
A Gestural Interface to Free-Form Deformation

Geoffrey M. Draper

Brigham Young University
draperg@byu.edu

Parris K. Egbert

Brigham Young University
egbert@cs.byu.edu

Abstract

We present a gesture-based user interface to Free-Form

Deformation (FFD). Traditional interfaces for FFD

require the manipulation of individual points in a lattice of

control vertices, a process which is both time-consuming

and error-prone. In our system, the user can bend, twist,

and stretch/squash the model as if it were a solid piece of

clay without being unduly burdened by the mathematical

details of FFD. We provide the user with a small but

powerful set of gesture-based “ink stroke” commands that

are invoked simply by drawing them on the screen. The

system automatically infers the user’s intention from the

stroke and deforms the model without any vertex-specific

input from the user. Both the stroke recognition and FFD

algorithms are executed in real-time on a standard PC.

Key words: Computer graphics, user interfaces, pen-

based interfaces, free-form deformation

1 Introduction

3D computer graphics is an active area of research in

computer science today. The explosive increase in power

of modern 3D graphics hardware, coupled with the

equally dramatic decrease in cost, has made 3D modeling

well within the reach of the average user’s desktop PC.

Unfortunately, much of this power remains unharnessed.

Perhaps the scarcity of 3D modeling applications for the

average user can be partially explained by the steep

learning curve generally associated with such systems.

One very nice step towards simplifying the interface

of 3D modeling was Teddy [8]. Teddy allows users to

create and edit 3D geometric models through a simple set

of commands that can be drawn on the screen with a

mouse or stylus. 3D modeling is thus cast into the

universally appreciab le paradigm of pen-and-paper

sketching. The work presented in this paper expands the

Teddy system to include Free-Form Deformation, or FFD

[13], a very powerful mechanism for deforming 3D

objects. Our system, nicknamed Freddy, allows users to

bend, twist, and otherwise contort 3D geometric ob jects

as easily as they would a lump of clay, without any prior

experience with 3D modeling or free-form deformation.

This concept of using mouse or stylus strokes as input is

called a “gestural interface” (also known as a “pen-based”

or “sketching” interface).

Free-Form Deformation [13] is a technology that has

a history entirely separate from that of gestural interfaces.

Many researchers have extended or otherwise improved

the original algorithm [3, 4, 6, 7, 11] since its

introduction, but the basic idea has remained the same. A

3D object, usually represented as a po lygonal mesh, is

surrounded by a lattice of control vertices. As the user

displaces the points in the control lattice, the vertices of

the polygon mesh are proportionally displaced as well.

This proven technique works very well for many

applications. However, setting up the FFD lattice and

moving its control points to the desired positions can be

a cumbersome, time-consuming process.

Freddy combines the efficiency and expressiveness of

gestural interfaces with the power of free-form

deformation. We have taken three of the most common

functions of FFD: the ability to twist, bend, and

stretch/squash [9] 3D geometric models, and created a

gestural interface for each. By sliding the cursor over the

object, the user can create complex deformations that

would otherwise require the precise placement of many

individual control points.

2 Related Work

This paper merges two previously separate technologies:

gestural interfaces and free-form deformation. We now

present a brief overview of the research previously

conducted in both of these areas.

2.1 Gesture-Based Interfaces

While the traditional command-line interface (CLI)

dominated much of early computing, the advent of the

Macintosh and Windows operating systems popularized

the now-ubiquitous graphical user interface (GUI). CLIs

often have great power and extensibility, whereas GUIs

are arguably easier to learn. Neither interface, however,

completely succeeds at intuitively mimicking people’s

own perception of how things are done in the real world.

Gesture-based interfaces are an attempt to duplicate, to

some extent, the motions people commonly use to

accomplish certain tasks.

