Proceedings
Graphics Interface 2003
11-13 June 2003
Halifax, Nova Scotia
Canadian Human-Computer Communications Society
Proceedings
Graphics Interface 2003

Torsten Möller and Colin Ware
Program Co-Chairs

www.graphicsinterface.org

Halifax, Nova Scotia
11–13 June 2003
Welcome to Graphics Interface (GI) 2003, a conference that combines coverage of original research results in both Human-Computer Interaction and Graphics. The conference took place in Halifax, Nova Scotia, over 11–13 June 2003, and was held in conjunction with the Artificial Intelligence 2003 and Vision Interface 2003 conferences. GI 2003 is the 29th instance of the longest running conference series in human-computer interaction and computer graphics. This event has previously been held in Halifax in 1990.

We set out this year to enhance the human-computer interaction side of GI with the goal of putting Graphics Interface on the map as an important place to publish in HCI. Whether it is by chance, or through our efforts, we are happy to say that we were able to increase the number of HCI submissions to forty-three (plus a number that combined graphics and interaction). Out of these we have accepted fourteen, almost doubling the number of HCI papers that were accepted over 2002. We believe that at the same time we have maintained a high standard of quality.

While the submissions to the human-computer interaction side of GI increased, the graphics side didn’t suffer. Out of fifty-three very strong graphics submissions we were able to select eighteen papers, just as many as in 2002.

The program committee consisted of seventeen experts from around the world. Each paper received at least four reviews, two of which were from members of the program committee. The reviewing process was double-blind: the identity of the authors was known only to program co-chairs and the program committee member responsible for choosing external reviewers for each submission. The program committee members were usually able to solicit reviews from some of the topmost experts in the particular areas of research relevant to each individual paper. We greatly appreciate the effort of the members of the program committee. We would like to extend additional thanks to the ten members of the program committee who attended the meeting at University of Toronto, Canada on 15 February 2003 and funded their own travel.

Graphics Interface customarily has several keynote speakers. This year’s four keynote speakers were: Randy Pausch, Associate Professor of Computer Science at the University of Virginia; Christopher Johnson, Professor of Computer Science at the University of Utah; Jessica Hodgins, Associate Professor of Computer Science and Robotics Carnegie Mellon University; and Stuart Card, Palo Alto Research Center (PARC). We extend our gratitude to them for sharing their inspiration in their respective fields.

We would like to thank the authors of all the papers submitted to GI 2003, as well as the program committee members and referees who volunteered their time to ensure the quality of the program. Our thanks especially go to James Stewart whose excellent conference management site made the job of managing the review process much easier than it would have otherwise been.

We would also like to thank Pierre Poulin and Kelly Booth for handling the liaison with AI and VI conference organizers, and Kelly Booth again for additional valuable advice. We thank further Daryl Hepting for handling the posters; Fred Peet, treasurer of the Canadian Human-Computer Communication Society, for keeping the finances straight; and Graphics Services at the University of Waterloo and Michael McCool for doing such an excellent job on the proceedings. Last but not least, we send a very big thanks to Kori Inkpen, Anne Publicover, Karen Parker, and Stacey Scott, for the local organization of the joint conferences at Dalhousie University. Without their work, this conference would simply not have been possible.

For further information about the conference series we invite you to visit our web site:

http://www.graphicsinterface.org/
Organization

Conference and Program Chairs
Torsten Möller, Graphics Co-chair, Simon Fraser University
Colin Ware, HCI Co-chair, University of New Hampshire

Local Organizers
Kori Inkpen, Dalhousie University
Anne Publicover, Dalhousie University

Posters and Demos Chair
Daryl Hepting, University of Regina

Intersociety Liaison and Advisor
Kellogg Booth, University of British Columbia

Student Volunteer Organizers
Karen Parker, Dalhousie University
Stacey Scott, Dalhousie University

