
Graphics Interface Conference 2015, 3–5 June, Halifax, Nova Scotia, Canada 

 

	
  	
  	
  	
  	
  	
  	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

Palpebrae Superioris: Exploring the Design Space of Eyelid Gestures 
 

Ricardo Jota and Daniel Wigdor 

 Department of Computer Science, University of Toronto.  

Toronto, ON, Canada 

{jotacosta, daniel}@dgp.toronto.edu 

ABSTRACT 

In this paper, we explore the design space of eyelid gestures. We 
first present a framework for the design space based on the anatomy 

of the eye, human perception, and complexity of the eyelid gesture. 

Based on the framework we propose an algorithm to detect eyelid 
gestures with commodity cameras, already existing in laptops and 

mobile devices. We then populate the design space by 

demonstrating prototypes based on 3 form factors: mobile devices, 
desktop, and horizontal surfaces. These prototypes demonstrate the 

breadth of eyelid gestures as an input modality. We follow the 

scenarios with a discussion of how eyelid gestures can contribute 
to an interactive environment, and conclude with a discussion on 

insights, design recommendations, and limitations of the technique. 

Keywords: Eyelid gestures. 

Index Terms: H5.2 [Information interfaces and presentation]: User 
Interfaces. - Graphical user interfaces. 

1  INTRODUCTION 

The human eye is controlled by 9 muscles. Of these, 8 are 
dedicated to providing precise control over the orientation of the 
eyeball, which is often measured as gaze direction. The use of gaze 
direction as a control signal has been the focus of a great deal of 
research [28],[32],[33],[34]. It has been used as an implicit signal, 
acting as an indicator of mood [30], as well as an explicit signal, 
such as in eye tracking [16].  

The 9th muscle of the eye is the palpebrae superioris (PS), which 
is dedicated to the control of the eyelids. The use of the PS in 
control-signal research has largely been limited to acting as a 
delimiter of input signals from the other 8 muscles of the eye, such 
as using winks to “click” a gaze-controlled mouse cursor [2]. While 
the utility of the PS as an explicit signal is clearly useful in 
combination with the other muscles of the eye, in gaze tracking, its 
use as an independent input signal has been largely unexplored. 

The control of the eyelids is a rich source of expressiveness of 
the eyes (See Figure 1). Winks, frowns, squints, eye-widening, and 
conscious blinks each offer different meaning. When examined in 
isolation from gaze, these expressions provide a significantly 
different design space which can be explicitly controlled by the 
person performing them.  

In addition to the wide range of available expressions, the PS 
gestures offer two attributes that make them attractive as an explicit 
control signal. First, PS movements are largely independent of 
other body actions. Second, involuntary input is easily heuristically 
filtered. Further, as we will explain, PS movements can be easily 
recognized using commodity cameras (such as mobile device front-
facing cameras), and thus are near-term candidates for secondary 
modalities for other forms of input, such as touch input on a mobile 
phone.  

In this paper, we contribute an initial exploration of eyelid gestures 
made possible mainly by the palpebrae superioris. This exploration 
includes a review of related work and a thorough definition of the 
design space (including issues of anatomy, perception, and 
complexity). We then describe our recognition algorithm, and 
example uses of PS gestures on three form factors: interaction with 
mobile devices, controlling desktop applications, and surface 
computing interaction. We conclude with a discussion of our insights, 
design recommendations, and limitations of the technique.  

2  RELATED WORK 

There have been several approaches to use facial characteristics 

as input methods. In particular the vital line of gaze and face 

muscles have been applied to human-computer interaction. 

2.1  Electrooculography 

Electrooculography (EOG) is a technique for measuring the 
resting potential of the retina. With an intrusive apparatus, a pair 
of electrodes is placed around the eye and allows the eyes’ position 
to be measured based on the recorded potential. LaCourse utilized 
EOG to create DECS, a communication tool for persons with 
disabilities [18]. DECS is based on gaze gestures for input and 
gaze staring for activation.  Kaufman [4] presented an EOG 
interface that supports both eye movement but also left and right 
winking and blinking gestures. However, authors indicate that 
EOG provides a noisy signal and attribute a low eye gesture 
accuracy rate to body actions such as head movements. The Eye 
Mouse project [26] proposed cursor control by gaze diversion. If 
the user wants to move the cursor in a certain direction he is only 
required to divert his gaze 30º in that direction for half a second. 
Kwon and Kim pushed the idea further and presents a mouse 
driven EOG system [20]. Using multiple electrodes, they controls 
a mouse cursor with gaze and utilizes blink gestures to right-click. 
They report that users can control several window functions after 
a training session of a few minutes.  

EOG have two main disadvantages: the intrusive apparatus [13], 

that requires specific hardware; and the baseline drift that obscures 

eye-movement signal [9].  

 

 

 

 
Figure 1 - Example of asymmetrical eyelid gestures. By closing one eye the user is filtering information a 3D edition application. 

273

 

Copyright held by authors. Permission granted to  

CHCCS/SCDHM to publish in print and digital form, and  

ACM to publish electronically. 