The notion of a gestural interface has been around

since the 1960's, when Coleman [2] created a system for

editing text using proofreader’s marks. However, the

majority of work in this area began in the early 1990's, as

inexpensive graphics hardware became more readily

available. Rubine [12] did much to popularize the study

of gestural interfaces by defining a formal set of geometric

“features” that one could extract from the user’s input

strokes, and thereby differentiate between them.

An early example of a gestural interface applied to

3D modeling is Zeleznik, Herndon, and Hughes’

SKETCH [14] system. In SKETCH, users can create a

wide variety of 3D objects by drawing simple shapes on

the screen. Teddy [8] leveraged off of SKETCH’s

strengths and corrected many of its weaknesses. Rather

than building an extensive collection of recognizab le

strokes, Teddy utilizes a small but powerful set of gestures

that allows the rapid construction and editing of rotund

3D objects. As mentioned earlier, our system, Freddy,

extends the functionality of Teddy.

In Freddy, the operations of twisting, bending, and

stretching 3D objects can be done as easily as drawing

lines on the screen. The following section presents a

review of the FFD algorithm and describes some

extensions to it that have been proposed since its

introduction.

2.2 Free-Form Deformation

Barr [1] was the first to introduce the current notion of

geometric deformation, although it was constrained to

operations about a single axis, and the deformable space

was limited to modification by only a few parameters.

FFD improves upon this early research in solid modeling,

both in expressive power and flexibility.

FFD as we know it today was introduced by

Sederberg and Parry [13]. In FFD, a geometric model is

enclosed within a parallelepiped lattice of control vertices.

Any point X on the model with Cartesian coordinates in

world space has corresponding (s,t,u) coordinates in

lattice space. When the control vertices are displaced, the

Cartesian coordinates of the model are re-computed based

on their previously calculated (s,t,u) values. T his simple

technique is quite effective at producing dramatic

deformations, even for lattices of relatively few control

vertices.

Various researchers have enhanced the original

algorithm in subsequent years. Coquillart [3] permits not

only parallelepiped lattices, but prismatic and cylindrical

ones as well. MacCracken and Joy [11] extend

Coquillart’s idea by allowing lattices of arbitrary

topology, using an extension of Catmull-Clark

subdivision. Crespin [4] unites many of the previous

approaches to FFD into a generalized method called

Implicit FFD , or IFFD. In IFFD, rather than using a

single lattice, the deformation tool consists of a number of

“deformation primitives” which can be used in tandem.

The FFD methods discussed thus far require the

explicit positioning of the control lattice. Hsu [7]

simplifies the interface somewhat by allowing the user to

directly reposition one or more vertices of the object

itself, rather than manipulating the control lattice. While

this does make it easier for novices, it still retains the

necessity of dealing with the model on a per-vertex level.

Di Fiore and Van Reeth [5] have proposed one

approach to combining gestural interfaces with FFD.

Their 3D sketching tool for animators uses free-form

strokes like Teddy, but represents them internally as cubic

Bézier splines. Their system also supports a simple two-

stroke “bend” operation similar to Teddy’s. (See section

3.1 for our d iscussion of Freddy’s “bend” function.)

Although other deformation algorithms are available

[10], we have chosen to implement our system using

traditional FFD due to its simplicity and near-universal

familiarity. Our approach simplifies the FFD interface by

replacing manual vertex displacement by a series of

high-level gesture-based modeling operations. This

technique significantly decreases the learning curve

traditionally associated with FFD, while retaining much of

its power and flexibility.

3 Freddy Overview

Teddy has proven to be a very successful tool for use in

creating and editing 3D objects. A complete review of

Teddy's interface is given by Igarashi et al. [8], so we will

not discuss it in detail here. Freddy maintains all of the

features of Teddy, and in addition adds significant

functionality and usability. The user interaction in Freddy

is accomplished entirely through the drawing of strokes on

the screen with a mouse or stylus. The gestures used to

initiate particular deformations are intended to be

suggestive of their real-world counterparts. For example,

to bend an object, the user draws a curved stroke similar

in appearance to the object’s desired final shape. To twist

an object, the user draws a roughly spiral-shaped curve

indicative of the direction and axis of the desired twist.

