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ABSTRACT

In this paper, we present a new approach of 3D indoor scenes mod-
eling on single image. With a single input indoor image (includ-
ing sofa, tea table, etc.), a 3D scene can be reconstructed using
existing model library in two stages: image analysis and model
retrieval. In the image analysis stage, we obtain the object in-
formation from input image using geometric reasoning technology
combined with image segmentation method. In the model retrieval
stage, line drawings are extracted from 2D objects and 3D models
by using different line rendering methods. We exploit various to-
kens to represent local features and then organize them together as a
star-graph to show a global description. Finally, by comparing sim-
ilarity among the encoded line drawings, models are retrieved from
the model library and then the scene is reconstructed. Experimental
results show that, driven by the given model library, indoor scenes
modeling from a single image could be achieved automatically and
efficiently.

Index Terms: I.2.10 [ARTIFICIAL INTELLIGENCE]: Vision
and Scene Understanding—Modeling and recovery of physical at-
tributes; I.3.5 [COMPUTER GRAPHICS]: Computational Geome-
try and Object Modeling—Physically based modeling;

1 INTRODUCTION

With the advent of Digital Photography Age, digital images have
become one of the most colorful medias. On the basis of various
objects in images, people capture great creative inspiration because,
various kinds of corresponding models can be found or created in
the real world. Hence, from the image, it’s possible to construct
a scene with 3D models in a virtual world and many researchers
have established geometric modeling based on images. Besides,
3D reconstruction from real world images is always an important
direction in the 3D modeling field [13] [5].

Recently, with the rapid development of modeling technology,
there has been an explosive growth of 3D models on the Internet.
Several model libraries provide rich resources, like 3D Warehouse
from Google, 3D Model Search Engine from Princeton Shape Re-
trieval and Analysis Group, Shape Repository from Aim@shape,
etc. Using these existing resources, auto-generating or recon-
structing new 3D models has become another interesting research
field [3] [36] [1].

As 3D model reconstruction from a single image has always been
a confusing problem, it is difficult to directly construct the scene
from images. However, many existing libraries contain huge num-
ber of useful surface models, from which similar models can be
retrieved to reconstruct the virtual scene. From this point of view,
we present a new approach for model-driven indoor scene model-
ing from single image. As we consider that color images contain a
great of geometric cues, so in the first image analysis stage, geomet-
ric reasoning combined with image segmentation method is applied
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to obtain main objects information from indoor scene images. The
extracted object information can be used in the following retrieval
stage. In the model retrieval stage, the idea from sketch-based re-
trieval [27] [11] is borrowed. In our method, since 2D objects and
3D models can all be represented by line drawings, similar models
can be easily got from the model library by comparing their simi-
larity. Specially, in line drawing representation, we propose a nov-
el feature encoding method, which hierarchically combines global
and local features together to represent a line drawing. In this way,
similar 3D models can be retrieved reasonably.

Contributions In summary, our main contributions include (1)
With the support of existing model libraries, an approach of 3D in-
door scenes reconstruction from a single image is presented. This
method reconstructs objects from the scene automatically and effi-
ciently. (2) We propose a novel feature encoding method for line
drawings. In this encoding method, not only local features but also
structured global features are represented. It converts the clutter of
pixel data into an ordered expression in line with the human visual
perception, and also the retrieval precision is improved accordingly.

2 RELATED WORKS

Image-based 3D reconstruction Image-based modeling is
always an ideal way for constructing a 3D world in people’s mind.
Traditional image-based modeling technologies require one to take
photos from different viewpoints for one scene and then use tech-
nologies such as stereo vision to construct 3D scenes [26]. Howev-
er, inconvenience of taking several photos for a scene leads to the
limitations of above methods. Hence, ideas of single-image-based
modeling technology would be more widely accepted, as a single
scene image is quite available.

In computer vision field, traditional single-image-based model-
ing methods construct a 3D scene using cues like lightness, texture,
focal length, etc. But these methods always have strict restriction
for objects properties, such as shapes and light reflection in a scene.
They are just available for some certain scenes. In subsequent s-
tudies, some researchers attempt to add interactions to simplify the
reconstruction problem [7] [5]. Many of these methods construct
the scene through manually setting vanishing points and geometric
invariant for an image. But they also have some limitations that
only certain geometry and basic plane can be constructed. In our
method, based on the existing model library, we could reconstruct
a more reasonable scene from a single image.