	
  	
  	
  	
  	
  	
  	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 



 

2.2  Vision-Based Approaches 

Gaze-tracking interfaces are generally controlled using an 

optical sensor focused on one or both eyes. Most modern eye-

trackers use contrast to locate the center of the pupil and use 

infrared and near-infrared light to create a corneal reflection, the 

vector between these two features can be used to compute gaze 

intersection [28],[32],[33],[34]. This has mostly been explored by 

Attentive User Interfaces (AUIs) [6] and has been applied to 

mouse control [6],[17],[28]. Its use has been demonstrated as a 

secondary control signal in EyeWindows; proposed as gaze as 

input method for focus window selection and finds eye tracking to 

be faster than mouse and hot keys [8]. Vertegaal presents a Fitt's 

Law evaluation that show that the eye tracking techniques 

outperformed the mouse from 16% up to 46% faster, however they 

present a high error rate [29].   

Face recognition has been thoroughly researched and is often 

used to control mouse cursors[24],[35]. Ashdown further explores 

the concept by combining head tracking with mouse input to 

facilitate mouse movement over multiple monitors [25] and Kaiser 

applies the same principle to disambiguate targeting in virtual 

environments [10]. Finally, Nguyen presents an algorithm for eye 

gaze tracking that allows free head movements with a single USB 

camera [5]. Similar to Nguyen, our tracking algorithm builds on 

top of Saragih’s face tracker [15] by adding eyelid state detection. 

2.3  Blink gestures 

Blink gestures have been proposed with both 

electrooculography and video based approaches.  Kaufman [4] 

supports detection of the state of the eyelids, and suggests using a 

sequence of left/right blinks as an input signal. Kwon [20] utilizes 

conscious blinking (two eyes) as an activation mechanism to 

accompany eye tracking.  The Eye Wink Control Interface (EWCI) 

relies on eye winks of varying length to generate input for 

“severely disabled” users [31]. To this we add an additional state 

for each eye (squinting), as well as the use of eyelid gestures as a 

secondary control signal for users who give simultaneous input 

with other devices. Further, EWCI is based on an IR 

emitter/detector clamped on the earpiece of an eyeglass frame. We 

demonstrate a less intrusive method of eyelid gesture detection. 

Recently a comparative study on blink detection and gaze 

estimation methods has been published [19]. As with previous 

work in this space, this study focused on the use of blink detection 

as a secondary signal for eye gaze detection. From the revision of 

previous work, it is clear that we are now able to easily track eyelid 

gestures, without resorting to exotic hardware solutions.  

It is also clear, however, that these efforts have mostly focus on 

the detection of winks as a means to either detect the face position, 

or facilitate gaze tracking. Moreover, although there has been a 

strong focus on the accessibility community, the HCI community 

has preferred gaze to eyelid gestures, leaving eyelid gestures 

underexplored from an HCI application perspective. To the best of 

the authors’ knowledge there is no exploration of the design space 

provided by eyelid available. Moreover, other than the cursor 

position and AUI based interfaces, there is little focus on the 

application of eyelid gestures on non-accessibility scenarios such 

as mobile devices or surface computing. Thus, a goal of our work 

has been to define and explore that design space, which we now 

present. 

3  DESIGN SPACE OF EYELID GESTURES 

We will divide our exploration of the design space into three 

areas: eye anatomy, perception, and complexity & sustainability. 

3.1  Eye Anatomy  

The human eye is a two-piece spherical unit (eyeball) that is 

controlled by six extra-ocular muscles for eyeball movement: the 

lateral rectus, the medial rectus, the inferior rectus, the superior 

rectus, the inferior oblique, and the superior oblique, shown in 

Figure 2. Each of the rectus muscles rotates the eyeball in one 

direction; while the oblique muscles stabilize the eye to prevent 

double vision (diplopia). The eye also includes three intra-ocular 

muscles: the ciliary regulates the shape of the lens and the circular 

and radial muscles of the iris contract and dilate the pupil 

respectively. Throughout this section, we refer to anatomy features 

explained in The Anatomy of Human body, to which we refer the 

reader for a thorough review [12]. 

Humans cannot control these muscles directly, however their 

actions can be controlled in aggregate for conscious actions [12]. 

The extra-ocular muscles react to instructions of gaze direction, and 

the ciliary can be relaxed by the attempt of defocusing a viewed 

object. Absent of invasive tools, such as electromyography [13], 

gaze can only represent the aggregate of the extra-ocular muscles’ 

movement. As we have described, gaze has been extensively 

explored on previous work, but forces the user maintain target on 

 

Figure 3 - The anatomical characteristics which form 

parameters of eyelid gestures. 

 

Figure 2 - 2,3,4, and 5: Rectus muscles.  6 and 8: Oblique 

muscles. 9 - levator palpebrae superioris. Other 

structures: 1 = Annulus of Zinn, 7 = Trochlea [extracted 

from Gray’s Anatomy, 1918.] 

274



 

sight. Further, eye saccades, or small and rapid unconscious 

changes in gaze, make eye tracking a noisy channel for input [21].  