Online Services
James Stewart, Queen's University

Proceedings Editor
Michael McCool, University of Waterloo

Program Committee
Lyn Bartram, Colligo Networks
Sheelagh Carpendale, University of Calgary
Tom Ertl, University of Stuttgart
Michael Garland, University of Illinois at Urbana-Champaign
Wolfgang Heidrich, University of British Columbia
Raghu Machiraju, Ohio State University
Blair Macintyre, Georgia Institute of Technology
Joe Marks, Mitsubishi Electric Research Labs
Joanna McGrenere, University of British Columbia
Tamara Munzner, University of British Columbia
Hanspeter Pfister, Mitsubishi Electric Research Labs
Holly Rushmeier, IBM T. J. Watson Research Center
Chris Shaw, Georgia Institute of Technology
Karan Singh, University of Toronto
Wolfgang Stürzlinger, York University
Michiel van de Panne, University of British Columbia
Oleg Veryovka, Electronic Arts Canada

CHCCS Treasurer
Fred G. Peet, Canadian Forest Service
Reviewers

Eric Aaron
Gregory Abowd
Nina Amenta
Ron Baecker
Ravin Balakrishnan
William Barrett
Richard Bartels
Ben Bederson
Fauusto Bernardini
Krishna Bharat
Mark Billinghurst
Kellogg Booth
Doug Bowman
Michael Boyle
Rachael Brady
David Breen
Mike Byrne
Tom Calvert
Steve Capell
Mark Carlson
Baoquan Chen
Mark Chignell
Jonathan Cohen
Patrick Coleman
Sabine Coquillart
Brian Corrie
Mario Costa Sousa
Dave Cowperthwaite
Roger Crawfis
Barb Cutler
Mary Czerwinski
David Darvill
Gilles Debuine
Herve Delingette
Mark Derthick
John Dill
Mark Drew
Aude Dufresne
Dave Duke
Frédéric Durand
Phil Dutre
David Ebert
Alyosha Efros
Jihad El-Sana
Steven Feiner
Dieter Fellner
Sidney Fels
Pablo Figuerola
Brian Fisher
George Fitzmaurice
James Fowler
Mike Fraser
Sarah Frisken
Fabio Ganovelli
Joshua Gargus
Jon Genetti
Thomas Gerstner
Bruce Gooch
M. Gopi
Ardi Goshtasby
Xavier Granier
Sebastian Grassia
Saul Greenberg
Eitan Grinspun
Diane Gromala
Markus Gross
Tom Gross
Stefan Guthe
Carl Gutwin
Joerg Haber
Ziyad Hakura
Beverly Harrison
Jason Harrison
John Hart
Sam Hasinoff
Helwig Hauser
Vincent Hayward
Daryl Hepting
Larry Hodges
Takeo Igarashi
Kori Inkpen
Pourang Irani
Hiroshi Ishii
Armin Iske
Rob Jacob
Chuck Jacobs
Rob Jagnow
Doug James
Pierre-Marc Jodoin
Ray Jones
Susanne Jul
Kolja Kähler
Maciej Kaliska
Tina Kapur
Jan Kautz
Alan Keahey
Alexander Keller
Reinhard Klein
Rob Kremer
David Krum
Eric LaMar
Paul Lalonde
James Landay
Joe Lasslo
Jinho Lee
Seungyong Lee
Hendrik Lensch
Jin Li
Peter Lindstrom
David Luebke
Jock Mackinlay
Marcus Magnor
Regan Mandryk
Jennifer Mankoff
Dinesh Manocha
Ioana Martin
Toshiyuki Masui
Wojciech Matusik
Ron Metoyer
Baback Moghaddam
Jurriaan Mulder
Elizabeth Mynatt
Michael Neff
Lucy Nowell
Dan Olsen
Sageev Oore
James O'Brian
Noel O'Connor
John Pane
Rick Parent
Andriy Pavlovych
Hans Pedersen
Jörg Peters
Jeff Pierce
Catherine Plaisant
Barry Po
Pierre Poulin
Emil Praun
David Pritchard
Andreas Raab
Ari Rappoport
Soraia Raupp Musse
Liu Ren
Ron Rensink
Christof Rezk-Salama
William Ribarsky
Stefan Roettger
Gerhard Roth
Szymon Rusinkiewicz
Kathy Ryall
Pedro Sander
Dietmar Saue
Eric Schenk
Bill Schilit
Stefan Schlechtweg
Elmar Schoemer
Randy Scoggins
Fleming Seay
Adrian Secord
Larry Seiler
Lauren Sergio
Eric Shaffer
Richard Sharp
Chia Shen
Han-Wei Shen
Yoshihisa Shinagawa
Peter Shirley
Linda Sibert
Claudio Silva
Brian Smits
Tazama St. Julien
Jos Stam
Marc Stamminger
John Stasko
Nigel Stewart
Chris Stolte
Maureen Stone
Lisa Streit
Norbert Streitz
Bob Sumner
Hiromasa Suzuki
Richard Szeliski
Roger Tan
Hong Tan
Diane Tang
Vildan Tanriverdi
Michael Terry
Demetri Terzopoulos
Jay Thornton
Mark Tiggles
Chris Trendall
Brygg Ullmer
Frank van Reeth
Amitabh Varshney
Stephen Voida
Jens Vorsatz
Bruce Walker
Bruce Walter
Henrik Wann Jensen
Zach Wartell
Ben Watson
Roger Webster
Daniel Weiskopf
Rüdiger Westermann
Tim Weyrich
Lars Wilke
Alexander Wilkie
Chad Wingrave
Brian Wyvill
Denis Zorin
Matthias Zwicker
Table of Contents