Model-driven 3D shape modeling In recent years, data-
driven modeling based on the model library has become an emerg-
ing modeling way, as the number of 3D models on the Internet is
rapidly increasing. Many studies have achieved modeling tech-
nologies for single object. In these studies, there are three cate-
gories according to various input items. In the first category, peo-
ple transform models guided by images. In Ref. [3] [2] [36], with
the help of partitioned models in library, people use operations like
parts retrieval and model deformation to reconstruct a new mod-
el with the guidance of an image. Yunhai Wang et al. introduce
projective analysis for semantic segmentation and labeling of 3D
shapes [31]. Another category of methods starts from sketches.
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Some researchers have implemented the sketch-based model re-
trieval technologies [11] [27]. With the sketches as input, they re-
trieve similar models in the model library. However, this kind of
methods pay more attention on the increase of retrieval precision,
but not the modeling itself. Moreover, some people use sketches
as the guidance to construct 3D model based on the model library.
They provide a new direction for single object modeling [12] [34].
In the third category, people use collected point cloud data [29]
or estimate image depth [30] to help complete the reconstruction.
However, only single object could be reconstructed with all the
above methods. Also, apart from sketch-based retrieval technol-
ogy, other methods have certain limitations on the model library.
That is, when objects in different categories have to be modeled,
the library has to be built by categories. However, in the scene re-
construction, as there are several objects in one scene, it’s difficult
to exploit above methods. For the reason that different objects in
a scene are not marked, we don’t know how to map them to the
model categories.

Model-driven 3D scenes modeling With the development
of technology, some people proposed scene modeling approaches
based on the model library which are classified into two categories
according to different input items. One category of methods is for
sketches. Based on the existing model library, sketch retrieval tech-
nology is combined with sketch modeling technology to construct a
scene in some approaches [20] [35]. Cases such as various objects
in one scene can be handled. However, there is still certain require-
ment on the order and category for input sketches. In the other
category of methods, with the help of model library, people use the
collected point cloud data to construct a scene [28] [25] [4]. They
segment the scene image with point cloud data. Then, each object
in image can be located and similar object is easily retrieved in the
model library. When every object is fixed, the scene reconstruction
is completed accordingly. Although these studies have made some
achievements, there are special requirements for the input. Besides,
this technology is inconvenient for common people, especially non-
professional users would find it difficult to draw the scene sketch
and unable to collect point cloud data without professional devices.
We note that single scene image is quite easily obtained from the
real world, so if the scene reconstruction can be completed from
a single image with the help of existing model library, the method
would be more valuable and widely available for common users.
We start from above motivation to carry out research about recon-
struction from a single image.

3 OVERVIEW

The input of our algorithm is an image I taken from a single view-
point and model library S containing many furniture models. In
our method, we would reconstruct the scene in a two-stage process
involving image analysis and model retrieval. Figure 1 shows the
overview of our approach.

Figure 1: An overview of our approach. With an input indoor scene
image, the output 3D scene is reconstructed with a two-stage pro-
cess: image analysis and model retrieval.

Image analysis In this stage, the main goal is to extract ob-
jects from image I for the convenience of following retrieval. The
corresponding objects are represented as (O1,..., On). In this pa-
per, geometric reasoning [14] [19] is used combined with image
segmentation technology to complete the analysis task. First, by
geometric reasoning method, camera parameters as well as cuboid-
s of objects in image can be obtained. Then the scene image is
over-segmented using mean-shift image segmentation method [6],
in which the over-segmented areas are merged to obtain the target
objects from the input image with the guidance of the cuboids we
just obtained. Detailed steps are introduced in section 4.

Model retrieval Our main task of this stage is to retrieve sim-
ilar models based on obtained objects to reconstruct a scene. To
handle the work, we first exploit the idea of sketch retrieval [11].
Different line rendering methods are used to extract line drawings
for image objects and models in the model library S. Then, to fa-
cilitate the model retrieval, line drawings are encoded into a special
feature representation. Inspired by the image organization method
Patch Net [15], we propose a new feature encoding method. In this
paper, we use tokens to represent the local feature in a line drawing
and then form the tokens into a star-graph for global feature repre-
sentation. Next, guided by the viewpoint information from image
analysis stage, each object from input image can be retrieved in the
model library with graph-matching method. Finally, we place the
models into 3D space of the scene to finish the reconstruction. The
details is shown in section 5.