Human eyes are equipped with eyelids, which serve the function 

of maintenance, and protection, of the eye. They are a thin layer of 

skin that can cover the eye. Eyelids are controlled by the palpebrae 

superioris muscle (Figure 2, structure 9), whose function is to 

elevate the upper eyelid. The lower eyelid is not controlled by 

muscles and is static during this process [11]. 

3.1.1  Temporal Parameters 

Humans unconsciously blink their eyelids to help spread tears or 

remove impurities across the surface of the cornea. Blinks typically 

last 300-400 milliseconds. Longer lengths are used to safeguard the 

eyes against threats (such as when falling, sneezing, when an object 

rapidly approaches the eye), and when sleeping. Blinks can be 

easily heuristically filtered to build eyelid gestures with few false 

positives. We avoid unconscious blinks by ignoring eyelid gestures 

occurring in both eyes simultaneously that are below a threshold of 

300-400 milliseconds. 

Generally, eyelid gestures are less prone to false positives than 

are gestures based on modulation of eye gaze, which is known to 

be noisy due to unconscious movements (such as eye saccades, or 

responding to movement or other pre-attentive cues), as well as 

conscious actions (such as glancing, or responding to post-attentive 

cues, such as the user’s name being called). For eyelid gestures, we 

focus on the conscious actions of the palpebrae muscle. 

3.1.2  Symmetry and Closedness 

A large quantity of the population is able to selectively control 
each eyelid, which allows humans to consciously close a single eye 
[27]. We distinguish between asymmetrical (either left or right) 
and symmetrical (both eyes) gestures. 

Cameras included on handheld devices and laptops do not 

provide enough resolution to accurately infer continuous eyelid 

muscle extension at distances comfortable for interaction. While it 

is theoretically possible to have a continuous classification when 

exploring eyelid gestures, in order to maintain accurate recognition, 

we opted to discretely classify gestures as open, closed and half-

closed. 

The possible parameters of anatomy which can be modulated by 

the user are therefore the selection of eye (both, left, right), the 

degree to which the eye is closed (closedness, which we discretize 

to open, half-closed, and closed), and the duration of the gesture 

(which we discretize into a short duration used to register an eyelid 

gesture, and a longer duration, which is used to continue or sustain 

one). This is summarized in Figure 3. 

3.2  Perception 

An interesting characteristic of this rich design space is that 

movement of the PS as an input signal has the effect of changing 

the user’s ability to receive output: when we wink, squint or blink 

our eyes, the way we perceive visual information is affected.  When 

performing eye gestures, the field of view might be affected – 

therefore, a consideration in assigning uses to eye gestures is to 

ensure that the gesture does not limit the ability of the user to 

perceive the feedback when gesturing. This effect includes a 

reduction in the field of view, as well as a change in depth 

perception [14]. 

Human eyes face forward with field of view of approximately 

200 degrees with two eyes. The two eyes overlap for a binocular 

region of 120 degrees, flanked by two monocular fields of 40 

degrees (See Figure 4). This field is reduced with some eyelid 

actions. Further, the arrangement of the eyes provides humans with 

stereopsis, primarily obtained by the parallax provided by the eye’s 

different positions. While depth perception can also be assisted by 

secondary cues, it is nonetheless affected by the loss of binocular 

view. 

We classify our gestures accordingly to their depth perception 

and field of view. Gestures can cause variable depth perception 

(monocular or binocular), as well as affecting the field of view (full, 

constrained, none). 

3.3  Complexity and Sustainability   

Previous work have presented classifications for direct input 

gestures which take into consideration the gesture complexity and 

how easy it is for a subject to comfortably maintain that gesture 

[22],[23]. Eyelid gestures suffer from equivalent anatomical 

limitations. Although the design space we have thus far described 

includes several seemingly independent dimensions, one also has 

to take into account the physical limitations of these parameters. 

For example, field of view is necessarily ‘constrained’ if a gesture 

keeps one eye open. One must also consider that, even among those 

parameters which are independent, users may be imprecise when 

 

Figure 5 - Detection workflow: (a) face detection, (b) eye region of interest capture, (c) structural analysis and shape description. 

  

Figure 4 - Human field of view is composed by a 

binocular region of 120 degrees, flanked by two 

monocular fields of 40 degrees.   

275



 

controlling eyelid gestures, and therefore not all combinations of 

these dimensions are physically comfortable. For example, holding 

one eye in a squinting posture for a sustained period of time places 

stress on the palpebrae superiosis, and can cause it to twitch or 

cramp – a one-eyed squint is therefore difficult to maintain. Indeed, 

individual differences between users’ abilities to control the PS 

must be considered. For example, it is know that not all humans can 

blink both eyes independently. Finally, the frequency of these 

gestures can create fatigue in the palpebrae superioris, not 

accustomed to high frequency of actions. This may also affect 

surrounding muscles such as the rectus, impacting field of view, as 

well as physical comfort of the user. 

