixed sampling pattern permits the use
of the fast homomorphic factorization, new issues may
still arise. The fast factorization uses a preinverted ma-
trix whose size ranges from 10MB to 100MB, depending
on the number of samples and factors. For fastest perfor-
mance, this matrix should be loaded to the main memory,
which may degrade performance on computers that have
an inadequate amount of RAM. As described so far, the



size of the pseudoinverse matrix and the fixed pattern re-
quirement are two major issues associated with fast ho-
momorphic factorization. In addition there are also some
issues regarding the painting and BRDF recovery.

One of the issues pertains to the specular highlight,
which needs to be painted for correct definition of many
reflectance functions. The fast factorization is very sensi-
tive to the exact placement of such highlights. If the high-
light is centered incorrectly, the approximation will suffer
from ringing artifact showing as an alternating pattern of
darker and lighter rings. This can be reduced by applying
the new mapping from linear to logarithmic space pre-
sented here. However, the only way to fully alleviate the
rings is by iterative corrections of the painting itself.

Achieving a desired reflectance model is not always
easy. The problem arises from the conflict between the
physically based shading parameterization used and the
non-photorealisic nature of painting. A best fit solution
solves some of the problems caused by this decoupling. If
most of the pixels are close to being in agreement with re-
ality, the average is going to approximate the reflectance
model well enough. However, if there are many discrep-
ancies in the painting, a less desirable solution is pro-
duced. Again, an iterative painting process needs to be
employed to converge on a satisfying solution. This can
be time consuming and does not even guarantee that the
desired shading model can be approximated adequately.

For spatially varying materials, part of the reason why
an approximation may not capture the intended shading
model is an ambiguity between variation in a BRDF and
a material itself. For example, a localized increase in
brightness on an object in one view can be attributed ei-
ther to the specular reflection or a brighter color (albedo)
of the material at that location. There is no clear solution
other than painting several other images from different
views or with different light directions in order to disam-
biguate the source of the brightness [6].

Our techniques for capturing spatially varying mate-
rials are admittedly ad hoc and have some limitations.
For example, there is no guarantee that the residual error
in material mapping technique can be factorized, since
it may not resemble any form of reflectance function.
Again, there is a trend that the paintings which diverge
from physical plausibility will cause more problems than
the paintings having physical reflectance properties. This
is illustrated in Figure 7 and Figure 8(e), where marble
is adequately captured by material mapping while non-
photorealistic painting is not. As before, to pinpoint the
correct shading model, more images are required from
different views and for different lighting conditions.

A trend can be observed that for an adequate definition
of a BRDF, paintings from many views or light directions

are required. This is because we are striving to define 4D
or 6D functions (for BRDFs and SBRDFs respectively)
from 2D images. One image can be thought as a 2D slice
through a function of higher dimensions, and so many
slices are needed to define it. However, the images have
to be consistent, and in particular the spatial variations
must “stick” to the surface and their patterns must appear
in the same places on the object in all of the images. This
task is difficult for hand drawn paintings, but required,
because the factorization is sensitive to the mismatched
spatial patterns.

Lensch et al. [13], McAllister et al. [16], and Hertz-
man et al. [6] have accurately recovered spatially vary-
ing materials from photographs of real objects by fitting
sample data to a Lafortune’s reflectance model. Such an
approach yields superior results, but requires a solution
to a non-linear optimization problem. Available solvers
take hours to compute the result, and, thus, are not suited
for interactive applications. Our technique, on the other
hand, is fast and enables interactive iterations to remove
inconsistencies in the paintings.

The number of samples involved in the computations
could contribute to the speed. Our system uses tens of
thousands sample points, while the other techniques use
millions of samples. It would be interesting to investigate
the application of the techniques mentioned above to the
BRDF recovery from paintings.

8 Conclusions

We have presented a refinement of the homomorphic fac-
torization that improves its performance, and we have
also presented a tool that uses this new algorithm for
defining BRDFs and SBRDFs by painting examples of
objects rendered using the intended reflectance model.

The speed of the new fast homomorphic factorization
algorithm stems from the precalculation of the pseudoin-
verse and ability to apply it to any samples that have sim-
ilar pattern and layout. An additional speed improvement
is gained by replacing 2D factors with 1D factors for the
special case of isotropic materials.

The painting tool was shown to reproduce a wide range
of BRDFs. The overall accuracy of BRDF approxima-
tion depends on the painting style. Since the factoriza-
tion is based on physical attributes its strength lies in re-
covering physically plausible reflectance models. Never-
theless, non-photorealistic effects were successfully cap-
tured using this model. It would be interesting to investi-
gate other parameterizations that would be more suitable
for non-photorealistic imagery.

In our work we focused on the homomorphic approx-
imation technique. However, the same approach of us-
ing painted values as BRDF samples could be used with



any approximation technique, such as linear PCA factor-
ization (using the SVD results we already have), spheri-
cal harmonics, polynomial texture mapping, or Lafortune
lobes, or a hybrid of these techniques, if they could be
made fast enough.

It would also be straightforward to generalize the ap-
proach to approximation of outgoing radiance values
rather than just reflectance models under point illumina-
tion. The paintings would have to take into account the
environment instead of a single light source. The paint-
ings would capture the view from different directions and
for different orientations of the object with respect to the
surrounding environment.

The clustering of samples that represent the same ma-
terial has been shown to improve the quality of captured
SBRDFs [6, 13]. These methods could potentially be ap-
plied to the homomorphic factorization if a sample subset
could be selected for participation in factorization.

Other future work could involve following up on previ-
ous findings of Lensch [13], McAllister [16], and Hertz-
mann [6] to improve the performance of these algorithms.
Recent advancements presented by Hillesland et al. [7]
have reduced the computation time of non-linear opti-
mizers fivefold by exploiting graphics hardware. Despite
these results, the performance is still far from being inter-
active, and more work needs to be done in this area.
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(a) (b) (c) (d) (e) (f)

Figure 5: Painted and recovered shading models: (a) golden (b) yellow highlight with green and blue halos (c) velvet
(d) warm to cool (e) diffuse brick (f) wood consisting of two BRDFs.

Figure 6: Diffuse and Phong specular reflectance
model. Top image was rendered analytically and bot-
tom one was rendered using factorization.

Figure 7: Three views of a triceratops painted with
marble BRDFs and in bottom right a triceratops un-
der new lighting direction viewed from new angle.

(a) (b) (c)

(d) (e) (f)

Figure 8: Material captured from one painting: (a) painted triceratops (b) material map (c) 4-factor approximation.
Material rendered under new view and lighting directions: (d) hybrid of material map and 4-factor approximation (e)
just material map (f) just 4-factor factorization.
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