4 IMAGE ANALYSIS

A single input image may contain several objects and objects are
retrieved one by one in the model retrieval stage. So it requires us
to know the information about objects in an image. In this section,
we will introduce the details about the image analysis. Limitations
are discussed in section 6.2.

4.1 Geometric Reasoning from a Single Image

To obtain the object information in an image, the most direct way is
to conduct the image segmentation. However, we find that existing
segmentation methods are difficult to handle complex scenes and
we want more information about the image such as the viewpoint
of the scene, so simple image segmentation method cannot meet our
requirement. Taking the above into account, we need more cues for
image analysis. We know that there exists information such as ge-
ometric relationship between lines, parallax relationship, contours
in an image. With above passive cues, we can easily reason the
geometric locations of objects in a scene. These studies, geomet-
ric reasoning based on the geometrical characteristics in 3D space,
have achieved a series of research results [14] [19] [38] [33]. In
this way, by geometric reasoning, we could obtain the object infor-
mation from an image. In our approach, we use these reasoning
methods [14] [19] to analyze the image, obtaining the viewpoint of
a scene and the cuboids of main objects. Scene viewpoints help se-
lect line drawings in the retrieval stage and object cuboids are used
to extract objects from image after image segmentation.

For an input image in Figure 2(a), we first extract line segments
using Canny edge detector, link edge pixels and fit line segments in
Figure 2(b). Then vanishing points could be recovered from these
line segments. With line-sweeping algorithm, we divide these line
segments into three groups and form one plane from each line seg-
ment group which represents an orientation map (as shown in Fig-
ure 2(c)) in the scene area. Different map combinations form a
number of cuboids which are possible objects in a scene [14] (as
shown in Figure 2(d)). Also, Room hypotheses (as shown in Fig-
ure 2(e)) are generated from line segments in a way similar to the
method described in Lee et al. [19]. Next, we examine exhaustive
combinations of one room hypothesis with several cuboids to form
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a series of scene configuration hypotheses. But not all scene config-
urations are reasonable. So we check them to reject invalid config-
urations by spatial reasoning which define volumetric constraints
of spatial exclusion between wall and objects or between objects
themselves. By evaluating scene configurations [14], the most rea-
sonable scene configuration hypothesis could be obtained. In our
experiment, if automatic analysis result is unreasonable, we inter-
actively locate one satisfied cuboid and then our system iteratively
perform spatial reasoning and scene configuration evaluating to lo-
cate other cuboids. Finally we get a satisfied scene configuration
and main objects cuboids are shown in Figure 2(f).

Figure 2: Geometric reasoning process. (a) Input image. (b) Extract-
ed line segments. (c) Three orientation maps in reasoning process.
(d) Cube hypotheses. (e) Room hypotheses. (f) Cuboids for main
objects in the image.

4.2 Objects Obtaining
We have just obtained objects locations from image in section 4.1.
But it is not enough to guide the following retrieval. In the retrieval
stage, we need other information such as object contours. We use
image segmentation method to over-segment an input image. Al-
though the over-segmented results can hardly show main objects
in a scene, with regulation of cuboids in section 4.1, we can obtain
each main object information by the method of proportionally com-
bining over-segment areas in a cuboid. Figure 3 shows an overview
of process about locating the objects. In our method, we first use
mean-shift method [6] to over-segment the image. For the input
image in Figure 2(a), we get over-segmented result shown in Fig-
ure 3(a). Then these over-segmented areas are combined together
by proportionally into the cuboids and the result is shown in Figure
3(b). Through above operations, objects (O1,..., On) are extracted
from the image. Figure 3(c) shows the final segmentation results
for this input image and four objects are extracted to be candidates
for following modeling.

Figure 3: Object obtaining process. (a) Over-segmented result for
the input image using mean-shift method. (b) Combination result
with the constraint of cuboids. (c) Main objects we extract from the
image.