Modeling

Fast Extraction of BRDFs and Material Maps from Images ... 1
Rafal Jaroszkiewicz and Michael D. McCool

Interactive Point-Based Modeling of Complex Objects from Images 11
Pierre Poulin, Marc Staminger, François Duranleau, Marie-Claude Frasson, and George Drettakis

Silhouette-Based 3D Face Shape Recovery ... 21
Jinho Lee, Baback Moghaddam, Hanspeter Pfister, and Raghu Machiraju

Simulating Fluid-Solid Interaction ... 31
Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler

Detail and Context

A Comparison of Traditional and Fisheye Radar View Techniques for Spatial Collaboration 39
Wendy A. Schafer and Doug A. Bowman

Finding Things in Fisheyes: Memorability in Distorted Spaces .. 47
Amy Skopik and Carl Gutwin

Comparing ExoVis, Orientation Icon, and In-Place 3D Visualization Techniques 57
Melanie Tory and Colin Swindells

Hardware Methods

Hardware-Accelerated Visual Hull Reconstruction and Rendering .. 65
Ming Li, Marcus Magnor, and Hans-Peter Seidel

ClnDeR: Collision and Interference Detection in Real-Time Using Graphics Hardware 73
Dave Knott and Dinesh K. Pai

Texture Partitioning and Packing for Accelerating Texture-Based Volume Rendering 81
Wei Li and Arie Kaufman

Input

Input-Based Language Modelling in the Design of High Performance Text Input Techniques 89
R. William Soukoreff and I. Scott MacKenzie

Less-Tap: A Fast and Easy-to-Learn Text Input Technique for Phones 97
Andriy Pavlovych and Wolfgang Stuerzlinger

The Effects of Dynamic Transparency on Targeting Performance 105
Carl Gutwin, Jeff Dyck, and Chris Fedak

A Gestural Interface to Free-Form Deformation .. 113
Geoffrey M. Draper and Parris K. Egbert

Rendering

Dynamic Canvas for Non-Photorealistic Walkthroughs .. 121
Matthieu Cunzi, Joëlle Thollot, Sylvain Paris, Gilles Debunne, Jean-Dominique Gascuel, and Frédéric Durand

Pen-and-Ink Textures for Real-Time Rendering .. 131
Jennifer Fung and Oleg Veryovka

Multi-Resolution Point-Sample Raytracing .. 139
Michael Wand and Wolfgang Straßer

Entropy-Based Adaptive Sampling ... 149
Jaume Rigau, Miquel Feixas, and Mateu Sbert
Mixing Reality

Digital Decor: Augmented Everyday Things ... 159
 Itiro Siio, Jim Rowan, Noyuri Mima, and Elizabeth Mynatt