To stretch or squash an object, the user simulates the

action of pushing or pulling on the object by drawing a

line on the screen and dragging it closer to or farther away

from the object. The system’s gestural interpretation

algorithms extract specific features [12] from the user’s

stroke, and displace the vertices of the FFD lattice

accordingly.

Once the vertices of the FFD lattice are displaced, the

deformation of the object is computed using the

well-known FFD algorithm [13] summarized above. Our

primary goal in designing this system was to shield the

user from the details of FFD, so the FFD lattice is

invisible by default. When the program starts, the FFD

lattice is constructed with the same dimensions as the

width, height, and depth of the object.

Each operation in Freddy can be broken down into

four steps: stroke recognition, stroke interpretation, FFD

lattice displacement, and object deformation. W e will

now discuss each of these in more detail.

3.1 Stroke Recognition

Most of the time a user spends using Freddy will be in its

default “idle” state. While the system is in this state, the

user can view, ro tate, and zoom in and out of the current

object. Whenever the user draws a stroke on the screen,

however, Freddy exits the idle state and enters the stroke

recognition state. The stroke is then transformed into

world coordinates via a trivial projection of their 2D pixel

positions into their corresponding locations in 3D space.

Once this is done, the system extracts a few basic

“features” of the stroke [12] in order to determine which

of Freddy’s stroke interpretation methods should be used.

These features include:

• initial location (does the stroke start inside or outside

of the object?)

• silhouette intersection count (how many times does

the stroke pass inside or outside of the object?)

• closure (does this stroke form a closed loop?)

• modality (is the system currently in a special mode,

such as creation, extrusion, bend, stretch/squash?).

Freddy’s first-pass gesture-recognition algorithm uses

these basic features to categorize the stroke. The gesture-

recognition state represents only a preliminary sorting; no

modeling or deformation action is taken until control is

passed to the “stroke interpretation” state, described next.

3.2 Stroke Interpretation and Lattice Displacement

Once a stroke has been categorized using Freddy’s

gesture-recognition capabilities, control is then passed to

the stroke interpretation module, which specifies how

objects are selected, bent, twisted, or stretched/squashed.

Selection

By default, the FFD operations described in the following

sections affect the entire object. This can be changed,

however, by selecting specific regions of the object. To

select a sub-region, the user draws a closed stroke that

passes both inside and outside the object. The new lattice

is formed from the bounding box of the input stroke. This

does not, however, imply that every vertex of the model

that is inside the new lattice will be affected by

subsequent deformation operations. Only those vertices

of the object whose (x,y) coordinates were inside the

polygon formed by the selection stroke are truly

“selected,” and only these vertices will be subject to

deformation in future FFD operations. (An example is

shown later on in Figure 13.)

Bending

The bend function is performed by drawing a stroke that

begins inside the object and crosses the border of the

object only once, as shown in Figure 1. While the original

Teddy program did support a “bend” operation, it was a

two-stroke operation initiated by entering a special mode.

Our FFD-based bend function differs in that it is invoked

with only one stroke, and requires no special modality.

The basic idea behind the bend operation is to fit the

shape of the lattice as closely as possible to the shape of

the input stroke. The deformed object will likewise be

bent along the contours of the stroke.

Figure 1: Example of Bend operation

This is accomplished by translating and rotating

either the horizontal or vertical planes of the FFD lattice

to follow the shape of the stroke as closely as possible. In

the bend operation, the lattice’s planes are rota ted about

the z (depth) axis. To determine whether the horizontal or

vertical planes of the lattice are to be rotated, Freddy

employs a simple heuristic which samples the first ten

points of the input stroke. If the y-displacement of the

first ten points exceeds the x-displacement, we rotate the

horizontal planes of the lattice. Otherise, we rotate the

vertical planes of the lattice.