5 MODEL RETRIEVAL

After obtaining main objects (O1,..., On) from the input image I, we
can retrieve similar models in the model library S. For each retrieval
operation, one object Oi is handled. In most cases, when people
want to retrieve 3D models from 2D objects, they always compare
the similarity between them. So in the model retrieval stage, our
main problems are: 1) How to represent both the 2D objects and 3D
models in a consistent form and conduct feature analysis. 2) What
matching mechanism we can use to perform the retrieval efficiently.
Our methods for solving above two problems will be introduced in
the following.

5.1 Consistent feature representation for 2D objects
and 3D models

We use the 2D object information as query to conduct model re-
trieval. To get a more reasonable result, we need to represent the
features of 2D object and 3D model at the same level. Inspired by
the sketch retrieval methods [11], we extract line drawings from
image objects Oi and render lines for models in model library in
order to represent them in the same way of line drawing. In line
rendering for objects, we use coherence line drawing [17] (CLD)
method for the task. However, since we use different line-rendering
methods for 2D objects and 3D models, properties of these two line
drawings are apparently different. With this in consideration, we
treat the 2D object line drawings by operations of resizing, smooth-
ing and eroding to make them have the same characteristic as 3D
model line drawings. Figure 4 shows the main objects obtained
from Figure 3, line drawings by coherent line drawing method and
final line drawings after our procession. As the results, major line
feature information for an object can be shown in the line drawing
by this way. Then we use suggestive contours [10] (SC) method to
render the models into line drawings. Figure 5 gives the line draw-
ing examples for several models in library. Also, we can see that it
represents the model feature details well.

Figure 4: Line drawings extracted from objects in Figure 3. (a) Input
objects. (b) Line drawings by CLD method. (c) Line drawings after
processing.

Figure 5: Line drawings of models in library. (a) Input models. (b)
Line drawings by SC method.

After the operations above, 2D objects and 3D models are all rep-
resented in the same way. Then we extract features from these line
drawings. In the process of feature extraction, many kinds of de-
scriptors can be used. Studies on bag-of-word feature [8], SIFT de-
scriptor [24], etc. have made many achievements. However, these
descriptors only represent one aspect of the feature, namely the lo-
cal or global description. The image structures are not considered
and hence we may fail to represent relationships of all the features.
Recently, a new study named PatchNet [15] is proposed. It rep-
resents the image into a graph, with the local and global features
linked closely. In our approach, we take inspiration of the PatchNet
idea, using various tokens to represent local features in a line draw-
ing, and then organizing the tokens together as a star-graph [22] to
show a hierarchical description.

We exploit the idea of sketch tokens [23] to obtain local feature
from the line drawings. Our aim is to define a group of tokens to
represent different local features in edge structure,including line,
T-connection, Y-connection, inflection, parallel, etc. In this paper,
model line drawings are rendered under different viewpoints for all
180 models in the model library and these line drawings are taken
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as the train data. For an indoor scene, we seldom view the bottom
of objects. So we focus on the top views. In our experiment, we
take 14 viewpoints in horizontal scale and 6 viewpoints in vertical
scale with totally 15120 line drawings. In training process, each
line drawing is set in the size of 820*668. According to this size,
we sample them by 35*35 patches which have better local feature
description from our experiment. The patch sampling details are
introduced as follows. First, we collect all black pixels of the line
drawing image. Then, for one certain pixel, we delete pixels around
it whose Manhattan distance is less than 17. This procedure is per-
formed iteratively until a series of sparse points left. With these
sparse points as centers, we sample patches from image and finally
obtain many 35*35 size patches. Next, we exploit the Daisy de-
scriptor [32] to calculate each local feature of patches and cluster
patches using k-means clustering method. In this paper, we get 150
cluster centers which are known as 150 tokens. Figure 6 shows
some tokens of our result.

With these tokens, we can easily represent an input line draw-
ing image by token replacement method by replacing local patches
with the most similar tokens. For details, at each time, we calcu-
late Daisy features of all patches and each patch is centered by one
black pixel in the line drawing image. Comparing all patches with
the 150 tokens, we get the most similar pair and replace the patch
with its token pair. Then delete the replaced patch in original line
drawing and iterate until almost all patches are replaced. We pro-
ceed token replacement for line drawings in Figure 4 and 5, and the
result are shown in Figure 7 (Set 1 corresponds to Figure 4(c) and
Set 2 corresponds to Figure 5(b)). We can see that the structure of
the line drawings do not change too much after the replacement.

