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Abstract

Modeling complex realistic objects is a difficult and time
consuming process. Nevertheless, with improvements in
rendering speed and quality, more and more applications
require such realistic complex 3D objects. We present
an interactive modeling system that extracts 3D objects
from photographs. Our key contribution lies in the tight
integration of a point-based representation and user inter-
activity, by introducing a set of interactive tools to guide
reconstruction. 3D color points are a flexible and ef-
fective representation for very complex objects; adding,
moving, or removing points is fast and simple, facilitating
easy improvement of object quality. Because images and
depths maps can be very rapidly generated from points,
testing validity of point projections in several images is
efficient and simple. These properties allow our system
to rapidly generate a first approximate model, and allow
the user to continuously and interactively guide the gen-
eration of points, both locally and globally. A set of inter-
active tools and optimizations are introduced to help the
user improve the extracted objects.

1 Introduction

In the last decade, the realism of images and 3D objects
has greatly improved, but it is still quite difficult and time
consuming to create models of complex realistic objects,
such as those often appearing in nature. Flower beds,
plants, trees, tangled rope, crumpled paper, junkyards,
etc., are all examples of very complex objects because
of the combined presence of numerous surface details,
textures, tiny structures, occlusions, holes, discontinu-
ities, specularities, etc. There is however an important
need in computer graphics applications (games, film, vir-
tual/augmented reality) for convincing models of realistic
complex 3D objects.

For certain classes of such complex objects, spe-
cialised modeling methods have been designed with great
success;e.g., mountains, waves, plants, cities, etc. How-
ever, each method is restricted to its class of objects,
and cannot easily be extended to other classes. Image-
based methods [16, 10, 3, 17] are quite general, and can
produce objects that are visually very complex. They

reparametrize radiance information from a large number
of input images to display new views of a 3D object with
little or no underlying geometry. Unfortunately these rep-
resentations require lots of memory, and most have dif-
ficulty handling mutual occlusion and illumination with
other objects. This makes their complete integration in
a typical rendering system cumbersome and sometimes
impossible.

Reconstruction of 3D objects from photographs is a
particularly powerful way to model real objects. With
known camera parameters, correspondences between im-
age pixels are used to compute the 3D location and color
of a surface. Even though good results have been ob-
tained with these methods (see Section 2), reconstruction
of complex and detailed geometry is still cumbersome.

To improve the quality of the extracted objects, we
believe it is very important to appropriately involve the
userin the reconstruction process to guide the spatial and
spectral quality of the reconstructed objects. To support
such user interaction we need to be able tointeractively
display and manipulate the (partially) reconstructed ob-
jects during the modeling process. Good support for in-
teractivity is the main design choice in the system we
present here.

Reconstructing complex objects from images also calls
for a flexible object representation, which can beinter-
actively rendered. 3D points augmented with color or
texture attributes are such a general representation that
do not require the computation of an intermediate repre-
sentation such as a triangulation for display. They offer
good visual quality when displayed from an appropriate
distance, and are also well adapted for efficient visibility
culling and levels of detail, facilitating interactivity. Sev-
eral point-based rendering systems have recently been in-
troduced [18, 21, 26]; we use an adaptation of [26].

Based on these two requirements, user interaction for
modeling and efficient display of complex objects, we
present an interactive system to extract aplausibleset
of 3D color points from images. The method and the
point-based representation are general enough to model
any kind of object, but their power is better exploited with
complex textured objects. The modeling process is quite



simple: a random 3D point is generated in a 3D zone of
interest and projected into all the images to gather its col-
ors. If a sufficient number of these colors confirm that the
point is plausible, it is kept. Depth maps from this plau-
sible set of 3D points are constructed at certain intervals
in time to ignore images where the generated 3D point
would be hidden.

We provide a set ofinteractive tools, which allow the
user to guide the iterative solution in critical zones of in-
terest, to modify various quality thresholds and recheck
the validity of the set of 3D points, to eliminate outlier
3D points, to fill undesired holes, etc. This user control
is a key element of our approach. It is made possible at
every stage of the reconstruction process, because we use
our point-based representation for efficient rendering of
(possibly partially reconstructed) complex objects.

