Texture Partitioning and Packing
for Accelerating Texture-based Volume Rendering

Wei Li Arie Kaufman

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY 11790-4400, USA
{liwei,ari} @cs.sunysb.edu

Abstract properties in both the volume domain (position) and the

To apply empty space skipping in texture-based voltransfer function domain (densities and gradient magni-
ume rendering, we partition the texture space with &udes) into the same sub-volume. Due to the coherence
box-growing algorithm. Each sub-texture comprises o the transfer function domain, voxels having similar
neighboring voxels with similar densities and gradienproperties are probably assigned similar opacities. A rea-
magnitudes. Sub-textures with similar range of densitgonable transfer function generally maps certain densities
and gradient magnitude are then packed into larger onés gradient magnitudes) clustered in a neighborhood of
to reduce the number of textures. The partitioning anthe transfer function domain to fully transparent. Conse-
packing is independent on the transfer function. Duringuently, some of the sub-volumes comprise of only invis-
rendering, the visibility of the boxes are determined byble voxels, which need to be neither stored nor rendered.
whether any of the enclosed voxel is assigned a non-zegince volumes are treated as textures, we use the words
opacity by the current transfer function. Only the subvolume (voxel) and texture (texel) interchangeably.

textures from the visible boxes are blended and only the Note that the textures has to be axis-aligned rectangles.
packed textures containing visible sub-textures reside |@tuitively, the partitioning can be done by region grow-
the texture memory. We arrange the densities and the giiiy, followed by dividing the connected regions so that
dients into separate textures to avoid storing the empiie region borders are approximated by their bounding
regions in the gradient texture, which is transfer functiomoxes. Instead, we propose the so-caltesk growing
independent. The partitioning and packing can be cofinethod that combines the two steps and provides more
sidered as a lossless texture compression with an averagtrol over the partitioning. Figufg 1a shows the pro-
compression rate of 3.1:1 for the gradient textures. Rufiection of the boxes on a slice of the foot dataset, while
ning on the same hardware and generating identical inFigure[1d is a 3D view of the boxes. The color of the
ages, the proposed method however renders 3 to 6 timgsxes represent the type of the boxes. Red means uni-
faster on average than traditional approaches for variogsrm density, in that the voxel densities vary in a small
datasets in different rendering modes. range, while blue boxes contain voxels with high gradi-

Key words: Texture-based volume rendering, empty spa€8t magnitude. The box growing works on unclassified
skipping, graphics hardware, box growing, lossless texdata, hence is transfer-function-independent.
ture compression, texture partitioning, texture packing. To achieve real time or interactive rendering, all or
most of the textures needed for generating the current
1 Introduction view are required to reside in the texture memory. When
A volumetric dataset typically contains a large amounthe size of a dataset exceeds the memory capacity, swap-
of voxels with zero values, and some parts of the volping between the texture memory and the main memory
ume are assigned a fully transparent (invisible) opacitgegrades the performance, due to the limited bandwidth
depending on the transfer function. All these areas do nof the AGP bus. This scenario is more likely to happen
contribute to the rendering and can be ignored. In tradiwhen the gradients are also stored to achieve various il-
tional texture-based volume rendering, the whole volumieimination effects, whose storage is usually three times
is represented as a 3D texture or stacks of 2D texturdarger than that of the densities. Fortunately, a gradi-
All the textures are loaded into the texture memory andnt volume generally has more zero values than the cor-
blended for rendering. responding densities, since both zero and uniform den-
In this paper, we partition the volume space into subsity regions correspond to gradients with zero magnitude.
volumes. The basic idea is to group voxels with similaFortunately, the empty regions in the gradient volume

are transfer-function-independent. Therefore, we choosellts showing the effectiveness of our techniques.
to store the densities and the gradients in separate tex- _
tures. Both the density textures and the gradient textur@s Previous Work