Figure 6: Examples of tokens learned from line drawings. Each token
is a clustering center representing local feature.

Figure 7: Token replacement and star-graph schematic diagrams for
line drawings. (a) Original line drawings of objects (figure 4(c)) and
models (figure 5(b)). (b) Token replacement results for figure 7(a). (c)
Star-graphs corresponding to each line drawing. In each star-graph,
color blocks represent tokens, and lines which link graph center with
tokens represent distance vectors. Also, in figure 7, Set 1 is the
encoding result for objects, and Set 2 is for models.

However, above steps merely describe the local feature and lack
global descriptions. In order to show the line drawings from an

integral and structural perspective, we combine the local and global
features together to make a representation. The star-graph [22] is
used to organize the discrete tokens. With it, the whole line drawing
can be represented by a global structure. Details about star-graph
are as follows. Firstly, we find the center point of an object, from
which we draw a line to each token center. By this means, star-
graphs are constructed. The simple schematic diagram is shown
in Figure 7(c). We represent each star-graph as G=(V,E), V is the
nodes (each token is a node, as color blocks in Figure 7(c)), E is the
edges (each edge is a vector from object center to token center, as
lines in Figure 7(c)). For visibility of the star-graph, we gives a part
of tokens and same token color represent the same token. We can
see that the star-graphs have a good structure to organize the local
features.

By the above encoding approach, we can prepare all the models
off-line in the model library. That is, for each model in the library,
we render the model projection under different viewpoints and then
encode them with above approach. Although this task takes much
time, since it is the off-line work and we don’t spend too much time
when retrieving. It will improve the efficiency of our retrieval task
much.

5.2 Retrieval process
After above feature representation, we begin the retrieval stage. In
traditional sketched-based model retrieval or image-based single-
object reconstruction [36] [12] [11], there isn’t much prior knowl-
edge to use. To get a better retrieval result, researchers always
project the model in many different viewpoints by which to com-
pare different projection features. This method complicates re-
trieval process and also increases calculation. However, in sec-
tion 4.1, we mentioned that an image includes many cues, based
on which we can reason the geometric information of that image
to obtain the scene viewpoints. With the known viewpoint, sever-
al viewpoints can be selected from the library and calculation can
be simplified greatly when comparing the projection features. Be-
sides, for the following retrieval, since we represent the features
into star-graphs, retrieval can be processed by graph-matching ap-
proach. Next, we introduce the details of these two works.

5.2.1 Viewpoint selection

In 2D image, the camera position relative to a scene has direct im-
pact on the distributions of vanishing points. Reversely, if we know
the vanishing points, it’s easy to obtain the camera position. Ac-
cording to geometric reasoning result in sections 4.1, we could es-
timate three vanishing points by extending three line sets in Figure
2(b). 2D cuboids on the image plane can be seen as the perspec-
tive projection of cuboids in 3D space. Under these conditions, we
could calculate the scene viewpoint with known vanishing points.
Details are introduced as follows.

Figure 8: Schematic drawings for how we obtain the scene viewpoint.
(a) Three vanishing points of the image. (b) Schematic drawing for
parallel lines projection. (c) Front view of the image in three-point
perspective. (d) Side view of the image.

We obtained three vanishing points Vx,Vy,Vz from geometric rea-
soning result, as Figure 8(a) shows. Figure 8(b) is the schematic
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drawing for formation of vanishing points. Projection of two par-
allel lines in 3D space extends with intersection at vanishing point.
The line linking the vanishing point and viewpoint is parallel with
the original two lines in 3D space. Suppose QXY Z is local objec-
t coordinate system and coordinate origin Q has projection point
Q′ on image projection plane in Figure 8(c). Starting from Q′ we
draw lines to the three vanishing points Vx,Vy,Vz on image plan,
Q′Vx,Q′Vy,Q′Vz can be seen as projection coordinate axes of QXY Z.
With the vanishing points Vx,Vy,Vz as vertices, we plot a triangle
4VxVyVz. For each triangle edge, we construct three hemispheres
that intersect at one point, which is known as viewpoint of the scene
in 3D space. Figure 8(d) shows the side view of the image plan and
viewpoint E has orthographic projection E’ on the plan. According
to Figure 8(b), we know that the line between viewpoint and one
vanishing point is parallel with the corresponding coordinate axis,
i.e. in Figure 8(d), EVz‖QZ (QZ is the z axis of local object coor-
dinate system). Viewpoint E is at the normal of projection plane
through the projection point E ′. Distance D from viewpoint E to
projection plane could be calculated by formula (1).