A Tangible Interface for High-Level Direction of Multiple Animated Characters ... 167
 Ronald A. Metoyer, Lanyue Xu, and Madhusudhanan Srinivasan

Mixed Initiative Interactive Edge Detection ... 177
 Eric Neufeld, Haruna Popoola, David Callele, and David Mould

Meshes and Surfaces

A Stream Algorithm for the Decimation of Massive Meshes ... 185
 Jianhua Wu and Leif Kobbelt

Distortion Minimization and Continuity Preservation in Surface Pasting ... 193
 Rick Leung and Stephen Mann

Multiple Camera Considerations in a View-Dependent Continuous Level of Detail Algorithm 201
 Bradley F. Kram and Christopher D. Shaw

Multimedia

Portrait: Generating Personal Presentations ... 209
 James Fogarty, Jodi Forlizzi, and Scott E. Hudson

Modularity and Hierarchical Structure in the Digital Video Lifecycle ... 217
 Ron Baeccker and Eric Smith

A Taxonomy of Tasks and Visualizations for Casual Interaction of Multimedia Histories 225
 Charlotte Tang, Gregor McEwan, and Saul Greenberg

Learning from Games: HCI Design Innovations in Entertainment Software 237
 Jeff Dyck, David Pinelle, Barry Brown, and Carl Gutwin

Deformable Models

Interactive Deformation Using Modal Analysis with Constraints ... 247
 Kris K. Hauser, Chen Shen, and James F. O’Brien

Easy Realignment of k-DOP Bounding Volumes ... 257
 Christoph Fünfzig and Dieter W. Fellner

Scanning Large-Scale Articulated Deformations ... 265
 Jochen Lang, Dinesh K. Pai, and Hans-Peter Seidel

Toward Modeling of a Suturing Task ... 273
 Matt LeDuc, Shahram Payandeh, and John Dill

Keynote Speakers

The Interdisciplinary Challenge of Building Virtual Worlds ... 281
 Randy Pausch

Computational Multi-Field Visualization ... 283
 Christopher Johnson

Animating Human Characters ... 285
 Jessica Hodgins

Beyond HCI to Human Information Interaction ... 287
 Stuart Card
The Interdisciplinary Challenge of Building Virtual Worlds

Randy Pausch
Co-Director, Entertainment Technology Center
Carnegie Mellon University
pausch@cmu.edu

Creating an interactive virtual reality experience is one of the hardest authoring challenges in human history. Success requires talent from computer science, engineering, art, drama, design, architecture, and a host of other disciplines.

I have worked with Walt Disney Imagineering on several virtual reality projects for the DisneyQuest “digital theme park” in Orlando. Meanwhile, Carnegie Mellon has created the Entertainment Technology Center (ETC; etc.cmu.edu), a joint initiative between Schools of Computer Science and the College of Fine Arts. As part of the ETC efforts, we have developed the Alice 3D authoring tool (www.alice.org) and processes that allow interdisciplinary teams to create compelling virtual worlds in a two-week time period. I will discuss the “Building Virtual Worlds” course, the Alice system, and the mechanisms we use to put students together from different fields effectively.

Biography

Randy Pausch is a Professor of Computer Science, Human-Computer Interaction, and Design at Carnegie Mellon, where he is the co-director of CMU’s Entertainment Technology Center (ETC). He was a National Science Foundation Presidential Young Investigator and a Lilly Foundation Teaching Fellow. He has consulted with Walt Disney Imagineering on the user interface design and testing of interactive theme park attractions, and with Google on user interface issues. Dr. Pausch is the author or co-author of five books and over 50 reviewed journal and conference proceedings articles, and he is the director of the Alice project.
Computational Multi-Field Visualization
Christopher Johnson
Director
Scientific Computing and Imaging Institute
School of Computing
University of Utah
www.sci.utah.edu

Computational field problems; such as computational fluid dynamics (CFD), electromagnetic field simulation, and weather modeling—essentially any problems whose physics can be modeled effectively by ordinary and/or partial differential equations—constitute the majority of computational science and engineering simulations. The output of such simulations might be a single field variable (such as pressure or velocity) or a combination of fields involving a number of scalar fields, vector fields, and/or tensor fields. As such, scientific visualization researchers have concentrated on effective ways to visualize large-scale computational fields. Much current and previous visualization research has focused on methods and techniques for visualizing a computational field variables (such as the extraction of a single scalar field variable as an isosurface). While single variable visualization often satisfies the needs of the user, it is clear that it would also be useful to be able to effectively visualize multiple fields simultaneously.

