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Abstract
Ray tracing techniques need supersampling to reduce

aliasing and/or noise in the final image. Since not all the
pixels in the image require the same number of rays, su-
persampling can be implemented by adaptive subdivision
of the sampling region, resulting in a refinement tree. In
this paper we present a theoretically sound adaptive sam-
pling method based on entropy, the classical measure of
information. Our algorithm is orthogonal to the method
used for sampling the pixel or for obtaining the radiance
of the hitpoint in the scene. Results will be shown for
our implementation within the context of stochastic ray
tracing and path tracing. We demonstrate that our ap-
proach compares well to the ones obtained by using clas-
sic strategies based on contrast and variance.

Key words: Adaptive sampling, antialiasing, contrast,
entropy, pixel colour, ray tracing, stochastic sampling.

1 Introduction

Ray tracing [28] is a point-sampling-based technique for
image synthesis. Rays are traced from the eye through
a pixel to sample radiance at the hitpoint in the scene,
where radiance is usually computed by a random walk
method [25]. Since a finite set of samples is used, some of
the information in the scene is lost. Thus, aliasing errors
are unavoidable [8].

These errors can be reduced using extra sampling in
regions where the sample values vary most. In order to
obtain reliable data, the edge of an object, the contour
of a shadow, or a high illumination gradient area, would
need a more intensive treatment than a region with almost
uniform illumination. This method of sampling is called
adaptive sampling[8, 17]: A pixel is first sampled at a
relatively low density. From the initial sample values, a
refinement criterion is used to decide whether more sam-
pling is required or not. Finally, all the samples are used
to obtain the final pixel colour values [15].

Adaptive sampling can be implemented by adaptive
subdivision of the sampling region. This subdivision
generally corresponds to a binary tree or a quadtree
[28, 10, 17]. Subdivision is triggered by the result of
a refinement test based on a given error measure. New

samples are then added to the newly created subregions.
We can also trade aliasing for noise usingstochasticray
tracing, as the human visual system is more sensitive to
structured aliasing artifacts than to noise [17, 9].

In this paper we introduce a new refinement scheme for
adaptive sampling, complementary to the one defined in
[20], with the important feature that it is based on the re-
cursive expression of the Shannon entropy, i.e. its group-
ing property [5]. The Shannon entropy is the classical
measure ofinformation[22], where information is simply
the outcome of a selection from among a finite number of
possibilities. In our context, entropy is interpreted as a
measure of the degree of homogeneity of a pixel or sub-
pixel. The idea behind the new scheme is to obtain suf-
ficient information(homogeneity) in the refinement tree
which results from the recursive decomposition of a pixel
into subpixels.

One of the main features of this approach is that it uses
a sound theoretical framework, namelyinformation the-
ory, to obtain the refinement process. We will show that
the recursive decomposition of entropy provides us with
a natural method to deal with a refinement tree. Our re-
finement scheme, valid for any pixel sampling and ray
tracing method, will be applied to stochastic ray tracing
and compared with a contrast-based technique [2, 15, 9]
and a variance-based criterion [13, 19, 26].

The organization of this paper is as follows: in section
2 we present some previous work, in section 3 we intro-
duce an adaptive sampling algorithm based on entropy, in
section 4 we discuss our results, comparing them with the
ones obtained by classic measures, and, finally, in section
6 we present our conclusions.

2 Previous Work

In this section we present previous work on the areas
of supersampling refinement criteria, information theory
and entropy-based contrast measures.

2.1 Supersampling Refinement Criteria
Three principal subproblems make up the process of ob-
taining a good quality image: efficient sample generation,
adaptive control of the sampling rate, and filtering for im-
age reconstruction [17]. Many approaches are to be found



to deal with them:

1. Different pixel sampling methods have been intro-
duced, among them: jittered sampling [4, 8], Pois-
son disk sampling [8, 15, 14], hierarchical sampling
[10], complete stratification at each refinement level
[21], importance sampling [23], and quasi-Monte
Carlo sampling [11, 16].