D2 =
∣∣AE ′

∣∣× ∣∣E ′Vz
∣∣= ∣∣BE ′

∣∣×∣∣E ′Vy
∣∣= ∣∣CE ′

∣∣×∣∣E ′Vx
∣∣ (1)

Next, we move the local object coordinate system QXY Z toward-
s projection plane along the projection direction so that Q and Q′
are at the same position. Assuming that Q and Q′ are the same
point which makes no difference on view angles to the scene, for
the reason that changing distance between a scene and projection
plane merely changes the size of projection on the plane. In Figure
8(d), n is normal vector of the projection plane and α , β , γ are an-
gles between n and three coordinate axes x,y,z of QXY Z (We only
shows γ angle in the figure). Then we could obtain that,

cosγ =
D
|EVz|

= D/sqrt
(

D2 +
∣∣E ′Vz

∣∣2) (2)

The same procedure may be adapted to obtain the following.

cosα = D
|EVx| = D/sqrt

(
D2 + |E ′Vx|2

)
cosβ = D

|EVy| = D/sqrt
(

D2 +
∣∣E ′Vy

∣∣2) (3)

Suppose point E ′ has the position of E’(XE ′ ,YE ′ ,ZE ′ ) relative to
the coordinate system QXY Z and iz is the unit vector on E ′Vz. Then
we can obtain from Figure 8(d) that ZE ′ = |Q′E ′ · iz| · sinγ , where
Q′E ′ · iz is the projection vector of Q′E ′ in iz direction. Then,

ZE ′ =
∣∣Q′E′ · iz∣∣ · sinγ =

∣∣Q′E′ · iz∣∣×√1− cos2γ (4)

The same procedure may be adapted to obtain the following,

XE ′ = |Q′E′ · ix| · sinα = |Q′E′ · ix|×
√

1− cos2α

YE ′ =
∣∣Q′E′ · iy∣∣ · sinβ =

∣∣Q′E′ · iy∣∣×√1− cos2β
(5)

Hence position of the viewpoint E relative to QXY Z is as fol-
lows.

E (XE ,YE ,ZE)=E (XE ′ −D× cosα,YE ′ −D× cosβ ,ZE ′ −D× cosγ)
(6)

Next, we transform the position into a tuple 〈ϕ,θ〉 under the cor-
responding sphere coordinate system representing deflection angle
of the viewpoint to scene models, ϕ is the horizontal deflection an-
gle and θ is vertical deflection angle.

ϕ = arctan
√

XE
2+YE

2

ZE
2

θ = π

2 − arctan YE
XE

(7)

After obtaining the scene viewpoint, all the 3D models should be
under similar viewpoint so that they are consistent with the query
object. In the following retrieval process, for the permission of
error range, we choose projection line drawings within the range
of 〈ϕ + ε,θ +σ〉, ε , σ is a certain amount of error. That is, in
the model library that have been pre-processed, we simply choose
projections under feasible viewpoints. We randomly select several
models in library and Figure 9 gives model projections under simi-
lar viewpoints.

Figure 9: Model projections under similar viewpoints. (a) Object from
image. (b) Model projections under similar viewpoints with the object.

5.2.2 graph-matching-based model retrieval

Figure 10: Star-graph-matching based model retrieval. (a) Retrieval.
(b) Star-graph matching. (c) Retrieval result ranked by similarity from
top to bottom.

After calculating the viewpoint of a scene, we choose mod-
el star-graphs from library in a permissible error range. Based
on graph matching, model retrieval is conducted shown in Figure
10(a). Firstly, we define the involved variables. Suppose q as ob-
ject line drawing and Sk as one of n selected line drawings in library.
Then in Figure 10(b), the corresponding star-graph is Gq = (V q,Eq)
and GSk = (V Sk ,ESk ). The similarity between the object q and pro-
jection Sk can be calculated with formula (8).