After a brief survey of methods to reconstruct surfaces
from images (Section 2), we describe the various ele-
ments of our interactive system (Section 3). Results and
statistics follow (Section 4). We finally conclude and
present directions for further research.

2 Previous Work

In this paper, we address the problem of interactively re-
constructing complex objects from images. We will thus
not discuss techniques based on 3D scanners (lasers and
structured light) or on other sensors. We will also re-
strict our research to already calibrated images,i.e., im-
ages for which the camera parameters have been com-
puted. A vast literature exists on exploiting various cues
to reconstruct objects, such as silhouettes, shadows, fo-
cus/defocus, motion, shading, etc. We will not specifi-
cally use these cues, even though they could improve the
reconstruction process by providing additional informa-
tion. The reader interested in the numerous methods de-
veloped over the years should consult books [1, 9, 14, 28],
surveys [34, 2], and collections of papers [13] dedicated
to these topics.

Reconstructing 3D geometry from one, two, or more
photos is a fundamental problem that has received exten-
sive attention in computer vision. The more traditional
approach is based on shape-from-stereo [7]. It consists
in identifying a feature in one image and searching for
a correspondence amongst a number of probable candi-
dates in another image along its epipolar line (projection
of the line of sight of the feature onto the other image).
Very good results have been obtained in controlled con-
ditions, such as the proximity of viewpoints, spatial or
temporal smoothness of adjacent features, or particular
shapes. Unfortunately, a good and complete solution still
remains a very difficult problem since occlusions, holes,
sharp edges, noise, shading, etc., complicate the match-

ing process. In a general 3D scene, there exists an infinity
of equivalent shapes that can reproduce the original pho-
tos.

An alternative of particular interest to us is volumet-
ric object reconstruction [23, 15, 8, 25]. The approach is
based on building a 3D volumetric object that is consis-
tent with the images, rather than directly extracting 3D in-
formation from the images. In a typical process, 3D space
is voxelized and voxels considered invalid (e.g., outside
the silhouette in one image) arecarved outfrom the vol-
umetric representation. Besides testing silhouettes, infor-
mation in each voxel about visibility, transparency, shad-
ing, etc., can all be tested with the images forphoto-
consistency. The set of color voxels or a surface fitted
to these voxels can then be projected to form new images
of the object; impressive results have thus been obtained.

Most of the above techniques are designed to be fully
automatic, because the major applications of reconstruc-
tion from images have been in object recognition or col-
lision avoidance in robotics. Furthermore, partial, and
therefore non-photorealistic results are often quite satis-
factory for these applications. Photorealism of the ex-
tracted surfaces has only received more attention over the
last decade.

Since it is difficult to determine the appropriate
quality-level of photorealism for various applications,
the elusive additional requirements of photorealism are
often better served by integrating the user in the re-
construction process. In fact, reconstruction of archi-
tectural 3D models with simple polygonal shapes and
high quality textures has greatly benefited in realism
from direct interventions of the user. A number of re-
search [5, 22, 19, 12, 11, 24, 6] and commercial systems
[30, 32, 33] have been developed on this premise. Un-
fortunately, only simple polygonal surfaces are extracted
from these systems. Manually positioning polygons is
clearly a time consuming and sometimes impossible task
for complex objects. Even with the help of stereo-based
algorithms [5, 12], ambiguities in these complex objects
create severe difficulties that a user might be able to cor-
rect.

In the next section, we describe how we integrate user
intervention at different stages of our interactive system
for point-based reconstruction from images. It was in-
spired and has several similarities with the more tradi-
tional algorithms discussed above, but by tightly integrat-
ing our point-based representation with the interactive ex-
traction process, we produce a more flexible tool to cre-
ate improved models of complex objects. Its design also
allows easy integration of most past and future improve-
ments in the related algorithms. As an example, we show
in Section 4.4 how our limited implementation of voxel



coloring [23] can be integrated in our system.
Another interactive point-based modeling system was

recently presented [20]. It uses structured light to gener-
ate 3D points in regions of interest by letting the user ma-
nipulate the 3D real-world model with respect to a fixed
camera. While many goals are identical, their system suf-
fers from the inherent limitations of structured light,e.g.,
hard to use in large outdoor scenes and in presence of
highly-specular surfaces.