2. Diverse refinement criteria for adaptive sampling,
based on colour intensities and/or scene geometry,
can be found to control the sampling rate: Dippé
and Wold [8] present an error estimator based on
the RMS signal to noise ratio and also consider its
variance as a function of the number of samples;
Mitchell [15] proposes a contrast [2] based on the
characteristics of the human eye; Lee et al. [13],
Purgathofer [19], and Tamstorf and Jensen [26] de-
velop different methods based on the variance of the
samples with their respective confidence intervals.

3. Samples are filtered to produce the final pixel val-
ues. Different filter shapes have been used in image
reconstruction: box filter, triangular filter, Gaussian
filter, multi-stage filter, etc. (see [9]).

For the purpose of this paper we review three com-
monly used refinement criteria: contrast, depth differ-
ence, and variance of the samples.

Mitchell, in [15], uses a contrast measure [2] for each
RGB channel defined by

C =
Imax − Imin

Imax + Imin
, (1)

whereImin andImax are, respectively, the minimum and
maximum light intensities of the channel. Supersampling
is done if any contrast is higher than a given threshold.
Mitchell proposes RGB threshold values (0.4, 0.3 and
0.6, respectively) based on the relative sensitivity of the
visual system.

Simmons and Śequin [24], within an interactive ren-
dering context, use acolour priority value based on con-
trast and perception [15, 9] combined with a geometric
measure for refinement, thedepth difference, given by
1 − dmin

dmax
wheredmax anddmin represent maximum and

minimum distance.
The basic idea of variance-based methods [13, 19, 26]

is to continue sampling until the confidence level or prob-
ability that the true valueL is within a given toleranced
of the estimate valuêL is 1− α:

Pr[L ∈ (L̂− d, L̂+ d)] = 1− α. (2)

Mitchell considers that variance is a poor measure of vi-
sual perception of local variation [15]. Kirk and Arvo

showed that these methods are biased and proposed a
simple correction scheme [12].

Refinement criteria have also recently been applied in
the image-based rendering field to weight pixel colour
for reconstruction purposes [18] and adaptive sampling
strategies [6, 7]. Also Bolin and Meyer [1] have devel-
oped a perceptually-based approach using statistical and
vision models.

2.2 Information Theory
The Shannon entropyH(X) of a discrete random vari-
ableX with values in the setX = {x1, . . . , xn} is de-
fined [22] as

H(X) = −
n∑
i=1

pi log pi, (3)

wheren = |X |, pi = Pr[X = xi] for i ∈ {1 . . . n}, the
logarithm is taken in base 2 (in this case, entropy is ex-
pressed in bits), and also the convention that0 log 0 = 0
is used by continuity. As− log pi represents theinforma-
tion associated with the resultxi, the entropy gives the
average information oruncertaintyof a random variable.

Some relevant properties [22, 5] of the entropy are:

• 0 ≤ H(X) ≤ log n.

• If we equalize the probabilities, entropy increases.

• Grouping:

H(p1, . . . , pn) =H(p1 + p2, p3, . . . , pn)

+ (p1 + p2)H(
p1

p1 + p2
,

p2

p1 + p2
).

(4)

It is worth mentioning the casen = 2, with p1 = p and
p2 = 1 − p. The entropy of this probability distribution
is calledbinary entropy(Figure 1) and is given by

H(X) = −p log p− (1− p) log(1− p). (5)

2.3 Entropy-based Contrast Measures
In this section we summarize the previous work on
entropy-based contrast measures done by Rigau et al.
[20].

Thepixel channel entropywas defined by

Hc = −
Ns∑
i=1

pi log pi, (6)

wherepi = ci∑Ns
i=1 ci

represents the channel colour frac-

tion of rayi with respect to the sum of the colours of the
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Figure 1: Binary entropy corresponding to the probability
distribution {p, 1− p} of random variable X . The maxi-
mum value, H(X) = 1, is obtained when p = 1

2 and the
minimum value, H(X) = 0, when p = 0 or p = 1.

same channel of all the rays passing through the pixel,
andNs is the number of rays traversing the pixel. Pixel
channel entropy was interpreted as the channel colour ho-
mogeneity of the rays passing through the pixel. It can
also be considered as a measure of the pixel colour qual-
ity.