are partitioned by the same set of boxes, but the gradiegpnpty space skipping has been extensively exploited to
sub-textures with only zero gradient magnitude are simyccelerate volume rendering, mainly for software-based
ply skipped for storage and rendering. methods. It avoids processing empty voxels with the help
To reduce the number of textures as well as the oveof various pre-computed data structures, such as proxim-
head of texture setup and switching, we propose a greedy cloud [3] and bounding convex polyhedfa [1]. On the
algorithm that packs multiple variable-sized smaller texether hand, contiguous empty regions and other redun-
tures into larger ones. The smaller textures have similalancy inside volumetric datasets have been utilized for
densities or gradient magnitudes, but are not necessardgmpression to reduce memory requirement as well as
neighbors in the volume space. Fig{ife 1b displays only accelerate rendering. Examples of such compression
the boxes with a non-zero gradient magnitude, while Figare transform-based compression (elg., [5]) and 3D adja-
ure[Jc shows the packed gradient texture. It can be seeency data structurg [1L0], to name a few.
that texture partitioning and packing also serves as a loss-Due to the recent advances of commodity graphics
less texture compression with no explicit decoding for th@ardware, texture-based volume rendering[[4, 11] has
gradient textures that account for most of the memory rexchieved frame rate better than software-based methods
quirement. An alternative is to exploit texture compreswith satisfying image quality. Applying empty space
sion available in standard graphics APIs, such as OpenGikipping in texture-based volume rendering has the po-
and D3D. However, to date, neither of the two supportgential to further accelerate the rendering or makes it pos-
lossless compression, while with the lossy compressiosible to handle larger datasets. Since the shape of a tex-
the errors in the textures, especially those in the gradientgire has to be a rectangle or a box, it is not straightforward
significantly degrade image qualifyl [9]. Furthermore, oufor many of the empty-space-skipping and compression
texture partitioning and packing is a combination of comtechniques, which are designed for software renderers, to
pression and acceleration in that it reduces not only thse applied to hardware accelerated rendering.
memory requirement, but also the number of texels ren- goth Boada et al. [[2] and LaMar et al[][7] subdi-

dered. Even if there is a hardware support for losslesgge the texture space into an octree. They skip nodes of
texture compression and the decompression has no impty regions and use low-resolution textures for regions
pact on performance, it only saves memory. far from the view point or of lower interest. In this paper,

In our method, every box is associated with summasur growing box is not restricted to any regular grid or
rized properties of the enclosed voxels, such as the rangastree and BSP tree node, hence better approximates the
of the densities and the gradient magnitudes. Before reheundaries of different regions with fewer partitions.
dering an image, the visibility of each box is determined Our previous work[8] computes the texture hulls of all
according to whether any of the enclosed voxel is aghe connected non-empty regions. Only the sub-textures
signed a non-zero opacity by the current transfer fungtefined by the bounding rectangles are stored and the
tion. Only the sub-textures from the visible boxes argexels inside the hulls are rendered. However, the tex-
rendered and only the packed textures containing visibt@re hulls have to be recomputed as the transfer function
sub-textures are required to reside in the texture memoighanges and is less efficient in reducing storage for empty
Figurg1e shows a mixed rendering of boxes and texturaggions enclosed by non-empty regions, which unfortu-
Note that it renders only a portion of all the boxes disnately is common in a gradient volume. Besides, tex-
played in Figurg fld. We also apply gradient magnitudeure hulls are limited to 2D textures. THPedtexture
modulation and thus only boxes with non-zero gradiens transfer function independent and can be exploited for
magnitude (blue) are visible in FigUrg 1e. either 2D or 3D texture-based methods.

In the rest of the paper, after a brief review of related Kraus and Ertl[[6] integrate decoders for texture data
work, we present texture partitioning by box growing.into the programable texture hardware. They pack regu-
Specifically, we discuss how voxels with different dendarly divided sub-textures into uniform-sized larger tex-
sities and gradient magnitudes are partitioned with theires. The packing is similar in purpose to our work.
aim of accelerating the rendering. We then present ldowever, their texture blocks are uniformly shaped with
greedy algorithm for texture packing. For conveniencgyower-of-two sizes along each axis, while in our work,
we coined the phrasePed textureshort for partitioned sub-textures are of arbitrary size, and the decoding is im-
and packed texture. Next, we discuss volume renderirgicit by transforming the texture coordinates. Beside,
with PPedtextures. Finally, we present experimental reour focus is on acceleration rather than compression. Ac-

tually, we achieve significant speedup even without thehows the projection of the box set onto a slice, while
compression by simply mapping the unpartitioned texFigure[1d shows the boxes in a 3D view. The type of the

tures on the partitioning boxes. boxes is represented by color, red foriform blue for
gradient and green foother.