3 Point Modeling

Our point modeling basic process starts with an initializa-
tion step followed by three main loops (point generation,
interactive cleanup, and user-driven refinement). These
are executed to produce a set of 3D color points approx-
imating the 3D objects displayed in the images. The al-
gorithm is summarized next. In what followssufficient
numberis a user-controlled parameter.

1. Initialization :
(a) Take photos (images)

(b) Calibrate the images

(c) Define a 3D zone of interest (envelope)

(d) Draw a mask for each image (optional)
2. Generation Loop:

(a) Generate a random 3D point within the zone of in-
terest

(b) Validation of 3D points:

(i) Project the 3D point into each image; gather its
associated colors from everyvisible image

(ii) Keep the 3D point if the color distances are below
a thresholdin a (user controlled)sufficient num-
ber of images

(c) Visibility: From time to time, recompute a depth
map for each image from the set of 3D points

3. Interactive Cleanup:
• Cleanup by reevaluation

(a) Interactively increase the value ofsufficient
number, recompute depth maps

(b) Discard the 3D points failing the new criteria
(sufficient numberand depth maps)

• Cleanup by rendering:
For each view (i.e., original image):

(a) Generate an image of the set of 3D points from
this view

(b) Compare the pixel colors in the original image
with those in the generated image

(c) Discard the 3D points resulting in incorrect im-
age pixels

4. User-directed Refinement Loop:

• Interactively define a smaller zone of interest and re-
strict point generation, jittering, etc., to this zone,or

• Interactively select a 3D point and use it as a source
for 3D point filling, or

• Jitter the 3D points to increase their plausibility,or

• Merge nearby 3D points

5. Display the resulting set of 3D points.

A typical work session is depicted in Fig. 1 for the re-
construction of an intricate rope. An associated web site
[31] provides higher resolution images and more detailed
statistics. An accompanying video available on this web
site demonstrates the interactivity of our system in action.

Note that steps 2 to 4 of our algorithm do not need to
be executed sequentially. In practice the user starts with
step 2, and then decides which of steps 2 to 4 is the next
appropriate step. Since our underlying model, the 3D
point set, can be rendered immediately and interactively,
the user always has direct feedback about his actions and
can quickly react and control the process efficiently. This
feedback is possible after only a few seconds of interac-
tion, even of very partial reconstructions of the objects
(see Fig. 1).

In the rest of this section, we describe each individual
step in detail.

3.1 Initialization
The input of our system is a set of calibrated digital im-
ages. We useImageModelerTM from RealViz[33] to cali-
brate a relatively small (2-20) set of photos of resolutions
between1080×720 and2160×1440 taken from a Canon
EOS-DS30 digital camera. We try to preserve object col-
ors as much as possible in the different photos by keep-
ing the same picture exposure and zoom factors. In our
examples, the photos are at approximately the same dis-
tance from the object, reducing distortion problems. This
way, a 3D point from a mostly-lambertian surface appears
similar in all photos. ImageModelerTM is an interactive
calibration system exploiting feature points and epipolar
geometry; it has proven quite robust in our scenes. Any
other standard camera calibration algorithm could also be
used (e.g., [29]).

Once the images have been calibrated, we select a
primitive (any closed polyhedron) and transform it in 3D
space withImageModelerTM to define anenvelopearound
the object to reconstruct. The projections of this 3D enve-
lope in all images must enclose the object to reconstruct.
The user can also draw a mask (withgimpor Photoshop)
for each image to indicate pixels clearly outside the ob-
jects to reconstruct.