P
(

Gq,GSk
)
= ∑

i
max

j
P
(

V sk
j |V

q
i

)
P
(

Esk
j |E

q
i

)
(8)

Where P(·, ·) is a normalized distance value that measuring the
similarity between two star-graphs. We can view it as a probability
of similarity. Vi

q and V sk
j are nodes in graphs, known as tokens.

Ei
q and E j

sk are vectors from graph center to token positions. Us-
ing them, we calculate the token feature similarity term using the
following formula.

P
(

V sk
j |V

q
i

)
=

1

1+ exp
(
−
∥∥∥V q

i −V sk
j

∥∥∥) (9)

Then, the token location similarity term can be obtained by the
following formula.

P
(

Esk
j |E

q
i

)
= exp(−

(
Esk

j −Eq
i

)T
S−1

L

((
Esk

j −Eq
i

))
(10)
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Here, SL is a constant covariance matric to allow for some devi-
ations in patch locations.

We introduce the details of the star-graph matching in the fol-
lowing. First, for each query token in Gq, we seek for D tokens at
the approximate location in GSk . Here D is much smaller than the
number of total tokens. Then, in the D tokens, we select the most
similar token with the query token in Gq, using both feature and
location similarity term to measure the token similarity probability.
Finally, we accumulate similarity probabilities for all query tokens
in Gq. The value represents the graph similarity between Gq and
GSk .

For higher retrieval precision, we then select the top M simi-
lar graphs from above results to calculate the similarity conversely.
That means, for each graph GSk in the top M, above method is used
again to get the P(GSk ,Gq) between all M graphs GSk and the query
graph Gq. Then we obtain the final similarity probability P for that
query graph in formula (11). The highest score responds to the most
similar model in the model library.

P = ω1P
(

Gq,GSk
)
+ω2P

(
GSk ,Gq

)
(11)

Where Gq is the query graph and GSk is a graph of top M in first
retrieval. ω1, ω2 are the coefficients. We conduct an experiment
and assign 0.5 to both coefficients for higher retrieval precision.

After above calculation, we can obtain the ranked similarities
between image objects and all models in library shown in Figure
10(c). In this paper, we output the top 5 retrieval results for users to
select, as is shown in Figure 11 that yellow frames indicate user’s
selection. We can see that our result has great similarity with input
object. Finally, according to the relative locations of each object in
the image, we place user-selected models into the 3D scene. In this
way, the scene reconstruction is completed. Figure 12 shows our
final 3D indoor scene.

Figure 11: Model retrieval result for the scene objects. (Models in
yellow frames indicates user’s selection) (a) Input objects. (b) Top 5
retrieval results in our model library.

Figure 12: Scene reconstruction result. (a) Input indoor scene image.
(b) Final scene reconstruction result.

6 EXPERIMENT AND ANALYSIS

In this section, we show our experimental results and analyze them;
limitations of our method are discussed as well.

6.1 Result analysis
We implement the algorithm under Windows 8, AMD A8-5500
3.20GHz CPU, 8GB Memory. To verify the effectiveness, we tested
with some other indoor scene images. The result is shown in Figure
13. In image analysis stage, geometric reasoning and object extrac-
tion consumes about 20s individually. In model retrieval stage, we
established the model library with 180 models, among which are
80 sofas, 45 chairs, 20 tables and 35 tea table models (the detail-
s are in supplementary material). All the models come from 3D
Warehouse. Based on the model library, k-means clustering for 150
tokens takes 10h, and encoding all the line drawings takes about
20h. After feature encoding, for an input scene image, it takes about
50s in reconstruction step(time determined by the image size). Pre-
processing is time-consuming however, this work could be done in
advance. Thus in model retrieval stage, our method constructs the
scene much more quickly.

Figure 13: Our reconstruction result. (a) Input indoor scene image.
(b) reconstructed 3D scene.

To verify our feature encoding approach, we also conducted
common 2D descriptors for comparison. Retrieval results for the
extracted objects in Figure 3(c), are provided in Figure 14, us-
ing different methods of GALIF [11], Fourier [37], Zernike mo-
ments [18] and HOG [9] feature descriptors. Among them, GALIF
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is one of the best sketch-based retrieval method in recent years and
Fourier, Zernike moments and HOG are common 2D shape feature
descriptors that Li et al. [21] mentioned. All retrievals are conduct-
ed under the viewpoint obtained in our paper.