3 Texture Partitioning As discussed before, we separate the storage of the gra-

3.1 Partitioning with Boxes dient textures from the density textures. The gradient

Texture partitioning divides the volume (texture) into aand the density textures are partitioned by the same set

set of sub-textures. The partitioning results in a set ocff boxes. Density sub-textures are created for each box

boxes, each defining a sub-volume. The boxes don't ovevr\fhIIe only gradientboxes are associated with gradient

lap and each box is visited at most once, which guarart]gxtures. During rendering, the visibility of the density

tees that no voxel is blended multiple times. Recall th‘,it{sxtures and the gradient textures, if any, of the same box

during rendering, we determine the visibility of a box'> determined independently. We udensity-visibility

based on whether the current transfer function maps arej\%ndgradlent-vmbllltyto dlffere_ntlatg t_hem. Obviously,
ly agradientbox can begradient-visible

of its enclosed voxel opacity to a non-zero value. Ob- We defi t function f h box. Fonrf

viously, just rendering the sub-textures defined by those e't € met ? Cof. unc tlﬁn c?r ez.atc X c:urta orm |

visible boxes generates exactly the same image as thator’’ ItS cost function Is the censity range of Its VOXels,
hile for agradientbox, it is the percentage of its vox-

rendering all the textures. With the aim of acceleratin Is with dient itude. Th * function f
volume rendering, the visible box subset of a good par- S with zero gradient magnitude. 1he cost function for

titioning should encloses as few invisible voxels as posa-‘r.] otherbox is tm negj_gtlve \:e}[lue of |]Esbarea ort\éqflfume.t
sible for various reasonable transfer functions. Naively?'"C€ W€ Search for diferent types ot boxes at ditieren

it can be approached by decreasing the size, or equi Stages, it is unnecessary to compare the cost functions of
lently, increasing the number of the boxes. However, th iffierent box types. The partitioning should balance be-

more boxes we have. the more textures we need to rendrg}(een the number of boxes and the total cost of the boxes.
and the more overhead in setting-up, binding and switcl8.2 Box Growing

ing the textures. Besides, to ensure proper linear integn intuitive way of computing the boxes by region grow-
polation, we need to replicate voxels at the border of thiyg is to find all the connected regions each observing a
boxes|[6]. Hence, more boxes, more duplicated storagesertain criteria, such as low density variance, followed
The most commonly used transfer function is a 1Dby dividing the connected regions so that they can be ap-
lookup table mapping density to color and opacity. Nonproximated by a set of boxes. Instead, we propose box
zero opacity in the transfer function domain usually corgrowing that allows boxes to grow by themselves. The
responds to one or more density ranges. It is naturgkeneral rule is to let the boxes grow as large as possi-
to partition neighboring texels whose densities vary in @ale while keeping the accumulated cost function smaller
small range (a typical value is 32 for 8-bit volume) intothan a predetermined threshold. We illustrate below box
a sub-texture. We refer to a box enclosing such a sulgrowing on 2D textures, although it extends naturally to
texture as ainiformbox. To determine visibility, we only 3D.
need to compare the density range of the sub-texture with Each box is started from a seed texel. The criteria of
the non-zero density range of the transfer function. Thithe seed texel depends on the type of the box to be grown.
strategy encourages the border of the boxes to separ@gr any box type, a seed texel should not be enclosed in
neighboring voxels with large density difference whereny of an existing box. We refer to a texel with nonzero
there is an edge or a surface. gradient magnitude as gradient texel For agradient
However, this only works well for unilluminated ren- box, a seed has to begaadient texel For auniform box
dering. For volume rendering with lighting, only theor another box any untaken texel suffices. Every step
voxels near edges or surfaces contribute to the lightingf growing merges one row or column of texels onto its
In most cases, the uniform boxes on both sides of thgide (one slice for 3D box growing). Each potential re-
edge/surface are visible which involves many voxels witlgion to merge is a box as well, which we refer to as a
zero gradient magnitude for lighting computation. Teside-box. Naturally, we pick the side-box with the mini-
avoid such inefficiency, we first separate the voxels witimal cost function. If after merging the selected side-box,
non-zero gradient magnitude from the rest by a sgtaf the accumulated cost function of the box being grown is
dient boxes. Then, we cover the uniform regions withess than a given threshold, the growing step is executed.
uniform boxes. Because we place a restriction on th®therwise, the growth for this box is completed.
minimal size ofuniform boxes, there may still be some For convenience, we number the sides with an index
spaces left, which are filled byther boxes. Figur¢]la starting from zero. The sides are then visited in ascend-