In order to give a pixel contrast measure between 0 and
1, the pixel channel entropy is normalized withlogNs.
Thus, thepixel channel contrastwas defined by

Cc = 1− Hc

logNs
(7)

and represents the channel colourinhomogeneityof a
pixel. When considering all the colour channels (Nc),
the globalpixel colour contrast[20] was given by

Cc =
∑Nc
i=1 ωiC

c
i ci∑Nc

i=1 ωi
, (8)

where the channel contrasts are weighted by perceptual
coefficientsωi andci = 1

Ns

∑Ns
i=1 ci, the colour average

of channeli of all the pixel rays (channelimportance).
Similar to (6), thepixel geometric entropyHg was de-

fined by

Hg = −
Ns∑
i=1

pi log pi, (9)

where nowpi = cos θi/d
2
i∑Ns

i=1 cos θi/d2
i

represents the geometric

fraction of rayi with respect to the sum of the geometric
factors of all the rays traversing a pixel. The geometric
information of each ray is given by the angleθi which
the normal forms at the hitpoint with the ray, and also by
the distancedi between this point and the eye. Similar to
the case of colour, the geometric entropy represents the

pixel geometric homogeneity. Analogous to (7), thepixel
geometric contrastCg was defined by

Cg = 1− Hg

logNs
, (10)

which represents the geometric inhomogeneity of a pixel.
It is also possible to obtain alternative colour and geo-

metric contrast measures by substituting the pixel entropy
for the binary pixel entropy, which is computed by only
considering the maximum and minimum values captured
by the pixel (in formula (5), the probability distribution
would be{ min

min + max ,
max

min + max}).
A combination of colour and geometric contrasts was

considered. This combination enables the influence of
both measures to be graduated with a coefficientδ be-
tween 0 and 1:

C = δCc + (1− δ)Cg. (11)

3 Adaptive Sampling Algorithm-based on Entropy

In this paper, our attention focuses on obtaining an adap-
tive algorithm centred mainly on the refinement phase.
The approach to be used in refinement will be to evaluate
the similarity or homogeneity of theinformationprovided
by the set of samples in a given region. If the information
obtained from this region is heterogeneous we will refine
it until each subregion is uniform. This process is a natu-
rally recursive process, giving rise to a refinement tree.

3.1 Recursive Entropy Tree
Generalizing the grouping property (4), the entropy
can be recursively decomposed in the following way:
Let X be a discrete random variable over the set
X = {x1, . . . , xn} with probability distributionp =
{p1, . . . , pn} wherepi = Pr[X = xi]. Let us con-
sider a partition of the setX in m-disjoint setsG =
{G1, . . . ,Gm} where |Gj | = nj . Let us associate the
discrete random variableY to G with probability dis-
tribution q = {q1, . . . , qm} where qj =

∑nj
k=1 pjk

(jk ∈ {1, . . . , n}), and a new discrete random vari-
ableYj to each setGj with probability distributionrj =
{rj1 , . . . , rjnj } whererjk = pjk

qj
. Then

H(X) =
m∑
j=1

qjH(Yj)−
m∑
j=1

qj log qj . (12)

This formula can be written asH(X) = Hin + Hout

whereHin =
∑m
j=1 qjH(Yj) andHout = H(Y ) =

−
∑m
j=1 qj log qj represent, respectively, the hidden in-

formation (pending to be discovered) and the information
already acquired in the descent of the tree (see Figure 2).

In our case, formula (12) can also be interpreted (for
one colour channel (6)) in the following way:
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Accordingly to (12), all have the same value: H(a) =
H(b) = H(c) = 2.445.

• H(X) represents the entropy of the whole image.

• H(Yj) represents the entropy of each root pixel.

• Probabilityqj is the colour of pixelj divided by the
sum of the colours of all pixels. It can be considered
as the “importance” of pixelj.

The decomposition of entropy (12) can be recursively ex-
tended to the subpixels. This interpretation can also be
applied to geometric entropy (9).