Let the planes of the lattice be numbered from 0 to n,

and the plane which is closest to the stroke’s starting point

be numbered k, where 0 # k # n. To determine the exact

angle, 2i, by which to rotate each plane of the lattice, we

divide the user's input stroke into n - k equid istant

segments, and calculate the tangent of the y-displacement

(“rise”) and x-displacement (“run”) between the endpoints

of each segment. Each plane of the lattice is rotated about

the z axis by 2i. In addition to being rotated, each plane

in the lattice is also translated in y and in x by the rise and

the run. In this manner, the planes of the lattice truly

follow the contours of the stroke, as shown in Figure 2.

Figure 2: The lattice follows the contours of the input

stroke

W e treat the stroke as if it were a continuous curve

rather than a connected set of discrete points. The system

calculates the total length of the stroke by summing the

Euclidean distance between each discrete point in the

stroke. It then interpolates to find the virtual positions of

n - k + 1 equally-spaced points along the stroke,

regardless of how many or how few points were in the

original stroke.

The system then proceeds with the lattice

displacement state, as discussed earlier. A pseudocode

representation of this algorithm is as follows:

let n = the number of planes in the lattice,
 minus 1
 k = the plane closest to the stroke’s
 starting point; such that 0 # k # n
 pk...pn = n-k+1 equidistant points along
 the stroke

 begin
 for every plane i in lattice from k to n
 rise = pi.y - pi-1.y
 run = pi.x - pi-1.x
 2i = tan

-1(rise / run)
 rotate plane i by 2i

 translate plane i by rise and run
 end.

Figure 3 shows how the previous example would

appear to the average user, with the lattice invisible.

Figure 3: Overview of bending operation (a) initial state

(b) bending stroke (c) result of bend (d) rotated view

Twisting

To visualize the basic idea behind Freddy’s twist

operation, imagine holding a slab of clay with both hands,

and then twisting the clay by rotating your hands in

opposing directions. The clay between your hands would

be twisted, while the clay under your hands would be

simply ro tated. (See Figure 4.)

Figure 4: Physical analogy of

Freddy’s twist operation

The stroke required to initiate a twist operation is an

attempt to simulate the physical act of twisting. To twist,

the user draws a stroke that starts inside the object and

then crosses the object's silhouette at least twice. The first

and last points of the stroke represent the effective

placement of each hand, and the direction the stroke is

heading as it exits/enters the object represents the

direction each hand would turn. The part of the object

that lies between the endpoints of the stroke is twisted,

while the rest of the object is merely rotated in opposite

directions.

To determine which axis the lattice planes should be

rotated about, the system samples the first ten points of

the input stroke. If the x-displacement exceeds the y-

displacement, we rotate the horizontal planes of the lattice

about the vertical axis. If the y-displacement exceeds the

x-displacement, we rotate the vertical planes of the lattice

about the horizontal axis.

To illustrate the twist operation, we will step through

the example shown in Figures 5 and 6. Suppose the

lattice has n+1 horizontal planes along the y axis,

numbered from 0 at the bottom to n at the top . In this

example, n = 6. W e calculate which two vertices in the

lattice have the smallest linear distance to the first and last

points of the input stroke, respectively. The planes

containing these vertices are labeled k1 and k2. The planes

at and below k1 and the planes at and above k2 are rotated

uniformly about the y axis, while the planes between k1

and k2 are rotated incrementally, imparting a gradually

twisted look to the object. In our current example, k1 = 1

and k2 = 5.

To determine the degree of rotation, 2, we first

determine the y-displacement (“rise”) and the x-

displacement (“run”) between the first and last points of

the stroke, and divide the rise by the run. Let 2 be one-

half the arctangent of this value. We then rotate the

planes below k1 by 2/2, and planes above k2 by -2/2.

Those planes between k1 and k2 are rotated incrementally

to create a smooth blending between 2/2 and -2/2. In our

current example, the angle of the slope between the first

and last points of the stroke is approximately 90°, so 2 .
45°. The planes are rotated as shown in Figure 6.