Therefore, the notions of gesture registration and relaxation, 

previously discussed in [22], are of particular importance in 

designing eyelid gestures. Possible eyelid gesture registration 

postures must take into account human body limits. Further, for 

those eyelid gestures which are difficult to maintain, allowing for a 

relaxation of the gesture following registration is of great 

importance. Therefore, we include gesture activation in our 

exploratory design of eyelid gestures. We argue that gestures that 

only require registration serve a different purpose and can include 

higher penalties in both ergonomics and perceptive dimensions that 

gestures that require continuation. 

4  DETECTING EYELID GESTURES 

Having explored the design space of eyelid gestures, we now 
consider the mechanisms by which they can be detected. Our 
approach can be divided into 4 parts (see Figure 5). Detecting the 
face, calculating the eye position, detecting the state of each eyelid, 
and finally classifying the gesture. The algorithm has a frame rate of 

around 30hz from a 720p camera and a 1.8Ghz Core i5 processor. 
To detect faces we use the algorithm described in [15]. This 

method outputs a point mesh, out of which each eye position 
corresponds to a mesh sub-set and can be trivially captured (see 
Figure 5b). We opted for this algorithm, as opposed to a feature 
detector (for example, Haar features available in the OpenCV 
framework), because we found it to be more consistent in terms of 

the detected region position relative to the eye in the video image, 
therefore allowing us to assume that the eye pupil was always in 
the center of the eye’s region of interest.  

Once the face is detected, we calculate eye pupil position (the 
center point for each eye’s position) and create a rectangular region 
for each eye for detecting its state. The size of this region is 
computed according to the size of the detected face to achieve 
scale-invariance.  

For each eye, we then binarize the image of the region of interest. 
To make our algorithm robust to changes in lightning in particular 
to shadows due to face movements or gestures, we apply a 
threshold value based on the actual color range of each region. This 
operation produces a binary picture with only the 10% darkest 
pixels (Figure 5c).  

The binary regions are compared against pre-defined shapes 
using shape descriptions. In particular, we calculate image 
moments for each region and compare the results against two pre-
defined templates: a circle (open eye) and wide rectangle (closed 

eye).  
To further avoid false-positives, the output of the detection 

algorithm is input to a rolling average that stores the last thirty 
events. An eye is considered closed if 45% of the events classify 
the state as closed. An eye is considered open if at least 55% of the 
events classify the eye open. Finally, based on the state for each 
eye, the correspondent gesture is issued.  

5  DESIGNING FOR EYELID GESTURES 

We now demonstrate the power of eyelid gestures by 

demonstrating their use in 3 device form factors: handheld devices, 

desktop, and multi-touch surfaces. These scenarios were chosen as 

to show a spread of applications where eyelid gestures may be of 

use, further study is required to conclude to what scenarios best fit 

eyelid gestures. 

5.1  Handheld Devices 

We demonstrate the use of eyelid gestures to solve known 

problems with mobile devices. First, due to their physical size, 

handheld devices have limitations on the amount of information 

that they can provide onscreen at a time. Second, everyday 

situations, such as holding other artifacts [3] or wearing insulating 

gloves [36] can significantly reduce the ability to perform input.  

The use of eyelid gestures can help interaction by providing an 

input channel that does not make use of fingers or facilitates hand 

motions. We demonstrate this with two examples: web browsing 

and phone call application.  

5.1.1  Mobile Web Browser 

When browsing with mobile devices, it is ideal to use as much 
display space as possible to render the content. On the other hand, 
actions such as entering a URL, and going back and forward usually 
take-up valuable display space. Applications solve this by either 
reserving display space for icons (reducing the amount of 
information on screen) or supporting a full screen that makes use 
of gestures or physical buttons to ‘pop-up’ this functionality.  

We propose the use of eyelid gestures to allow the user to 
maintain an unobstructed view of the content, while also providing 
immediate access to control surfaces. When both eyes are open, a 
full-screen view of the webpage is provided. When the user closes 
their left eye, the URL bar appears. When the user closes their right 
eye, controls such as “Forward”, “Back”, and “Stop” are shown. 
Input may be made to these control surfaces in the usual way.  

Because each view allows for the whole screen to be dedicated 
to the task (either displaying content or making input), the tension 
in allocating pixels between display and control surfaces is 
eliminated. Thus, controls may fill the whole display, as in Figure 
6.  Larger controls reduce input errors by providing large targets for 
touch input.  

5.1.2  Answering the Phone 

When the user is wearing insulating gloves, they cannot provide 

touch input to a capacitive touchscreen. Under such conditions, it 

is desirable to use other input modalities for simple actions, such as 

accepting or refusing a call. Current phones often have several 

sensors (such as accelerometers) that can be used to infer gestures 

of the device, such as “answer the phone”. These, however, still 

require user activation so that false positives (in this case, ‘pocket 

answering’ due to accelerometer variations when walking) can be 

avoided. Eyelid gestures can be used as a modality for delimiting 

 

 

Figure 6 - Left: web browser GUI accordingly to eyelid 

gestures. Right: When a call is received by a user 

wearing insulating gloves, they cannot give touch input. 