It can be seen that our retrieval results have more similarity with
the input query object. Besides, for retrieval in mixed model library
without category labels, more models from our result are semanti-
cally in the same category with the query object. This is mainly
because traditional feature encoding methods only start from local
or global features. Even though there exist combinatorial optimiza-
tion of features, it leads to more uncontrollable results and more
dissimilarity for the reason that retrieval is not performed on a uni-
fied feature. In this paper, we consider the local and global feature
in a unified feature system. Models from the same category are
more consistent in similarity. Thus the retrieval results are more
likely to be in the same category. The feature encoding method we
proposed is quite available in mixed model library.

We do not have available Ground Truth for comparison experi-
ment, because we built the library according to our own need. Con-
sidering that, we took the idea of Huang et al. [16] who construct
Ground Truth by themselves for better comparison. We completed
our Ground Truth by an iterative way and details are as follows. In
the process, we randomly chose 20 users and asked them to con-
struct their own Ground Truth iteratively one by one. Specially, for
each object, the first user select from the model library the top 5
similar models, which are modified by the next user until all users
agree with the 5 models. We took the 5 models as Ground Truth
for the object. Figure 15 gives Ground Truth for objects in Fig-
ure 14. We display the models that belong to the Ground Truth,
marking them in color frames. Red frame indicates the model is in
the Ground Truth while green frame indicates it beyond the Ground
Truth. Our result has more red frames, which means that we have
more retrieved models belonging to the Ground Truth. It proves our
results are more similar to actual object and better corresponded to
characteristics of human vision. Therefore, we get to a conclusion
that our approach is more precise and relatively more effective.

Figure 14: Retrieval results for one scene using different feature de-
scriptors. Red frame indicates the model belongs to the Ground Truth
while green frame indicates it beyond the Ground Truth. (Please refer
to the supplementary material for clear image)

6.2 Limitations
Firstly, let us discuss about input images. Normally, for an input im-
age, geometric frame structures are needed in image analysis stage.
We use edge lines of structures to facilitate calculating the scene
vanishing point. Also, image analyzing experiment presents better
results for regular geometries than irregular geometries. In object
extracting aspect, if there is sharp color contrast between objects

Figure 15: Ground Truth from iterative method.

and background, little interactions are needed in object extracting,
as shown in figure 2. For some images however, colors in adjacent
areas are quiet similar, so we use obtained cuboids to help segment-
ing interactions. These interactions towards pre-segmented areas
concentrate on borders of cuboids. We simply assign these border
areas as part of one object or not in our experiment. In the case
of covering, our method tolerates small amount of covering, such
as cups on tea table or pillows on sofa. For large covering which
change object contours much(e.g. chairs in second and fifth row of
figure 13), this method provides a poor result. Generally speaking,
our image analysis method provide a reliable performance for most
indoor scene images.

Secondly, we describe the line drawings with a hierarchically
encoding approach, which is more suitable for retrieval in mixed
model library without category labels. It highly improves the re-
trieval precision. But we just consider the shape and structure of an
object in retrieval, not the semantic information of the scene. Hence
we may also obtain a similar shape result which is inconsistent with
the scene. In the future we would like to learn from the idea [35],
conducting scene semantic analysis and doing the joint semantic
retrieval.

Thirdly, we do not deform retrieved models. If all the models in
the database vary greatly with a query object, it would be difficult
to retrieve out a satisfying 3D model. In the future we hope to make
the study of deformed method to solve the above problems.

7 CONCLUSION

In this paper, we present a novel model-driven indoor scenes mod-
eling method based on a single image. With the help of rich model
resources on the Internet, we are able to conduct 3D modeling from
a single indoor scene image efficiently. The result shows that the
method proposed in this paper is simple and efficient. Our method
provides a new way for surface modeling technique from a single
image.

As for the future work, first of all, we wish to use more reason-
able geometric reasoning methods to analysis images better. Be-
sides, we want to use semantic analysis of the scene to achieve joint
semantic retrieval. We also consider adding contour deformation in
the retrieval process to get more reasonable 3D models.
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