The algorithm can be summarized in the following

pseudocode.

let 2 = angle between first and last points in
 input stroke
 n = number of planes in lattice, minus 1
 k1,k2 = planes of lattice closest to
 first and last points in stroke;
 0 # k1 # k2 # n
 begin
 for i = 0 to k1
 rotate plane i by 2/2
 for i = k1 to k2
 rotate plane i by 2/2 - 2*i/(1+k2-k1)
 for i = k2 to n
 rotate plane i by -2/2
 end.

Figure 5: Example of twist operation

Figure 6: The twist operation, showing the

amount of rotation applied to each plane

Figures 7 and 8 show examples of twist strokes of

lesser and greater degrees of twist. The stroke in Figure

7 is acute, and would therefore result in a relatively small

2, while the stroke in Figure 8 is obtuse and produces a

somewhat greater 2.

 Figure 7 Figure 8

In Figure 9, we show an example similar to Figure 5,

as it would appear with the lattice invisible:

Figure 9: Overview of twisting operation (a) initial state

(b) twist stroke (c) result of twist (d) rotated view

Stretch and Squash

This operation is initiated by drawing a stroke completely

outside the boundary of the object, which the user can

subsequently click and drag either closer to or farther

from the object. If the user drags the stroke away from

the object, the object will be “stretched” proportionally.

Likewise, if the user drags the stroke closer to the object,

it will be “squashed.”

The system handles straight strokes slightly

differently than it does curved strokes. The “straightness”

of the stroke is measured by the length o f the stroke’s

bounding-box diagonal divided by the total length of the

stroke. For our purposes, a “straight” stroke is one whose

straightness is greater than 0.95. A straight stroke

deforms the object globally, while a curved stroke

deforms a specific region of the object.

We will begin by describing how the system treats

straight strokes. When the user has finished dragging the

straight stroke to its final location, the system stores the

overall displacement of the input stroke between its old

and new locations. It also calculates and stores the

distance between every point in the displaced input stroke

and every point in the contro l lattice. Additionally, for

every point in the lattice, the system stores the longest

distance between that point and any point on the stroke.

After this preprocessing, the system computes the

deformation as described below:

let d(x,y) = x,y displacement between old and
 new stroke location
 Ri = longest distance from point i in
 lattice to any point on undisplaced
 stroke
 *i,s = distance from point i in lattice to

 a given point s in undisplaced
 stroke
 Pi = an (x,y,z) point in the lattice

 begin
 for every point s in the stroke:
 for every point i in the lattice:
 Pi(x,y) += d(x,y)(Ri - *i,s) / Ri
 end.

Using this simple algorithm, the lattice is more

greatly deformed in the areas nearest the input stroke.

The input stroke acts as a sort of magnetic field, with its

force to attract or repel gradually lessening as the distance

from it increases. Consequently, those polygons which

are nearer to the input stroke experience a greater degree

of deformation, and those that are farther away receive

less deformation. Notice how in Figure 10, the penguin’s

head and neck are much taller than before, while its feet

are largely unchanged.

Figure 10: The object receives a greater degree of

deformation in regions closer to the input stroke.

Curved strokes are treated somewhat differently. The

primary difference is the notion of a “zone of influence.”

The “zone of influence” can be thought of as an invisib le

parallelogram that is created by projecting a line segment

between the initial and final positions of the stroke’s first

point, and another line segment between the initial and

final positions of the stroke’s last point. The remaining

two sides of the parallelogram are formed by connecting

the first two segments together, as shown in Figure 11.

Figure 11: A close-up view of the “zone of influence”

created by sweeping an area through the initial and

final positions of the stroke

When the lattice deformation is computed, a standard

polygonal “inside/outside” test is run on each vertex in the

lattice to see if it lies within the parallelogram. Only those

vertices of the lattice that fall within this zone are

displaced. This allows localized deformations without

explicitly selecting a sub-region by hand, as shown in

Figure 12.