Squinting at the phone activates accelerometer 

gestures. 

276



 

input via other sensors. For example, if a call is received while 

wearing gloves, the user can take the phone out of their pocket to 

see the identity of the caller. They can then squint both eyes to 

activate the accelerometer gestures (and receive an on-screen 

indication of the available gestures, as shown in Figure 6). They 

can then perform the desired accelerometer gesture. The mode 

terminates upon completion of the gesture.  

5.2  Desktop Applications 

Eyelid gestures can also be useful in desktop computing, where, to 
support the complexity required to manage a multi-task system, 
operating systems often allow users to assign shortcuts to actions, 
system-wide or application-based. We explore this use of eyelid gestures 
by presenting both system-wide and application specific gestures. In 
particular, we examine their use for window management, engaging 
modes in image editing software, and 3D navigation. 

5.2.1  Window Management  

To manage overlapping windows and to switch from one 

window to another, operating systems provide functionality such as 

tabs or switchers. Some operating systems also provide visual 

effects to access the desktop or an overview of the active windows, 

activated using the keyboard or mouse gestures. Eyelid gestures 

that change the user perception of information are adequate 

shortcuts for the visual effects. We activate the windows overview 

mode when users close the left eye, and activate the desktop when 

users close the right eye. By gesturing in sequence, users can 

quickly navigate between windows and drag files from their 

desktop to non-visible windows without the need to resize windows 

(Figure 7). 

 

Figure 7 - Desktop system-wide eye gestures example.  

 

Figure 8 - Application specific gestures: macro system for image editing software 

 

277



 

5.2.2  Quick Mode Changes for Image Editing 

Professional image editors provide complex editing tools. The 

underlying workflow generally consists of navigating to a portion 

of the image, selecting the area to be edited, and then selecting an 

action to perform. This action requires repeatedly switching 

between navigation, region specification and command execution, 

and can be tedious and repetitive to perform.  

We use eye gestures to reduce this tedium. By closing the left 

eye, the navigation tool is activated (allowing users to drag the 

document), closing the right eye empties the current selection and 

enables the selection tool (allows users to select new regions) and 

squinting both provides a selection mask for easy identification of 

the current selection region. Figure 8 illustrates the new workflow. 

While we demonstrate this for image editing, the use of eye 

gestures for mode changes is generally applicable, and is also a 

particularly salient kinesthetically-held mode. 

5.2.3  Navigating 3D Models 

When building 3D models, users often evaluate their edits by 

going back and forward between views, to get a sense of the overall 

model, or by hiding specific parts of the model, in order to 

understand the contribution of the change.  

People jokingly close one eye or the other in order to change their 

perspective of nearby objects. We map this behavior onto gestures 

supporting the changing of camera viewpoints. The user switches 

between multiple cameras by closing one eye or the other, or 

keeping both eyes open (Figure 9). We extend the ocular 

dissonance to the extreme, by giving users complete control over 

the cameras assigned to each eye configuration. Users can, for 

example, edit in perspective projection and assign orthogonal views 

to the camera associated with one of their eyes (to facilitate planar 

restricted movement, for example).  

We also facilitate ‘x-ray vision’ through squinting. In perspective 

view, objects closer to the camera often occupy a significant portion 

of the viewing angle and often occlude other objects. We provide 

an eyelid gesture (squint) that provides a visualization mode that 

displays objects close to the camera as wireframes, thus enabling 

the user to see objects otherwise occluded. This gesture is time 

dependent: the longer the user maintains the gesture, the more 

objects are displayed in wireframe (see Figure 10).  

5.3  Surface Computing  

Finally, we consider the use of eyelid gestures in surface 

computing, where gestures are used as means to interact with 

available information. The teaching of these gestures has been the 

focus of previous research [1],[7]. We introduce eyelid gestures as 

actions to activate learning systems. 

5.3.1  Learning Available Gestures 

As previous projects note, users need to be taught which gestures 

are available to be executed on each object. We implemented a 

system that uses eyelid gestures to activate a learning system which 

overlays objects with descriptions of the available gestures. 

Although intrusive, in that the overlay occludes content, it is 

transient, and activated only upon the user performing the eye 

gesture (see Figure 11c).  

 

Figure 9 - Eye gestures associated to changes in perception. Whenever a gesture is detected the model switches from a 

perspective projection to a orthogonal projection. 

 

Figure 10 - Squint gesture renders objects close to the 

camera as wire-frames. If the user sustains the gesture, 

more objects will be wire-framed. 

 

Figure 11 – Gesture learning system. The two sub-systems can be activated separately, by closing the corresponding eye, or 

together by squinting both eyes.  
278



 

5.3.2  Visualizing Gestures  

As previously described, there is an additional need in surface 

computing to provide even more visual feedback than in other 

media [7]. This is particularly true for gestures, where novices may 

activate actions without realizing what gesture they executed [1]. 

By closing the left eye, users activate a learning system that outputs 

any touch or gesture path, so that they can see exactly what of their 

inputs is actually registered as a gesture to induce a given effect 

(see Figure 11b). 