ing order of the index. It is possible that a cost function In Figure[2, the center of each large dot represents the
of a side-box reaches the smallest possible value, for esample point of a texel and the rectangle is the border of
ample, 0 for auniform box In such a case, we don't needa box. All the texels enclosed or crossed by the box are
to test the remaining sides. To prevent a box from growincluded in a sub-texture associated with the box and are
ing on the same side, we pick the first side to computmapped onto the box. Note that the texels on the bor-
the cost function at each step in a round-robin fashiomer of the box are shared by the neighboring boxes (not
which is the next side of the side-box being merged inlrawn). Because of the sharing, after a box is grown, we
the previous step. If the side of the largest index has beeaplace theakenmark of any texel crossed by the box
reached and there is still an unvisited side for the curremidges tdorder, so long as the texel has at least ame
growing step, the index wraps aroundtoWhile grow- takenneighbor. For example, in Figufé 2, texiel is left
ing, the ranges of the densities and the gradients of tlastaken while texel T2 is changed tdorder so that it
voxels are recorded. Forumiform box, we maintain a can be included in the neighboring box on the right.
singlerangestructure that stores the minimum and max- With linear interpolation, each non-empty texel
imum of the densities. For gradientbox or another spreads the "non-emptiness” to its neighbors in a cir-
box, we maintain a list of suctanges since their maxi- cle of radius one. If a border between empty and non-
mal and minimal densities usually differ greatly, whereagmpty texels lies inside a box, the linear interpolation be-
all the densities cluster into two or more small ranges. Aween them is implicitly done by texture mapping. Since
range of gradient magnitude is associated with each depur rendering algorithm discards textures from invisible
sity range. boxes completely, we need to consider the case when
The following is the box growing algorithm: (1) Take a section of the border coincides with the boundary of
a remaining seed texel, start a new box containing onlyoxes. For gradients, we dilate the regions of ging-
that texel. (2) Find the side-box having the least costlient texeldy one (texel) before partitioning. Therefore,
The cost is set to infinity, if the side-box encloses anyogradient texelies on a border that is not shared by two
takentexel or the side-box is outside the volume, whictgradientboxes. Since all thgradientboxes argradient-
prevents the box from overlapping with other boxes ovisible, it is guaranteed that amyadient texebn one side
getting out of the dataset. (3) Compute the accumulatexf the border has gradientneighbor on the other side in
cost by assuming the side-box is merged. If the cost B neighboringgradientbox. Both of thegradient texels
smaller than a given threshold, merge and mark all theontribute to the lighting computation. The density range
newly added texels amken Otherwise, the growth of of a box considers the texels that are shared with other
the current box ends; go to step (1). boxes. Therefore, all the boxes sharing the border texels
To compute the cost function, we need to traverse adiredensity-visibleand contribute to the interpolation.

the texels inside the side-boxes. This is done incremeg-4 Controlling the Number and Shape of Boxes
tally. For example, if a box grew left in the previous step,

then the cost function for the right remains unchange&f‘creasmg the number of boxes is likely to increase the

while those for the top and the bottom are the previougpproxmatlon accuracy of thg region boundaries. How-
ver, the number of textures increases as well, so does