In this talk I will describe some of our recent work in scalar, vector, and tensor visualization techniques as applied to the domain of computational field problems. I will end with a discussion of ideas for the integration of techniques for creating computational multi-field visualizations.

Biography
Professor Johnson directs the Scientific Computing and Imaging Institute at the University of Utah where he is a Professor of Computer Science and holds faculty appointments in the Departments of Physics, and Bioengineering. His research interests are in the area of scientific computing. Particular interests include inverse and imaging problems, adaptive methods, problem solving environments, large scale computational problems in medicine, and scientific visualization. Professor Johnson was awarded a Young Investigator's (FIRST) Award from the NIH in 1992, the NSF National Young Investigator (NYI) Award in 1994, and the NSF Presidential Faculty Fellow (PFF) award from President Clinton in 1995. In 1996 he received a DOE Computational Science Award and in 1997 received the Par Excellence Award from the University of Utah Alumni Association and the Presidential Teaching Scholar Award. In 1999, Professor Johnson was Awarded the Governor's Medal for Science and Technology. In 2003 he was promoted to the rank of Distinguished Professor.
Animating Human Characters

Jessica Hodgins
School of Computer Science
Carnegie Mellon University

Computer animations and virtual environments both require a controllable source of motion for their characters. Two possible solutions are simulation and motion capture and over the past 10 years, we have explored both techniques separately. For example, we developed control algorithms that allow rigid body models to run or bicycle, bounce on a trampoline, and perform a handspring vault. More recently, we have begun to use human motion data to bias planning algorithms towards more natural postures, and to construct interfaces for avatars. We have also begun to combine simulations with motion capture data in the hope that these techniques will benefit both from the physical realism of simulation and from the humanlike motion provided by captured data.

Biography

Jessica Hodgins joined the Robotics Institute and Computer Science Department at Carnegie Mellon University as an Associate Professor in fall of 2000. Prior to moving to CMU, she was an Associate Professor and Assistant Dean in the College of Computing at Georgia Institute of Technology. She received her Ph.D. in Computer Science from Carnegie Mellon University in 1989. Her research focuses on computer graphics, animation, and robotics. She has received a NSF Young Investigator Award, a Packard Fellowship, and a Sloan Fellowship. She was editor-in-chief of ACM Transactions on Graphics from 2000–2002 and will be SIGGRAPH Papers Chair in 2003.
Humans are informavores; our ecological niche has been to be extremely good at processing and communicating. Computers are our tool par excellence to augment our information consumption and manipulation; user interfaces are the means by which we can integrate and speed our interaction with these machines. But a funny thing happened on the way to perfecting the art and science of user interfaces to computers—the computer began to disappear. In some cases this is literally true, as in the case of embedded computers, but it is also true in the sense that user interfaces in information-intensive uses are about interaction with the semantic content of the information itself and not just its form. In fact, our current notions of human-computer interaction are inadequate for thinking about how to build user interfaces in the coming information-intensive, multi-device world. I will propose some principles of a supporting science of human-information interaction that try to suggest user experience designs for information applications. I will also propose a class emerging of user interfaces.