a) 4 of the 14 input images (reso-
lution 2160× 1440); pencils help
the one hour manual calibration with
ImageModelerTM [33]

b) Views of four calibrated images
with the reconstructed 3D object

c) The 3D envelope enclosing the
object, and thus all the views of the
object in each image

d) Initial set of 3D points without
depth information; 17,000 3D points
generated in 45s, lying mostly on the
hull of the object

e) After depth map computation for
each image, more points are gener-
ated in interior regions of the object
(10s), improving color matching (to-
tal 45,000 points)

f) Reducing the color threshold and
reevaluating all 3D points with new
visibility removes weaker (lower
quality) 3D points in 3s

g) Automatically generating a total
of 86,000 3D points in 45s

h) Manual generation of more 3D
points in user indicated regions dur-
ing 5 min (total of 115,000 points)

i) Applying jittering on the 3D
points initially improves the posi-
tions of 15% of the points, converg-
ing to 2% after 3 min

Figure 1: Typical interactive modeling session, using our system.



3.2 Generation of 3D Points
The basic process generates 3D points uniformly dis-
tributed within the envelope. To achieve this distribution,
we randomly generate a 3D point in the bounding box
of the envelope. To determine if it is interior to the en-
velope, we count the intersections of the envelope with
a ray in a random direction. More systematic generation
patterns, such as jittered points in a regular 3D grid (sim-
ilar to the space carving approach [15, 8, 25]), did not
improve the result significantly; random sampling proved
much faster (in order of seconds) to produce an initial set
of 3D points. As we shall show later (Section 3.4), more
goal-directed point distributions give better results.

Validation of 3D points
We must next validate whether each new candidate 3D
point can possibly be part of the model. The validation
step consists in projecting the point on each image and
gathering the colors at the corresponding pixels. An im-
age can be augmented by a mask, automatically or man-
ually painted by the user, to indicate each pixel clearly
outside the object to reconstruct. If the image has such
a mask and the 3D point projects onto an invalid pixel,
the 3D point is immediately rejected. Adepth mapcon-
tains a distance (depth) at each pixel. If the image has
such an associated depth map and the distance contained
in its pixel is shorter than the distance to the candidate 3D
point, the 3D point is considered occluded by earlier 3D
points in this image, and the image and its pixel color are
not considered in the validation.

This results in a list of images thatseethe 3D point and
the colors the 3D point exhibits in these images. This list
is used to compute aplausibilityvalue for the 3D point in
order to decide if we should keep the 3D point or not. In
general, a point is plausible if one color clearly dominates
in the color list. In order to find this dominant color, we
compare colors by computing the Euclidean distance in
a color space and compare it with a user-defined color
threshold. We experimented with the color spacesRGB,
CIE xy, CIE Luv, and CIELab, but for our purpose we
could not detect that one color space outperformed the
others. Comparisons inRGB are the fastest, since no
color conversion is required.

An alternative is to color quantize all images to a com-
mon color palette, and then to compare colors by test-
ing for equality. In a modeling session we typically test
a very large number (millions) of candidate 3D points;
since the equality test is much more efficient (2-4 times),
this choice speeds up the overall process significantly.
Moreover because the quantization is done at a prepro-
cessing stage, it can be quite sophisticated, dealing with
colors from adjacent pixels, perceptual criteria, etc. This
quantization process has a general tendency to reduce

shading variations in the images.
In our system, the user selects the maximum number

of desired colors to represent all the quantized images.
We useppmquantallfrom the UNIX ppm tools. As a
general rule of thumb, fewer colors will produce more
color matches, and therefore more 3D points will qualify
as valid. However, some of these 3D points considered
as valid would have been rejected if their original colors
had been evaluated. The loss of accuracy in color com-
parison is therefore compensated by an important gain in
generation speed. Many of these false 3D points will be
removed at the cleanup stage (Section 3.3). In our tests,
we usually work in color quantization mode and select
between 32 and 128 colors.

Testing Plausibility
To test whether one color dominates in the color list of a
3D candidate, we compare each color in the list with all
others. The color with the most matches is considered the
dominant color; the ratio of the number of matches over
the list size is calledplausibility. Finally, a 3D point is
consideredplausible, if the plausibility of its color list is
above a user-defined plausibility threshold. Other more
sophisticated standard variance measures could be ap-
plied instead, but this simple test gave satisfying results.