5.3.3  Combining Two Learning Systems 

Eyelid gestures can be composed to enable a combined effect 
(see Figure 11b and c). In this case, both of the learning systems we 
have described may be activated. If users squints both eyes, instead 
of closing just one eye, the system activates both learning systems 
and shows active touch path and possible gestures for each object. 
The combination of two learning systems with three gestures 
demonstrates the possibility of composition and provides a 
powerful learning system that is configurable for different user 
profiles. It also provides the user with complete, and easy control 
over when information is provided, reducing the need to reserve a 
gesture for bringing up, or manually enable and disable, a help 
system through other means [1],[7]. 

6  DISCUSSION & DESIGN RECOMMENDATIONS 

Eyelid gestures provide a significant design space, are easily 
detected, and have multiple uses across platforms and form factors. 
In this section, we discuss issues affecting the implementation of 
eyelid gestures. In particular, we focus on three topics 
demonstrated by the previous examples: detection of eyelid 
gestures, the application of eyelid gestures as secondary modalities 
and perception changes imposed by eyelids.  

6.1  Issues in Detection 

Although the gestures were easily detected using commodity 
cameras, we are still not able to detect continuous motion of 
gesture, thus the discretization of the closedness parameter of our 
design space. In particular, this is a problem when using lower 
resolution mobile device cameras (less than 720p). This has a 
strong implication in the application of eyelid gestures because it 
limits the available design space. On the other hand, humans do not 
have a fine control over the amount of closedness of the eye; but 
are able to maintain a position of half-close.  Future 
implementations might explore the appropriate use of a continuous 
version of the closedness parameter.  

In the examples presented, we explored the absence of open eyes 
(closed eyes). It should be noted, however, that our algorithm also 
detects the absence of a face. When designing for eyelid gestures, 
face detection is useful in avoiding false positives. Further, while 
we did not provide such example, one might also consider the use 
of two-eyes closed as an eyelid gesture.  

6.2  Eyelids as a Secondary Modality 

Although the design space for eyelid gestures is large, we have 
found that they are most useful when used in combination with 
other input modalities, given the limitations of the palpebrae 
superiosis. We believe that the best uses of eyelid gestures are as 
follows: 
•  Substitute the main modality for a short period of time as 

exemplified in the mobile device accelerometer activation 
•  Change behavior (mode) of the main modality, as exemplified 

in image editing 
•  Change the visible output without changing input mode, as 

exemplified in the surface scenario 
•  Provide a quick ‘ready to hand’ switch 

Future improvements in detection, and combination with facial 

expression detectors may help to increase the range of uses for this 

input modality. 

6.3  Changes in perception 

Changes in the field of view, associated with the eyelid position, 

distinguish eyelid gestures from other secondary modalities, such as 

voice. We argue that such changes should be taken into account in 

order to successfully apply eyelid gestures. Indeed, in the presented 

scenarios, the eyelid gestures are applied to actions that:  

•  Restructure the objects’ position accordingly to the gesture 

(system-wide desktop example) 

•  Adapt the UI to take into account changes in perception (mobile 

device and surface computing)  

•  Take into account monocular or binocular vision when 

displaying information. For example, the 3D Editing scenario 

changes to an orthogonal projection when one eye is open and a 
perspective projection if two eyes are open.  

As we have discussed, the effects of these changes can be 

minimized through the use of the principle of gesture relaxation, so 

that an eyelid modulation is used to initiate an action or mode, but is 

not continued in order to sustain it. 

6.4  Composition of Gestures 

As demonstrated in the surface-computing example, eyelid 
gestures can be combined to further enhance the design space. In 
our example, we interpret the squint gesture as a combination of 
both left and right gestures, but actions can also be associated with 
transitions between states. For example, a cursor position can be 
highlighted if a transition between eyes closed and eyes open is 
detected, or sequential switch between left and right eye interpreted 
as a single gesture (similar to interpreting sequential touch as one 
gesture or double click).  

6.5  Limitations 

Although we present a large number of possible eyelid gestures, 
not all gestures within our defined design space are feasible to 
execute or are comfortable to sustain over time. Further studies are 
required to obtain anatomically-based design guidelines for eyelid 
gestures.  

Our recognition algorithm, though simple, is hardware 
dependent. Mobile applications might need to account for lower 
frame rate, lower resolution, and camera vibration due to user 
movement.  

Finally, not all humans are capable of independently blink both 
eyes. The percentage of the population that can independently blink 
both eyes is not know, thus any application that leverages eyelid 
gestures must account for the fact that there are those that cannot 
use this technique. 

7  CONCLUSIONS 

Overall, we argue that eyelid gestures are useful as an input 

modality, and are useful beyond the applications in accessibility in 

which they have been previously described.  