values combined with the statistics (e.g., range of the derj- .
sity and the gradient magnitude) of the corner texels at t N .”“mber of the replicated texels a}nd texture overhead.
top-left and the bottom-left, respectively. _eS|des, too many boxes_ can possibly turn the geomet-
ric transformation stage into the bottleneck of the ren-
3.3 Mapping the Partitioned Textures dering pipeline and make the rendering even slower than
For rendering, the sub-textures are mapped on geomdtat with the unpartitioned textures. Therefore, we need a
ric primitives derived from the corresponding boxes. Foscheme to keep the number of boxes at a reasonable level.
2D, the primitive is simply the box itself; for 3D, it is During box growing, the thresholds for the cost function
the intersection of the box with a plane at proper positioaffect the size of the boxes, or equivalently, the number
and orientation. Like Kraus and Eril [6], we consider thapf boxes. However, it is not easy to control the number of
the texel values are sampled at the lower corner of tHeoxes simply by adjusting these thresholds.
domain that the texel occupies, rather than the center of Generally, the number of boxes is not an issue for
the domain as specified in OpenGL. When implemensmall datasets, which inspires us to apply box grow-
ing our algorithm in OpenGL, all the texture coordinatesng on down-sampled volumes for large datasets. The
are shifted by the size of one half texel divided by thelown-sampling is applied by dividing the volume into
corresponding size of the texture. (For Nvidia’s textureiniformly sized blocks and each block is then converted
rectangle extension, it is simply the size of one half texahto a single voxel. For the gradient volume, the value
if using .) of each down-sampled voxel is the maximal gradient

magnitude of the corresponding block. For the densitgtead, we have developed a greedy algorithm. The basic
volume, the value of a down-sampled voxel is a rangédeas are similar to the box growing, in that, the target
storing the minimal and maximal densities of the blockbox grows as necessary to add in more textures. The al-
Note that the dilation of the gradient is applied beforgyorithm is as follows: (1) Sort the textures by area (vol-
the down-sampling. Otherwise, the dilated region wilume) in descending order. (2) Initialize the target box
be larger than necessary. The down-sampling is only fao be empty. (3) Add the largest texture to the target.
box growing. The grown boxes are then scaled back arkhere are four choices: add-right, add-right-transposed,
sub-textures are extracted from the original volume. Thadd-top, and add-top-transposed. We choose the one that
thresholds for determining whether a down-sampling igenerates the smallest empty region. The target box then
necessary are different for the gradient volume and thgrows accordingly. (4) Find the largest texture in the list
density volume, which we chose empirically to tiz8% that fills into the empty region generated in the previ-
and2562, respectively. ous step, either in the original pose or transposed. Then,
After a box is grown, if any of its axis-aligned side Subdivide the rest of the empty regions into two smaller
is too small, the box is discarded and all the texels erffMpty regions, and repeat this step recursively. (5) Go
closed are flagged atempted The box growing con- back to step (3) until the box list is empty.
tinues from different seed texels. Discarding small and Figure]c shows the result of the algorithm by packing
sliver boxes improves the shape and the distribution dhe sub-textures in Figufé 1b. Note that the packed texture
the boxes. As shown in Figuré 3, without discarding, thés smaller than half of the unpartitioned texture.
partitioning contains many sliver boxes, which increases There are three strategies for the packing: (1) Pack
the surface of the boxes as well as the texel duplicatioBD sub-textures defined by the box; (2) Pack 2D sub-
This is also the reason that we need to hatfeer boxes textures, in which all the sub-textures from the same box
to fill in the uncovered regions. An important trick is thatare in the same packed texture; (3) Pack 2D sub-textures,
no attemptedexel is used as a seed for growing a box ofyith all the sub-textures from the same slice of the orig-
the same type, without which, the time for box growing isnal volume are in the same packed texture. Strategy 1
typically an order of magnitude longer. Most sliver boxess for 3D textures while the other two are restricted to
are prevented from further growing by existing boxes. IPD textures. The proposed greedy algorithm works for
is very likely that using any of thattemptediexel as a all the three. However, for strategy 2, many sub-textures
seed results in the same sliver box. Ifatemptedexel are of the same size since they are from the same box,
will be in a good shaped box, it can be reached from Bence there are other optimizations to improve the pack-
texel outside the sliver box. ing. Choosing the strategy of packing is correlated to the