In our approach, probabilities are obtained by stochas-
tic sampling. From the definition of entropy, we can
see that when the number of samples tends to infinity,
entropy also goes to infinity. In fact, we can consider
that the original continuous scene contains infinite infor-
mation. The following sampling algorithm willcapture
or extractmore information from the regions with more
sample variation.

3.2 Algorithm
In this section we show how a practical adaptive sampling
algorithm can be obtained from the entropy tree. For the
sake of simplicity, in the following analysis we only con-
sider the colour information of a channel, although the
final algorithm will take the combination of colour and
geometric contrasts (11) into account, as in [24].

A general description of our algorithm is as follows:
On the image plane we sample each pixel to capture the
colour of hitpoints and thus evaluate the information con-
tent (entropy) from the colour probability distribution. If
the information of a pixel is high enough, i.e. the rays

give us sufficient colour homogeneity on that pixel, re-
finement is not made, and the colour reconstruction of
this pixel is done. When it is not high enough, this pixel
is subdivided into regions and we proceed in the same
way for each region (subpixel).

This recursive process defines a tree with two well-
separated phases for a pixel: refinement (tree descent)
and colour computation (tree ascent). The descent in the
refinement tree can be interpreted as a progressive infor-
mation gain. The information acquired at each level is
added together so that, at the end of the refinement pro-
cess, the total information from the tree is the sum of the
information obtained over all the branches (see formula
(11)).

Before introducing the algorithm we will give the def-
initions of the data used in it. Concerning the tree data
structure, the root (leveln = 0) is the image, leveln = 1
corresponds to theNp pixels of the image, and levels
n > 1 to the subpixels. Each newn-node (i.e., node
of n > 0 level), is sampledNs times and it can poten-
tially be subdivided inNr regions or subpixels of equal
size (Ns ∈ NrN+). Other data referred to in the refine-
ment phase are described in Table 1. To compute the final
colour of a pixel, we follow a path through the tree (see
Figure 3). In the analysis below, we focus our attention
on the tree-pathk of lengthN (see Table 1) going from
pixel k0 to subpixelkN−1. In this path,pn represents the
probability of the tree-branch at leveln andqn the im-
portanceof then-node. In our algorithm, this quantity
appears in a natural way due to recursive decomposition
of the entropy (see (12) and Figures 2 and 3). The value
of importance is given by

qn =

{
1, n = 0,
p0 · · · pn−1 = c0,k0∑

i∈R0
c0,i

∏n−1
`=1 p`, n > 0.

(13)
For our purposes,qn needs not to be normalized, thus
we omit normalization constant

∑
i∈R0

c0,i and we take

qn = c0,k0

∏n−1
`=1 p`. The computation ofqn can then be

simplified to (see proof in Appendix):

qn =
cn

Nr
n−1 . (14)

Now we proceed to explain the algorithm. In the
descent phase we sample ann-node and compute the
contrast using expression (11). In (8) we must substi-
tute the channel importancec by qn and we take RGB
perceptual coefficients [27]ωr = 0.213, ωg = 0.715
andωb = 0.072 which capture the sensitivity of human
colour perception.

Thus, for eachn-node, the colour contrast (8) converts



name description relations

Rn Set of regions of ann-node |R0| = Np, ∀n>0|Rn| = Nr
k Path:kn is the region taken at leveln k = (k0, k1, . . . , kN−2, kN−1),N > 0, ∀n<Nkn ∈ Rn
Sn Set of samples of an-node |S0| = NsNp, ∀n>0|Sn| = Ns

Sn,i Set of samples of an-node regioni ∈ Rn |Sn,i| = |Sn|
|Rn| , Sn =

⋃
i∈Rn Sn,i

c(s) Colour obtained with samples RGBvalue
cn Average colour in then-node cn = 1

|Sn|
∑
s∈Sn c(s)

cn,i Average colour in then-node regioni ∈ Rn cn,i = 1
|Sn,i|

∑
s∈Sn,i c(s), cn = 1

|Rn|
∑
i∈Rn cn,i

pn Probability of regionkn of n-node pn =
∑
s∈Sn,kn

c(s)∑
s∈Sn c(s)