In this paper we initiated an exploration of the design space of 

eyelid gestures and present a framework to classify gestures and their 

usage. We then present an algorithm capable of detecting gestures 

within the design space. Finally, we populate the space by describing 

the use of eyelid gestures on three form factors: mobile devices, 

desktop applications, and surface computing. We presented several 

prototypes that demonstrate the breadth of eyelid gestures as an input 

technique. We follow the scenarios with a discussion on how eyelid 

gestures can significantly contribute to an interactive environment 

and conclude with limitations of the approach suggested. The 

adoption of eyelid gestures require further study, in particular on the 

effectiveness of eyelid gestures and the effect fatigue has in the 

adoption of such technique. Future user studies will shed a light on 

the applicability of eye gestures as a secondary, useful, technique.  

279



 

REFERENCES 

[1]  Andrew Bragdon, Arman Uguray, Daniel Wigdor, Stylianos 

Anagnostopoulos, Robert Zeleznik, and Rutledge Feman. Gesture 
play: motivating online gesture learning with fun, positive 

reinforcement and physical metaphors. In ACM International 
Conference on Interactive Tabletops and Surfaces (ITS '10). ACM, 

New York, NY, USA, 39-48. 
[2]  Anthony J. Hornof and Anna Cavender. EyeDraw: enabling children 

with severe motor impairments to draw with their eyes. In Proceedings 
of the SIGCHI conference on Human factors in computing systems 

(CHI '05). ACM, NY, USA, 161-170.  
[3]  Antti Oulasvirta and Joanna Bergstrom-Lehtovirta. Ease of juggling: 

studying the effects of manual multitasking. In Proceedings of the 
2011 annual conference on Human factors in computing systems (CHI 

'11). ACM, New York, NY, USA, 3103-3112.  
[4]  Arie E. Kaufman, Amit Bandopadhay, Bernard D. Shaviv. An eye 

tracking computer user interface. In Virtual Reality, 1993. 
Proceedings., IEEE 1993 Symposium on Research Frontiers in , vol., 

no., pp.120-121, 25-26 Oct. 1993 
[5]  Ba Linh Nguyen, Youssef Chahir, Michèle Molina, Charles Tijus, and 

François Jouen. Eye gaze tracking with free head movements using a 
single camera. In Proc of the 2010 Symposium on ICT. ACM,  NY, 

USA, 108-113. 
[6]  Colin Ware and Harutune H. Mikaelian. An evaluation of an eye 

tracker as a device for computer input2. In Proceedings of the 
SIGCHI/GI conference on Human factors in computing systems and 

graphics interface (CHI '87) ACM, Vol. 46,  2003 ,  
[7]  Daniel Wigdor, Sarah Williams, Michael Cronin, Robert Levy, Katie 

White, Maxim Mazeev, and Hrvoje Benko. Ripples: utilizing per-
contact visualizations to improve user interaction with touch displays. 

In Proceedings of the 22nd annual ACM symposium on User interface 
software and technology '09. ACM,  NY, USA, 3-12. 

[8]  David Fono and Roel Vertegaal. EyeWindows: evaluation of eye-
controlled zooming windows for focus selection. In Proceedings of 

the SIGCHI conference on Human factors in computing systems (CHI 
'05). ACM, New York, NY, USA, 151-160.  

[9]  David W. Patmore and R. Benjamin Knapp. Towards an EOG-based 
eye tracker for computer control. In Proceedings of the third 

international ACM conference on Assistive technologies (Assets '98). 
ACM, New York, NY, USA, 197-203. 

[10]  Ed Kaiser, Alex Olwal, David McGee, Hrvoje Benko, Andrea 
Corradini, Xiaoguang Li, Phil Cohen, and Steven Feiner. Mutual 

disambiguation of 3D multimodal interaction in augmented and 
virtual reality. In Proceedings of the 5th international conference on 

Multimodal interfaces (ICMI '03). ACM,  NY, USA, 12-19. 
[11]  Eli L. Chang and Peter A. D. Rubin. Upper and lower eyelid 

retraction. International Ophthalmology Clinics, 42(2), 2002. 
[12]  Henry Gray. Anatomy of the Human Body. Philadelphia: Lea & 

Febiger, 20th edition, 1918. 
[13]  Hiroyuki Manabe and Masaaki Fukumoto. 2006. Full-time wearable 

headphone-type gaze detector. In CHI '06 extended abstracts on 
Human factors in computing systems (CHI EA '06).  

[14]  J. J. Marotta, T. S. Perrot, D. Nicolle, P. Servos, and M. A. Goodale. 
Adapting to monocular vision: grasping with one eye. Experimental 

Brain Research, 104:107–114, 1995. 
[15]  Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. Deformable 

Model Fitting by Regularized Landmark Mean-Shift. Int. J. Comput. 
Vision 91, 2 (January 2011), 200-215.  