Consider the example in Fig. 2(left), showing four
cameras looking at the rope scene of Fig. 1. PointA on
the object is visible in all images. Consequently, all four
images have the same color in the direction toA. The
plausibility of A is thus 100%. PointB, also on the ob-
ject, is hidden in two images. Nevertheless, the dominant
color is still the same, but only with a plausibility of 50%.
C is a completely wrong candidate, thus it delivers four
different colors, resulting in a plausibility of 25%.

Figure 2: Plausibility tests for points A, B, and C.

Visibility
PointB in the previous example has a plausibility of only
50% because occlusion is not considered properly. If we
determine that cameras 3 and 4 do not see pointB, we
can remove the false colors from the list, so that it only
contains two colors. The new color list then has a plausi-



bility of 100%.
To handle occlusions, once a first rough approximate

point set has been generated and validated, we compute
the depth map of the point set for each image. This is sim-
ilar to the approach of Szeliski and Golland [27]. Then
in the plausibility test, any 3D candidate that is further
from the camera than its corresponding depth map value,
is considered hidden in the corresponding image and its
color is not added to the color list for the point. This is
depicted in Fig. 2(right). With a depth map for camera 4,
pointB cannot be visible from camera 4, the same is true
for camera 3. Thus the resulting list only contains two
elements, both of the same, correct color.

3.3 Interactive Cleanup
In early phases of a modeling session, false 3D points
can be generated. As soon as better depth information
is available, a large fraction of these points can be re-
moved automatically. During an interactive session, the
user modifies the thresholds and the system reevaluates
the plausibility of all previously accepted 3D points, us-
ing the most recent depth maps. The system then removes
all points below the current thresholds (color, fraction of
visible images, etc.). The effect is illustrated in Fig. 1(d)-
(g). This iterative process is directly controlled by the
user who chooses the thresholds, when to generate new
depth information, and when to clean up, according to
the results displayed.

We also clean up the point set by rendering the points
from the viewpoint of each input image and comparing
the rendered images with the original images. All 3D
points that result in a significantly different color in an
image pixel are discarded. An item buffer with a unique
number per 3D point identifies which 3D point is visi-
ble in a pixel of one input image. The rendering verifica-
tion step works best with our texture reprojection method,
which will be explained in Section 3.5.

3.4 User-directed Refinement of the 3D Model
The two more automatic techniques described above can
significantly improve the set of 3D points and can also be
run as a background process when computing power is
available. However, a more interactive approach is usu-
ally better to refine the set of 3D points where the user
feels details are needed. We present a set of four tools,
which allow the user to interactively improve the quality
of the model.

Interactive Modeling Tool
Our first technique lets the user position a smaller primi-
tive in 3D space, and restrict most of the above described
operations to this more confined zone of interest. In our
implementation, this is a sphere, which has as center the
intersection of the eye ray through the current mouse

pointer position with the point set (see accompanying
video [31]). The user can move this sphere intuitively,
and increase or decrease its size. Usually, the sphere is
used to restrict point generation, in order to add points
and thus detail to undersampled regions. However, it can
also be used to clean up certain regions, or remove large
incorrectly classified object parts.

3D Filling Tool
Another type of interactive manipulation lets the user po-
sition special sources of 3D point generation, similarly
to the approach of Chen and Medioni [4]. These sources
generate 3D points according to certain rules, such as fol-
lowing branching structures in trees, or sampling the sur-
face of a polygon. The same manipulation as above is
used to select the 3D location of a source, but we also
consider the color of this 3D point (or colors of 3D points
around it) as a color criteria toflood fill the 3D space. The
location of 3D points are therefore generated by the flood
fill algorithm. A direction will only be visited recursively
if its generated 3D point is considered plausible.

Another filling tool consists in displaying the current
point set from the virtual camera, and then to try to gen-
erate a 3D point in each empty pixel. 3D points are gen-
erated along the line of sight of the pixel until a validated
point is found (up to a maximum number of attempts).