Figure 12: Deformation of FFD lattice for curved

Stretch/Squash strokes

We mentioned above that when the user manually

selects a sub-region of the object, subsequent deformation

operations affect only the selected part of the object, even

if the lattice happens to include other parts of the object.

A practical example of this behavior is illustrated in

Figure 13, using Freddy’s stretch and squash operation. In

that example, we attempt to deform the scorpion’s tail.

The lattice that Freddy constructs around the selected

region (the tail) also happens to cover much of the

scorp ion’s head. The deformation only affects the area

that the user had selected.

(a) initial state (b) selection stroke (c) resized lattice

 (d) stretch stroke (e) result (f) rotated view

Figure 13: Localized Stretch & Squash

We show in Figure 14 a few more examples of

Freddy’s stretch and squash operation, with the lattice

invisible as a typical user would see them.

Figure 14: Overview of stretch and squash operation.(a)

initial state (b) stretch/squash stroke (c) drag the stroke

(d) deformed object

3.3 Object Deformation

Once the vertices of the FFD lattice have been displaced

as directed by the appropriate stroke interpretation

algorithm, Freddy enters the “deformation” state. In this

state, the FFD transformation, as summarized in Section

2.2 above, is applied. The full details of this algorithm

are masterfully described by Sederberg and Parry [13];

therefore we shall not dwell further on it here.

Upon completion of this step, Freddy clears its

display and renders the newly deformed object into the

viewport. The old lattice is discarded as well, and the

system reconstructs a new parallelepiped lattice based on

the object’s new dimensions.

3.4 Putting it all Together

In Figure 15, we show an example that demonstrates the

combined power of Freddy’s FFD capabilities.

(a)initial position (b)selection stroke (c) selection in blue

(d) rotated view (e) bend stroke (f) resulting

deformation

(g) selection stroke (h) stretch operation (i) result

 (j) twist stroke (k) result (l) rotated view

Figure 15: A hybrid example of Freddy’s FFD

operations

4 Implementation

Our system is written entirely in Java, building upon the

original Teddy code base. The new code implements the

standard FFD algorithm, as well as algorithms to

recognize and interpret the user's input strokes and deform

the lattice accordingly. Freddy should run on any

platform for which there exists a Java Virtual Machine

(JVM). In particular, Freddy has been successfully tested

on Linux, IRIX, and Windows platforms.

5 Results and Conclusion

In this paper, we have presented Freddy, a system which

greatly simplifies the way people can use Free-Form

Deformation. The common tasks of bending, twisting,

and stretching 3D objects are accomplished via simple

“ink stroke” gestures that are easy to learn and use.

Traditional FFD user interfaces have required the user to

manually set up and transform the vertices of the FFD

lattice. Once the lattice is configured, however, the FFD

algorithm executes quickly on today’s machines. Thus,

the limiting factor has commonly been the user interface,

rather than the hardware or the algorithm itself. The

examples shown in this paper were all performed in a

matter of seconds, including user interaction time, on a

mid-range PC. By removing the need to manipulate the

FFD lattice by hand, we have given FFD the potential for

true real-time interaction by users of varying levels of

expertise.

We stated earlier that one of the fundamental ideas

behind gestural interfaces is to mimic the actions one

would use to perform tasks in the real world. We feel that

we have accomplished this in the design of our interface

for FFD. The input strokes required to initiate bending,

twisting, and stretching were all inspired by the physical

metaphor of clay modeling, and in our experience, people

generally feel comfortable using and experimenting with

Freddy’s interface.

While the interface is admittedly not precise enough

for refined, mission-critical modeling, it serves as a very

convenient tool for brainstorming and rapid prototyping.

6 Future Work

In this paper, we unite two well-respected topics of

research, gestural interfaces and free-form deformation.

Previous work in both of these areas had been limited

primarily to two separa te domains of computer science:

human/computer interaction and 3D geometric solid

modeling.