choice of the compositing order, discussed next.
4 Texture Packing

Texture partitioning increases substantially the number ot Volume Rendering with PPedTextures
textures, as well as the overhead of texture set up a@enerally, densities and gradients have different empty
switching. The impact is evident when textures are transpaces for skipping. The empty space in the densities
ferred between the graphics card and the host computeepends on the transfer function, while that in the gra-
Many subdivided textures take several times longer thadients corresponds to regions of uniform densities. As
a single large texture, even though the aggregate size mentioned above, we adopt the strategy of storing densi-
the former may be just half of the latter. To solve thisies and gradients in separate textures with the advantage
problem, we pack the sub-textures into a box as tight asf being stored in different layouts, with different com-
possible with no overlap, and stitch them together to crgeression methods, and even have different resolutions.
ate a larger texture. Like partitioning, sub-textures witliThe gradient textures are significantly compressed with
similar texel properties that are likely to be rendered othe proposed approach (see Experimental Results below).
skipped together are packed into the same texture. TiR@rthermore, we utilize the remaining channel in the gra-
sub-textures are not required to be neighbors in the vadlient texture for gradient magnitude for efficient imple-
ume domain. The offsets and the orientations of the sulaentation of gradient magnitude modulation. Another
textures are book-kept in the enclosing boxes which amdvantage is that it is less expensive if the user just wants
used to compute the texture coordinates in the packed taxailluminated volume rendering so that the gradient tex-
tures. tures are not created and loaded at all. It is especially true
Texture packing is similar to the NP-hard bin packingor large datasets, when the texture memory can't hold
or strip packing problems. Therefore, we don't attempt t§0th the density textures and gradient textures anyway.
find an optimal solution, which is also unnecessary. In- There are two choices for the compositing order of

the textures. One is slice-by-slice, in which we slicaday’s graphics hardware, the current implementation of
the dataset in either front-to-back or back-to-front ordethe rendering and the texture packing only supports 2D
For each slicing plane, we render the corresponding sutextures, although the partitioning is done in 3D. Because
textures from the boxes intersected by the plane. Tladl the density voxels have to be held in textures to ac-
other is box-by-box, in which we first determine the visi-commodate all possible transfer functions and we adopt
bility order of the boxes. Then, for each box, slices fronthe slice-by-slice compositing order, we actually use the
the sub-texture are rendered in order. In our experimentsiginal density-texture stacks, instead of cutting out sub-
we found that slice-by-slice outperforms box-by-box notextures and packing them. However, the density textures
ticeably on current graphics hardware. Therefore, ware still mapped to the boxes so that empty regions can be
adopt strategy 3, which is slice-by-slice 2D packing, tskipped for rendering. Whereas for the gradient textures,
put all the sub-textures from the same slice into the sanwehich account for 80% of the memaory requirement, both
texture. partitioning and packing are applied. If we choose the

Whenever the transfer function is changed, the visibilbox-by-box order, both the density and gradient textures
ity of the boxes are refreshed. Recall that the visibilitare preferred to b&®Ped We implement the technique
of the gradient textures and density textures are indepeptoposed by Rezk-Salama et al. [[11] to achieve trilinear
dent_ The density Values Wlth non-zero Opacity of th@terpolation with 2D textures for both the densities and
transfer function are clustered into one or more range#e gradients and use dot-products for per-pixel lighting.
For each box, we then test whether these ranges overtAhough notimplemented yet, it is not difficult fétPed
with the density range(s) of the box. If so, the box is vistextures to support pre-integrated renderirig [4] and light-
ible, otherwise, invisible. The transfer function does not"d by environment map5[9].

affectgradient visibility We have tested our proposed methods on a 128MB
Our system supports three modes of rendering: unifseForce 4 Ti 4600 card. Figurgb[4, 5, &nd 1le show the

luminated, normal illumination, and gradient modula~olume-rendered images of four datasets. To save space,

tion. In the last two modes, the colors and opacitiesnly one image is shown for each dataset, although all

of a rendered image come from two sources: the transf them are timed for all the three rendering modes. The

fer function mapped intensities that can be considered aize of each dataset is given in Taple 1.

self-emission, and the lighting computed from the light

sources and the gradients using the Phong lighting mOd%n dataset. Tab[g 1 compares the frame rates of the pro-
Different rendering modes have different criteria to deters g approach (PPT) with the traditional method (Ba-

mine whether the textures associated with a box is relyjoy “The average acceleration rates for the four datasets

dered. For unilluminated rendering, only the density teX3re 3.8 while the rendered images frétRed textures

tures ofdensity-visibleboxes are rendered. For renderig oy oty the same as those from the traditional texture-