Jittering Tool
In a loop, we randomly select a 3D point and apply a
small user-specified random perturbation (jittering) on its
location. We reevaluate its plausibility and keep its new
location if its plausibility increases. In practice, this pro-
cess improves the point set. In the example of Fig. 1,
we applied jittering (about 0.1% of the object size) to the
point set (h) for 3 min to result in the new point set (i).
In the beginning, 15% of the perturbations improve the
plausibility, after 3 min the fraction decreased to 2%, il-
lustrating that the set of 3D points quickly settles to a sta-
ble configuration, and it becomes less interesting to use
jittering after this point.

Merging Tool
The random nature of our 3D point generation as well as
the interactive refinements can result in a large number of
3D points within a very constrained neighborhood. The
user can reduce this set by clustering 3D points within a
specified distance and selecting the best representative(s)
according to the color distances and distribution within
each cluster. This is implemented by placing a voxel grid
of specified resolution into the envelope and keeping the
best3D point(s) inside each voxel, or merging the 3D
points inside the same voxel according to various criteria
(color and spatial distances). This allows us to reduce the



point set to different point densities in different portions
of the 3D model.

3.5 Display
To display the reconstructed object, we use OpenGL’s
GL POINTS primitive. With vertex arrays, we achieve
a rate of 6 million colored 3D points per second on an
nVIDIA GeForce3, which is enough to render complex
objects in real-time, giving the user immediate feedback
on the current progress of the reconstruction.

Texture reprojection produces higher quality results.
We render the point set and read back the depth buffer.
For each pixelP , we then reconstruct the corresponding
3D positionp and look for the camera that seesp from the
angle closest to the current view. We then projectp into
this view, read the corresponding pixel color and write it
into the frame buffer pixelP . This is a simplified ver-
sion of previous approaches [5, 3], using only the angular
criterion, which is reevaluated per pixel. This step could
be optimized, but with our current implementation we al-
ready achieve about 2 frames per second, depending on
the image size.

4 Results

Various results of our system are provided in this section,
as well as on an accompanying video available from the
web site associated with this paper [31].

4.1 Synthetic Objects
Synthetic objects can help better understand the behav-
ior and limitations of our algorithms because of the more
controlled environment. In Fig. 4A, purely diffuse tex-
tured surfaces are rendered with a standard ray tracer at
resolution512× 512; we know theexactcamera param-
eters. Fig. 4A(bottom) shows a novel view not contained
in the original images: (left) a ray traced image of the
original objects, (center) the directly rendered point set
(more than 30 fps on a GeForce3), and (right) the point
set rendered with texture reprojection (software solution
at 1.5 fps).

4.2 Soldier and Snack
Figs. 4B and 4C show two further test objects from real
scenes. The soldier (Fig. 4B) exhibits smooth surfaces,
but also difficult thin structures (flag post) for the au-
tomatic generation of our system. The snack (Fig. 4C)
has complex (ham) and smooth (plate, cheese, mush-
room) surfaces with limited shading, while the grapes are
glossier.

4.3 Synthetic Trees
To illustrate the efficiency of our simple algorithm tofill
3D samples according to special structures, we produced
10 images of a synthetic tree from our implementation of

anL-system. In Fig. 3(left), selecting one of the 62 ran-
domly generated points as the seed to our 3D space filling
algorithm, produces 15,562 points of the selected color
filling the branches in 10s. Because of remaining vari-
ations in quantized colors of the images (resulting from
shading and antialiasing in the original images), the space
filling does not reach the tip of the branches. Selecting
a set of colors (instead of a single one) easily helps to
fill the rest of the branches. The resulting points are dis-
played on top of a semi-transparent input image.

In Fig. 3(right), we show the impact of occlusions by
leaves. In the rightmost image, after 8,553 points were
generated in 7s with our filling algorithm, 11,081 ad-
ditional points were randomly distributed to fill mostly
leaves in about 7 min.