While Freddy’s algorithms and interface are robust

enough for common deformation operations, they may

produce erratic results if the user draws unexpected

strokes. While this is acceptable for a research prototype,

more robust recognition schemes will be required if this

system is to be adapted for widespread use. In particular,

the “twist” operation has perhaps the greatest room for

improvement. The recognition and deformation

algorithms for “twist,” as well as the interface itself, are

not as straightforward as for the “bend” and “stretch”

functions. Hence, this feature tends to be the most

difficult for new users to grasp.

The system currently does not scale well to large

numbers of repeated deformations. For example, applying

several “twist” operations in succession to a model can

quickly render it unrecognizable. It is an open question as

to whether or not the system should permit the user to do

this; however, checks and balances could be put into place

to prevent the model from deteriorating too rapidly.

Another potential area for enhancement would be to

use FFD lattices of arbitrary topology [11]. Our current

implementat ion suppor ts only the tra dit ional

parallelepiped lattice described by Sederberg and Parry

[13]. Lattices of arbitrary topology, combined with

add itional and more robust input strokes, may possibly

allow for more precise control of the deformation by the

user.

References

[1] A.H. Barr. Global and Local Deformations of Solid

Primitives. SIGGRAPH 84 Proceedings, pages 21-

30, 1984.

[2] M.L. Coleman. Text Editing on a Graphic Display

Device Using Hand-Drawn Proofreader’s Symbols.

Proceedings of the Second U niversity of Illinois

Conference on Computer Graphics, pages 283-290,

1969.

[3] S. Coquillart. Extended Free-Form Deformation: A

Sculpturing Tool for 3D Geometric Modeling.

SIGGRAPH 90 Conference Proceedings, pages 187-

196, 1990.

[4] B. Crespin. Implicit Free-Form Deformations.

Implicit Surfaces, 1999.

[5] F. Di Fiore and F. Van Reeth. A Multi–Level

Sketching Tool for “Pencil–and–Paper” Animation.

Proceedings of AAAI Spring Symposium on Sketch

Understanding, pages 32-36, 2002.

[6] G. Hirota, R. Maheshwari, and M.C. Lin. Fast

Volume-Preserving Free Form Deformation Using

Multi-Level Optimization. Fifth Symposium on Solid

Modeling, pages 234-245, 1999.

[7] W.M. Hsu, J.F. Hughes, and H. Kaufman. Direct

Manipula tion of Free-Form Deformations .

SIGGRAPH 92 Conference Proceedings, pages

177-184, 1992.

[8] T. Igarashi, S. Matsuoka, H. Tanaka. Teddy: A

Sketching Interface for 3D Freeform Design.

SIGGRAPH 99 Conference Proceedings, pages

409-416, 1999.

[9] Lasseter, John. Principles of Traditional Animation

Applied to 3D Computer Animation. SIGGRAPH 87

Conference Proceedings, pages 35-44, 1987.

[10] F. Lazarus, S. Coquillart, P. Jancène. Axial

Deformations: An Intuitive Deformation Technique.

Computer-Aided Design, 26(8), pages 607-613,

1994.

[11] R. MacCracken and K.I. Joy. Free-Form

Deformations With Lattices of Arbitrary T opology.

SIGGRAPH 96 Conference Proceedings, pages 181-

188, 1996.

[12] D. Rubine. Specifying Gestures by Example.

SIGGRAPH 91 Conference Proceedings, pages 329-

337, 1991.

[13] T .W. Sederberg and S.R. Parry. Free-Form

Deformation of Solid Ge om etric Models .

SIGGRAPH 86 Conference Proceedings, pages 151-

160, 1986.

[14] R.C. Zeleznik, K.P. Herndon, and J.F. Hughes.

SKETCH: An Interface for Sketching 3D Scenes.

SIGGRAPH 96 Conference Proceedings, pages 163-

169, 1996.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