= cn,kn∑
i∈Rn cn,i

qn Probability of then-node qn =
∏n−1
`=0 p`

Table 1: Description of the data in the refinement phase. The constants are: Np, the number of pixels in the image,
Nr, the number of equal area regions of an n-node, and Ns, the number of samples cast in an n-node (Ns ∈ NrN+).

into

Ccn =
Nc∑
i=1

ωiC
cn
i qni (15)

and the colour and geometric combination (11) will be

Cn = δCcn + (1− δ)Cgn . (16)

Note that this expression could be calculated from the
respective binary versions of colour and geometric con-
trasts (see section 2.3).

In the algorithm, we subdivide when the contrast for
inhomogeneity ofn-node is greater than a given thresh-
old (Cn > ε). Thus, the ascent phase begins when the test
fails (Cn ≤ ε). This happens because either the contrast
(which represents the colour inhomogeneity) or the im-
portance (qn → 0 for growingn) are low. In the colour
reconstruction process, eachn-node in the path provides
its colour estimation̂cn computed fromSn where each
colourc(s) is filtered.

The final colour of ann-node is given by

cn =

{
ĉn, if Cn ≤ ε,∑
i∈Rn cn,i, otherwise,

(17)

wherecn,i is the final colour ofi-region of then-node.
Finally, we getc1 for the colour of the pixels (or equiv-
alentlyc0,k0 in the path considered). An example of the
process is shown in Figure 3.

Observe that importance sampling is naturally inte-
grated in the algorithm. Following importance sampling
criterion a function should be sampled proportionally to
its value which is what we get with our adaptive descent.

4 Empirical Results

In Figure 5 we present comparative results with different
techniques for the test scene (Figure 4). We compare the

following methods:

a) Classic contrast: A recursive adaptive sampling
scheme based on contrast by channel (1) (with
thresholds proportional to the visual system)
weighted by their respective channel colour average
[9, 24]. The maximum recursive level has been lim-
ited to 4 (Figure 5.a).

b) Importance-weighted contrast: The same as ina but
each channel contrast is weighted with the respec-
tive importanceq (14), as in our approach (Fig-
ure 5.b).

c) Variance-based contrast: Statistical approach (2) [26]
(Figure 5.c).

d) Entropy-based contrast: Our approach (17) taking
only colour contrast,δ = 1 in (16) (Figure 5.d).

All methods have been implemented on theRender-
Park [3] software (www.renderpark.be ). Observe
that our approach can be easily implemented on any stan-
dard hierarchical algorithm using importance (14) and the
new refinement criterion (16), with negligible additional
cost.

In a, b, andd, the number of subdivisions,Nr, is4 and
8 rays,Ns, were cast in a stratified way at eachn-node
(pixel or subpixel) to compute the contrast measures for
the refinement decision. These rays were re-used at the
next levels in the tree. Inc, gropus of 8 rays were added
in a stratified way until meeting the condition of the crite-
rion (2) withα = 0.1 andd = 0.025. An implementation
of classic path-tracing with next event estimator [3] was
used to compute all images. The parameters were tuned
so that all four test images were obtained with a similar
average number of rays per pixel (60) and computation

www.renderpark.be
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Figure 3: A tree-path k = (k0, k1, k2) of length N = 3.
The number of regions of an n-node is Nr = 4. We show
the computation of the k0-pixel colour: c0,k0 = c1 from
the refinement (red) and reconstruction (blue) phases.
The probabilities pn and importances qn (Table 1) are
computed in the refinement phase to evaluate the entropy
contrast (16).

cost. A constant box filter was used in the reconstruction
phase for all the methods.

The resulting images are shown in columni of Figure 5
with close-ups in columniii . Sampling maps are given in
column ii (warm colours correspond to the highest sam-
pling rate and the cold colours to the lowest).