ing with gradient magnitude modulation, only boxes thaf)ased volume rendering. Note that the rendering speed
are bothdensity-visibleandgradient-visibleare rendered. depends on several factors, such as the size of the win-
Their density textures and gradient textures are used &W, the zoom factor, the sampling distance, and when
compute self-emission and lighting, respectively, and thgy yering withPPedtexture, also the transfer function.
opacity is multiplied by the gradient magnitude. The illu- ., vever. within each row of the tables showing the frame
minated rendering without gradient modulation is diVideQates, the values are obtained under exactly the same con-

into two interchangeable step; for gach slice.. In ONition, except for employing different rendering methods.
step, the boxes that are bathnsity-visibleandgradient-

visibleare rendered to contribute both self-emission and

lighting. In the other step, boxes that atensity-visible ~Dataset Size Basic | PPT | Speedup
but not gradient-visibleare rendered for self-emission ™ foot | 152 x 256 x 220 | 10.3 | 35.6 35
only. Note that the projections onto the image plane of neuron | 384 x 256 x 200 | 12.0 | 60.0 5.0
the boxes rendered in the two steps do not overlap. head | 256 x 256 x 225 87 | 16.8 1.9

engine | 256 x 256 x 110 | 18.3 | 35.1 1.9

Figureg[4 shows the unilluminated rendering of the neu-

6 Experimental Results

In our implementation, the density volume is storedra

. . ble 1: Rendering speed (frames/sec) of unilluminated

as paletted textures, while the gradient textures contain ; ; . .
. ; . . rendering with unpartitioned textures (Basic) and PPed
the normalized gradients and the gradient magnitudes 0 res (PPT)
RGBA format. Considering that accessing a 3D texture ’

is still much slower than accessing a 2D texture on to-

Figure 1: Algorithm overview: (a) A slice of the foot dataset is partitioned by growing boxes. (b) Gradient sub-textures
defined by the boxes enclosing all the voxels of non-zero gradient magnitude. (c) The gradient sub-textures in (b) are
packed into a single larger texture, which is significantly smaller than the original slice. (d) A 3D view of all the boxes.
(e) Rendering of the foot with mixed boxes and textures. Only the visible boxes are rendered, according to the current
transfer function.

Figures[b and]le - Data | Original | Before | After | Compre.
are images lighted @ o Set size packing | packing rate
with PPed gradient @ ® | @ taken foot 34.2 12.6 14.9 2.3
textures using the: : 9 Uptaken neuron| 78.6 11.1 12.2 6.4
Phong model. Like ce o head 59.0 295 33.9 1.7
unilluminated eN- o 00 e®e® e @ bOXB engine 28.8 12.8 14.6 2.0

dering, the image
quality is identical to Fjgure 2: The alignment of a

those rendered from pox with its enclosed texels.
the unpartitioned

textures. Figurg|5a is rendered with normal illumination,
while Figures[bb andl|1le show images rendered wit
gradient magnitude modulation.

Table 2: Compression rates of the gradient textures

(a)Head. (b) Engine.

Figure 5: Datasets rendered with Phong lighting.

() Table[3 demonstrates
_ o _ the system performance
Figure 3: (a) Without and (b) with discarding small and 5, jlluminated render-
sliver boxes. ing. ”Basic” denotes

the rendering speed us-
Table[2 shows the compression rates of the gradiefig unpartitioned tex-

textures. The original size (in MB) is the number of vox+yres for either normal
els times four, since each gradient (and its magnitudglumination or gradient
requires four bytes. The columns under "Before packmagnitude modulation, Figure 4: Dataset rendered
ing” and "After packing” are the total size (in MB) of the since the two run at the without illumination.
partitioned sub-textures, including the replicated texel$ame speed for unparti-

before and after packing, respectively. Note that packioned textures. "lllum.” and "Mod.” refer to normal il-
ing increases the requirement of texture memory by 10%ymination and gradient modulation based on BfRed
The mean value of the compression rate is 3.1:1. textures. The average speedup factors for normal illu-

Data | Basic | lllum. | Mod. | [llum. Mod.
set FPS | FPS | FPS | speedup| speedup
foot 12.0 | 56.5 | 68.5 4.7 5.1
neuron| 10.2 | 42.6 | 56.5 4.2 55
head 3.1 | 239 | 24.0 7.7 7.7
engine| 124 | 19.0 | 245 1.5 2.0

Table 3: Rendering Speed (frames/sec) with unparti-
tioned textures (Basic), and PPedtextures in normal il-
lumination (Illum.) and gradient magnitude modulation
(Mod.).