Biography
Stuart Card is a Senior Research Fellow and the manager of the User Interface Research group at the Palo Alto Research Center. His study of input devices led to the Fitts's Law characterization of the mouse and was a major factor leading to the mouse's commercial introduction by Xerox. His group has developed theoretical characterizations of human-machine interaction, including the Model Human Processor, the GOMS theory of user interaction, information foraging theory, and statistical descriptions of Internet use. These theories have been put to use in new paradigms of human-machine interaction including the Rooms workspace manager, papertronic systems, and the Information Visualizer. The work of his group has resulted in a dozen Xerox products as well as the contributing to the founding of three software companies, Inxight Software, Outride, and Content Guard. Card is a co-author of the book *The Psychology of Human-Computer Interaction*, a co-editor of the book, *Human Performance Models for Computer-Aided Engineering*, and has served on many editorial boards, government panels, and university review boards. He received his A.B. in Physics from Oberlin College and his Ph.D. in Psychology from Carnegie Mellon University, where he pursued an interdisciplinary program in psychology, artificial intelligence, and computer science. He has been an adjunct faculty member at Stanford University. His most recent book, *Readings in Information Visualization* was published in 1999. Card is currently concentrating on the theory and design of systems for attending to and interpreting large amounts of information (information foraging theory and sensemaking theory). Card is a Fellow of the ACM, the first recipient of the ACM CHI Lifetime Achievement Award, and the first member of the ACM CHI Academy.
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baecker, Ron</td>
<td>217</td>
</tr>
<tr>
<td>Bowman, Doug A</td>
<td>39</td>
</tr>
<tr>
<td>Brown, Barry</td>
<td>237</td>
</tr>
<tr>
<td>Callele, David</td>
<td>177</td>
</tr>
<tr>
<td>Cunzi, Matthieu</td>
<td>121</td>
</tr>
<tr>
<td>Debunne, Gilles</td>
<td>121</td>
</tr>
<tr>
<td>Dill, John</td>
<td>273</td>
</tr>
<tr>
<td>Dischler, Jean-Michel</td>
<td>31</td>
</tr>
<tr>
<td>Draper, Geoffrey M</td>
<td>113</td>
</tr>
<tr>
<td>Drettakis, George</td>
<td>11</td>
</tr>
<tr>
<td>Durand, Frédéric</td>
<td>121</td>
</tr>
<tr>
<td>Duranleau, François</td>
<td>11</td>
</tr>
<tr>
<td>Dyck, Jeff</td>
<td>105, 237</td>
</tr>
<tr>
<td>Egbert, Parris K</td>
<td>113</td>
</tr>
<tr>
<td>Fedak, Chris</td>
<td>105</td>
</tr>
<tr>
<td>Feixas, Miquel</td>
<td>149</td>
</tr>
<tr>
<td>Fellner, Dieter W</td>
<td>257</td>
</tr>
<tr>
<td>Fogarty, James</td>
<td>209</td>
</tr>
<tr>
<td>Forlizzi, Jodi</td>
<td>209</td>
</tr>
<tr>
<td>Frasson, Marie-Claude</td>
<td>11</td>
</tr>
<tr>
<td>Fünfzig, Christoph</td>
<td>257</td>
</tr>
<tr>
<td>Fung, Jennifer</td>
<td>131</td>
</tr>
<tr>
<td>Gascuel, Jean-Dominique</td>