4.4 A Comparison with Voxel Coloring
The flexibility of our interactive system and our point-
based representation allows easy integration with other
algorithms. We implemented a simplified version of
voxel coloring [23, 15]. Voxel coloring requires the re-
constructed 3D objects to lie outside the convex hull
formed by the cameras, which is the case in the scene of
Fig. 1. Instead of carving out voxels, we simply generate
points in a rectangle, and process several such rectangles
in front-to-back order, thus filling a 3D grid of points.
Our depth maps are computed after each such rectangle
filling through the 3D grid, and we use our color compar-
isons. We compare the results in Fig. 4D.

Voxel coloring demonstrates its efficiency due to co-
herence. The example shows that our approach can lead
to similar results, but we have the advantage of being
able to interact with the generation process at any point
in time.

However, our interactive tools permit direct integra-
tion of other generation algorithms. In the accompanying
video [31], we show how we use voxel coloring to gener-
ate an initial point set and then improve the result using
our interactive tools.

Additional advantages of our random-point generation
compared to a regular approach are its flexibility and the
fact that randomly distributed points can deliver a more
desirable visual effect for point-based rendering.

5 Conclusions

In this paper, we have presented ourinteractivesystem
to extract complex objects from images. One major con-
tribution of this system is the central control offered to
the user. A set of interactive tools allow the user to guide
more automatic reconstruction techniques where details
are needed, or neglect regions of unnecessary difficulties.
A typical interactive session using the system allows the
user to stop a process, modify a value, select another al-



Figure 3: Synthetic tree with/without leaves.10 original images of resolution 640×443 quantized to 50 colors; (left)
62 random points, the seed of our filling algorithm (yellow sphere); 15,562 points filled in 10s. (right) 147 random
points, seed of filling algorithm (yellow sphere); 19,639 points filled more occluded branches with leaves in 7 min.

gorithm, merge/refine/revalidate the current result, undo
an unsatisfying partial result, etc., each time visualizing
the objects being reconstructed in 3D at interactive rates.

The second essential contribution of our system is the
use of a point-based representation, which can efficiently
display complex and partially reconstructed complex ob-
jects. Thanks to this efficient rendering process the user
can interactively visualize the behavior of the extraction
process, and modify or guide it when necessary. A 3D
point is simple and its reconstruction does not require
any additional constraint on surfaces, neighborhood, or
smoothness. Occlusions between 3D points are also well
treated with simple depth maps. Finally, synthetic objects
composed of 3D points are easy to integrate within most
rendering systems, up to the quality limit of the actual
point representation.

By tightly integrating these two key concepts (user in-
teraction and point representation) into our system, it of-
fers a very flexible platform to extract complex objects.
Its flexibility also allows interactive experimentation to
understand the limits of certain algorithms, and to design
new solutions to the challenging problems of modeling
from images.

We designed our system with this simplicity in mind.
Many of our solutions are built on mature techniques,
such as color comparisons, camera calibration, 3D space
filling, depth maps, 3D point jittering and clustering, tex-
ture reprojection, etc. We did not implement more so-
phisticated techniques because our emphasis was on im-
plicating the user in the process. The advantage is that
any improvement to the techniques used could be eas-
ily integrated in our system, leading to equivalent im-
provements in the results. One important source of im-
provements, as demonstrated in our limited implemen-
tation, should come from a tighter integration of our
interaction techniques with the space carving literature
[23, 15, 8, 25].

6 Future Work

In its current state, the realism of the objects modeled by
our system is very promising, but it is not entirely satis-
factory for photorealistic applications. Often, our objects
are reconstructed to a given level of quality, but auto-
matic algorithms also seem to settle near this level. User
intervention can further improve the model quality but
achieving full photorealism is very challenging. In fact in
general, we are fundamentally limited by the quality and
resolution of the original images. Moreover many other
factors other than color and geometry must be extracted
from the images to achieve full photorealism.

Nevertheless, there is much room for improvement.
We plan to improve the two following aspects in our sys-
tem. Firstly, our color matching assumes very limited
BRDFs, close to lambertian. Shadows and shading varia-
tions should be integrated within our color matching test.
Other criteria, such as mirror reflection and transparency,
could also be integrated into the matching process. Sec-
ondly, the information of the original images could be
increased with video sequences and high dynamic range
images.
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