Acknowledgments

This work has been supported by ONR grant
N000140110034 and NIH grant CA82402, and CAT
Biotechnology grant. The datasets are courtesy of
National Library of Medicine Visible Human, Center for
Visual Computing of Stony Brook University, and UNC.

References
[1] R. Avila, L. Sobierajski, and A. Kaufman. To-

wards a Comprehensive Volume Visualization Sys-
tem. IEEE Visualizationpages 13-20, 1992.

[2] I. Boada, I. Navazo, and R. Scopigno. Mul-
tiresolution Volume Visualization with a Texture-
Based Octree. The Visual Computerl7(3):185—

mination and gradient modulation are 4.5 and 5.1 on 197, 2001.

the GeForce 4 for the four datasets. Remember thaf3] D. Cohen and Z. Sheffer. Proximity clouds, an ac-
with PPedtextures, gradient modulation never renders celeration technique for 3D grid traversalhe Vi-
more boxes than normal illumination for the same trans- sual Computgrl1(1):27—-28, 1994.

fer function (see Sectidrj 5), and we use the same numb %] K. Engel, M. Kraus, and T. Ertl. High-Quality
of register combiner stages for the two lighting modes. Pre-Integrated Volume Rendering Using Hardware-
Consequently, the frame rates and the speedup factors p.celerated Pixel Shadingorkshop on Graphics

of the gradient modulation are greater than or equal to

Hardware pages 9-17, 2001.

those of the normal illumination mode. In gradient mod-

ulation mode, the ratio of the number of texels rendered[s]
with PPedtextures versus unpartitioned textures equals
approximately to the compression rate. However, the
speedup factors are always greater than the corresponding

S. Guthe, S. Roettger, A. Schieber, W. Strasser, and
T. Ertl. High-quality unstructured volume rendering
on the pc platform.Workshop on Graphics Hard-
ware pages 53-60, 2002.

compression rates, since fewer textures improve cachg] M. Kraus and T. Ertl. Adaptive Texture Maps.
performance. In some cases, such as for the head dataset, Workshop on Graphics Hardwarepages 7-15,
texture compression enables the texture memory to hold 2002.

all the PPedtextures while it can't for the unpartitioned [7] E. LaMar, B. Hamann, and K. Joy. Multiresolu-
texture, hence the acceleration rate is significantly larger. tjon techniques for interactive texture-based volume

7 Conclusion

visualization. IEEE Visualization pages 355-362,
October 1999.

[8] W. Li and A. Kaufman. Accelerating volume ren-

We propose texture partitioning and packing as a loss- dering with texture hullsSymposium on Volume Vi-
less texture compression which is suitable for applica- sualization and Graphicages 115-122, October
tions based on graphics hardware. We propose box grow- 2002.

ing to efficiently divide the texture domain into a set of ng] M. MeiRner, S. Guthe, and W. StraRer. Interactive

boxes. The sub-textures defined by the boxes are the
packed with a greedy algorithm. With our technique, we

Lighting Models and Pre-Integration for Volume
Rendering on PC Graphics Accelerato@raphics

have achieved average speedup factors ranging from 3 to Interface pages 209-218, May 2002
6 for various datasets at different rendering mode. The ' '

partitioning and packing are independent on the transfétOl

function.

J. Orchard and T. Mller. Accelerated splatting us-
ing a 3D adjacency data structur&raphics Inter-
face pages 191-200, June 2001.

In texture partitioning, allowing sub-textures to ro-[11] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner,
tate or shear produces smaller boxes. Besides, the sub- ang T, Ertl. Interactive volume rendering on stan-
textures for packing do not need to have the same reso- gard PC graphics hardware using multi-textures and
lution. In either case, the compression becomes lossy. In myti-stage rasterization.Workshop on Graphics

the future, we will attempt to improve thePedtexture
with such lossy compression.

Hardware pages 109-118, August 2000.

	Introduction
	Previous Work
	Texture Partitioning
	Partitioning with Boxes
	Box Growing
	Mapping the Partitioned Textures
	Controlling the Number and Shape of Boxes

	Texture Packing
	Volume Rendering with PPed Textures
	Experimental Results
	Conclusion