[16]  Jayson Turner, Andreas Bulling, and Hans Gellersen. Combining gaze 
with manual interaction to extend physical reach. In Proceedings of 

the 1st international workshop on pervasive eye tracking & mobile 
eye-based interaction (PETMEI '11). ACM, New York, NY, USA, 33-

36. 
[17]  Jingtao Wang, Shumin Zhai, and Hui Su. Chinese input with keyboard 

and eye-tracking: an anatomical study. In Proceedings of the SIGCHI 
conference on Human factors in computing systems (CHI '01). ACM, 

New York, NY, USA, 349-356. 
[18]  John R. LaCourse, Francis C. Hludik. An eye movement 

communication-control system for the disabled. In Biomedical 
Engineering, IEEE Transactions on , v.37, no.12, p1215-1220, 1990 

[19]  Kohei Aai and Ronny Mardiyanto. Comparative Study on Blink 
Detection and Gaze Estimation Methods for HCI, in Particular, Gabor 

Filter Utilized Blink Detection Method. In Information Technology: 

New Generations (ITNG), 2011 Eighth International Conference on , 

vol., no., pp.441-446, 11-13 April 2011 
[20]  Kwon, S.H.; Kim, H.C.. EOG-based glasses-type wireless mouse for 

the disabled. In Engineering in Medicine and Biology, 1999. 21st 
Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical 

Engineering Soc. BMES/EMBS Conference, 1999. Proceedings of the 
First Joint , vol.1, no., pp.592 vol.1, 1999 

[21]  M. G. Saslow. Effects of Components of Displacement-Step Stimuli 
Upon Latency for Saccadic Eye Movement.  In JOSA, Vol. 57, Issue 

8, pp. 1024-1029 (1967) 
[22]  M. Wu and R. Balakrishnan. Multi-finger and whole hand gestural 

interaction techniques for multi-user tabletop displays. In Proceedings 
of the 16th annual ACM symposium on User interface software and 

technology, UIST ’03, pages 193–202. ACM, 2003.  
[23]  M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan. Gesture 

registration, relaxation, and reuse for multi-point direct-touch 
surfaces. In Horizontal Interactive Human-Computer Systems, 

TABLETOP’06, pages 185–192, 2006.  
[24]  Margrit Betke, James Gips, and Peter Fleming. The Camera Mouse: 

visual tracking of body features to provide computer access for people 
with severe disabilities. Neural Systems and Rehabilitation 

Engineering, IEEE Transactions on [see also IEEE Trans. on 
Rehabilitation Engineering], 10(1):1–10. 

[25]  Mark Ashdown, Kenji Oka, and Yoichi Sato. Combining head 
tracking and mouse input for a GUI on multiple monitors. In CHI '05 

extended abstracts on Human factors in computing systems(CHI EA 
'05). ACM, New York, NY, USA, 1188-1191. 

[26]  Norris, G.; Wilson, E. The Eye Mouse, an eye communication device. 
In Bioengineering Conference, 1997., Proceedings of the IEEE 1997 

23rd Northeast , vol., no., pp.66-67, 21-22 May 1997 
[27]  P. R. N. Sutton. The development of independent muscular control of 

separate eyelids in two racial groups, european and Polynesian.  In 
British Journal of Psychology. Volume 49, Issue 1, 65–69, 1958. 

[28]  Robert J. K. Jacob. What you look at is what you get: eye movement-
based interaction techniques. In Proceedings of the SIGCHI 

conference on Human factors in computing systems '90, Jane Carrasco 
Chew and John Whiteside ACM , NY, USA, 11-18. 

[29]  Roel Vertegaal. A Fitts Law comparison of eye tracking and manual 
input in the selection of visual targets. In Proceedings of the 10th 

international conference on Multimodal interfaces (ICMI '08). ACM, 
New York, NY, USA, 241-248. 

[30]  S. J. Bayless, M. Glover, M. J. Taylor, and R. J. Itier. Is it in the eyes? 
dissociating the role of emotion and perceptual features of emotionally 

expressive faces in modulating orienting to eye gaze. Visual 
Cognition, 19(4):483–510, 2011. 

[31]  Shaw, R.; Crisman, E.; Loomis, A.; Laszewski, Z.The eye wink 
control interface: using the computer to provide the severely disabled 

with increased flexibility and comfort. In Computer-Based Medical 
Systems, 1990., Proceedings of Third Annual IEEE Symposium on , 

vol., no., pp.105-111, 3-6 Jun 1990 
[32]  Shinjiro Kawato, Nobuji Tetsutani, Detection and tracking of eyes for 

gaze-camera control, Image and Vision Computing, Volume 22, Issue 
12, 1 October 2004, Pages 1031-1038 

[33]  Takehiko Ohno and Naoki Mukawa. A free-head, simple calibration, 
gaze tracking system that enables gaze-based interaction. In 

Proceedings of the 2004 symposium on Eye tracking research & 
applications (ETRA '04). ACM, New York, NY, USA, 115-122.  

[34]  Thomas E. Hutchinson, K. Preston White, Worthy N. Martin, Kelly 
C. Reichert, Lisa A. Frey. Human-computer interaction using eye-

gaze input. Systems, Man and Cybernetics, IEEE Transactions on , 
vol.19, no.6, pp.1527-1534, Nov/Dec 1989 

[35]  W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face 
recognition: A literature survey. ACM Comput. Surv. 35, 4 (2003). 

[36]  Wilcox, Dominic. Finger-NoseTM Stylus for Touch Screens, Apr 12, 
2012: http://tinyurl.com/nosepoint  

 

280