The overall aspect of the images in Figure 5.i shows
that our supersampling scheme performs best. Observe,
for instance, the reduced noise in the shadows cast by the
objects. This is further checked in the close-up images in
Figure 5.iii . Observe also the detail of the sphere shadow
reflected on the pyramid. It must be noted that we man-
aged to improve the classic contrast approach ina greatly
by including the importance used in our scheme (com-
pare results in Figure 5.a with Figure 5.b). Comparison
of the sampling temperature maps in Figure 5.ii shows a
better discrimination of complex regions of the scene in
the entropy case against the classic contrast case. This ex-
plains the better results obtained by our approach. More-
over, the variance-based approachc (Figure 5.c) also per-
forms better than the classic contrast-based methodsa
(Figure 5.a) andb (Figure 5.b). Its sampling map also
explains why it performs better. However, it is unable to
render the reflected shadows under the mirrored pyramid
and sphere with precision (see close-up in Figure 5.c.iii ).

Figure 4: Reference image used in the test in Figure 5
with 1024 rays per pixel.

In Figure 6.a we show another scene obtained with
our approach using an average of 200 rays per pixel and
δ = 0.95 (16). Observe, in Figure 6.b, how well the sam-
pling map works out both the geometric and colour de-
tails, as in the shadow contours on the walls.

5 Conclusions

We have presented a new adaptive sampling algorithm for
ray tracing based on the recursive decomposition of the
entropy of a pixel, computed from the sampled radiances
through the pixel. Entropy is shown to be a natural mea-
sure for the criterion used in the refinement tree. Thus,
we use a sound theoretical framework (information the-
ory) in order to establish the refinement criterion.

The results obtained show that the new refinement al-
gorithm offer a substantial improvement over the classi-
cal techniques, both contrast and variance-based. From
this, it could be deduced that entropy captures better the
inhomogeneity of a region. Future work will address the
problem of finding automatic criteria for the threshold
used in the refinement test and the analysis of the bias
incurred by our algorithm, in the sense of Kirk and Arvo
[12] and Tamstorf and Jensen[26].
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(a.i) Classic contrast (a.ii ) Sampling map of (a.i) (a.iii ) Close-up of (a.i)

(b.i) Importance-weighted contrast (b.ii ) Sampling map of (b.i) (b.iii ) Close-up of (b.i)

(c.i) Variance-based contrast (c.ii ) Sampling map of (c.i) (c.iii ) Close-up of (c.i)

(d.i) Entropy-based contrast (d.ii ) Sampling map of (d.i) (d.iii ) Close-up of (d.i)

Figure 5: Results of comparisons: (a) adaptive sampling scheme based on classic contrast, (b) importance-weighted
contrast, same as in (a) but weighting with importance q (14), (c) variance-based method, and (d) entropy-based
method with only colour contrast (δ = 1). Column (i) shows the resulting images, (ii) the colour temperature sampling
map of (i), and (iii) a close-up region of (i). Average number of rays per pixel is 60 in all methods, with a similar
computation cost.



(a) Entropy-based contrast

(b) Sampling map of (a)

Figure 6: (a) An image obtained by our approach with
200 rays per pixel on the average and δ = 0.95. (b)
Colour temperature map of the sampling to obtain (a).

Appendix

Observe first that for a given path andn > 0, the colour
cn of an n-node is more accurate than the colour aver-
age of its respective region,kn−1, in the preceding level.
Thus, the accuracy ofpn, and at the same time ofqn,
can be increased by substitutingcn−1,kn−1 for cn. Let us
prove now (14) by induction:

Proof. Forn = 1,

qn = c0,k0 ≈ c1 =
c1

Nr
0 =

cn

Nr
n−1 .

Hypothesis:∀0<`<nq` = c`
Nr`−1 . Then, forn > 1

qn = c0,k0

n−1∏
`=1

p` = qn−1pn−1

=
cn−1

Nr
n−2

cn−1,kn−1∑
i∈Rn−1

cn−1,i

≈ cn−1

Nr
n−2

cn
cn−1Nr

=
cn

Nr
n−1 .
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A dynamic mesh-based display representation for
interactive rendering. In Bernard Péroche and
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