<td>121</td>
</tr>
<tr>
<td>Génevaux, Olivier</td>
<td>31</td>
</tr>
<tr>
<td>Greenberg, Saul</td>
<td>225</td>
</tr>
<tr>
<td>Gutwin, Carl</td>
<td>47, 105, 237</td>
</tr>
<tr>
<td>Habibi, Arash</td>
<td>31</td>
</tr>
<tr>
<td>Hauser, Kris K</td>
<td>247</td>
</tr>
<tr>
<td>Hudson, Scott E</td>
<td>209</td>
</tr>
<tr>
<td>Jaroszkiewicz, Rafal</td>
<td>1</td>
</tr>
<tr>
<td>Kaufman, Arie</td>
<td>81</td>
</tr>
<tr>
<td>Knott, Dave</td>
<td>73</td>
</tr>
<tr>
<td>Kobbel, Leif</td>
<td>185</td>
</tr>
<tr>
<td>Kram, Bradley P</td>
<td>201</td>
</tr>
<tr>
<td>Lang, Jochen</td>
<td>265</td>
</tr>
<tr>
<td>LeDuc, Matt</td>
<td>273</td>
</tr>
<tr>
<td>Lee, Jinho</td>
<td>21</td>
</tr>
<tr>
<td>Leung, Rick</td>
<td>193</td>
</tr>
<tr>
<td>Li, Ming</td>
<td>65</td>
</tr>
<tr>
<td>Li, Wei</td>
<td>81</td>
</tr>
<tr>
<td>Machiraju, Raghu</td>
<td>21</td>
</tr>
<tr>
<td>MacKenzie, I. Scott</td>
<td>89</td>
</tr>
<tr>
<td>Magnor, Marcus</td>
<td>65</td>
</tr>
<tr>
<td>Mann, Stephen</td>
<td>193</td>
</tr>
<tr>
<td>McCool, Michael D</td>
<td>1</td>
</tr>
<tr>
<td>McEwan, Gregor</td>
<td>225</td>
</tr>
<tr>
<td>Metoyer, Ronald A</td>
<td>167</td>
</tr>
<tr>
<td>Mima, Noyuri</td>
<td>159</td>
</tr>
<tr>
<td>Moghaddam, Baback</td>
<td>21</td>
</tr>
<tr>
<td>Mould, David</td>
<td>177</td>
</tr>
<tr>
<td>Mynatt, Elizabeth</td>
<td>159</td>
</tr>
<tr>
<td>Neufeld, Eric</td>
<td>177</td>
</tr>
<tr>
<td>O'Brien, James F</td>
<td>247</td>
</tr>
<tr>
<td>Pai, Dinesh K</td>
<td>73, 265</td>
</tr>
<tr>
<td>Paris, Sylvain</td>
<td>121</td>
</tr>
<tr>
<td>Pavlovych, Andriy</td>
<td>97</td>
</tr>
<tr>
<td>Payandeh, Shahram</td>
<td>273</td>
</tr>
<tr>
<td>Pfister, Hanspeter</td>
<td>21</td>
</tr>
<tr>
<td>Pinelle, David</td>
<td>237</td>
</tr>
<tr>
<td>Popoola, Haruna</td>
<td>177</td>
</tr>
<tr>
<td>Poulin, Pierre</td>
<td>11</td>
</tr>
<tr>
<td>Rigau, Jaume</td>
<td>149</td>
</tr>
<tr>
<td>Rowan, Jim</td>
<td>159</td>
</tr>
<tr>
<td>Sbert, Mateu</td>
<td>149</td>
</tr>
<tr>
<td>Schafer, Wendy A</td>
<td>39</td>
</tr>
<tr>
<td>Seidel, Hans-Peter</td>
<td>65, 265</td>
</tr>
<tr>
<td>Shaw, Christopher D</td>
<td>201</td>
</tr>
<tr>
<td>Shen, Chen</td>
<td>247</td>
</tr>
<tr>
<td>Siio, Itiro</td>
<td>159</td>
</tr>
<tr>
<td>Skopik, Amy</td>
<td>47</td>
</tr>
<tr>
<td>Smith, Eric</td>
<td>217</td>
</tr>
<tr>
<td>Soukoreff, R. William</td>
<td>89</td>
</tr>
<tr>
<td>Srinivasan, Madhusudhanan</td>
<td>167</td>
</tr>
<tr>
<td>Stamminger, Marc</td>
<td>11</td>
</tr>
<tr>
<td>Straßer, Wolfgang</td>
<td>139</td>
</tr>
<tr>
<td>Stuerzlinger, Wolfgang</td>
<td>97</td>
</tr>
<tr>
<td>Swindells, Colin</td>
<td>57</td>
</tr>
<tr>
<td>Tang, Charlotte</td>
<td>225</td>
</tr>
<tr>
<td>Thollot, Joëlle</td>
<td>121</td>
</tr>
<tr>
<td>Tory, Melanie</td>
<td>57</td>
</tr>
<tr>
<td>Veryovka, Oleg</td>
<td>131</td>
</tr>
<tr>
<td>Wand, Michael</td>
<td>139</td>
</tr>
<tr>
<td>Wu, Jianhua</td>
<td>185</td>
</tr>
<tr>
<td>Xu, Lanyue</td>
<td>167</td>
</tr>
</tbody>
</table>