
Performance Characteristics of a Camera-Based Tangible Input Device for
Manipulation of 3D Information

Zeyuan Chen� Christopher G. Healey� Robert St. Amant�

North Carolina State University

ABSTRACT

This paper describes a prototype tangible six degree of freedom
(6 DoF) input device that is inexpensive and intuitive to use: a cube
with colored corners of speci�c shapes, tracked by a single camera,
with pose estimated in real time. A tracking and automatic color
adjustment system are designed so that the device can work robustly
with noisy surroundings and is invariant to changes in lighting and
background noise. A system evaluation shows good performance
for both refresh (above 60 FPS on average) and accuracy of pose
estimation (average angular error of about 1� ). A user study of 3D
rotation tasks shows that the device outperforms other 6 DoF input
devices used in a similar desktop environment. The device has the
potential to facilitate interactive applications such as games as well
as viewing 3D information.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis�Color H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces�Input Devices and Strategies

1 INTRODUCTION

Manipulation of 3D information has become more and more im-
portant with the increasing popularity of 3D graphics in various
applications and platforms. 3D tasks such as rotation and dock-
ing are challenging, however, with conventional 2D input devices.
6 DoF input devices tend to be more effective but are often hard to
use or too expensive for consumer applications.

We have developed a prototype tangible 6 DoF input device
that is low-cost and intuitive to use to support exploration of 3D
information. The system is composed of a physical wireframe cube
made of thin rods and colored corners (Figure 1) and a single camera.
In use, the user watches live video of his or her hands, captured by
the camera. Computer vision algorithms estimate the cube’s pose so
that when the user moves or turns the cube, virtual 6 DoF information
changes to follow.

� e-mail: zchen23@ncsu.edu
� e-mail: healey@ncsu.edu
� e-mail: stamant@ncsu.edu

Figure 1: An example of a physical wireframe cube and its mathemati-
cal model.

The system processes video in two phases. First, the system esti-
mates a rough region containing the cube, based on its known shape
and by tracking correlation between successive frames. Second, the
system detects the vertices of the cube within the region to estimate
its pose, using correspondences between locations of the cube ver-
tices in the source video frames and their coordinates in a 3D model,
a virtual wireframe cube identical to the physical one (Figure 1).

There are multiple ways to map 6 DoF information to the ma-
nipulation of 3D objects: direct mapping and relative mapping [33].
In direct mapping, the virtual object has exactly the same pose as
the physical cube (Figure 2) or a pose with an offset (Figure 10).
For instance, in order to view a virtual teapot, the system projects it
inside the cube (Figure 2) so that the user’s rotation or translation
of the cube causes the teapot to follow correspondingly. In relative
mapping, the pose of the cube is mapped to certain properties of
virtual objects. For example, in one of the applications discussed
below, the orientation of the cube is mapped to the velocity of a
moving virtual object; in effect, the cube functions as a joystick.

In this paper, we propose novel approaches to track the wireframe
cube and estimate its pose accurately and robustly. A system eval-
uation shows good performance on orientation accuracy, with an
average angular error of about one degree, and an average frame
rate of 63 frames per second (FPS). We then describe a formal user
study of 3D rotation tasks, following past work on 3 DoF and 6 DoF
devices [3, 11, 17, 20]. Our device shows better performance than
other isomorphic and non-isomorphic techniques used in a similar
desktop environment; it even achieves results comparable with some
experiments in a surround screen virtual environment (SSVE) [17].
Finally, we describe two applications to demonstrate how our device
integrates with other systems in need of 6 DoF input devices and how
it facilitates virtual environment design and the control of virtual
objects.

2 RELATED WORK

2.1 6 DoF Input Devices
Of the wide range of 6 DoF input devices available, desktop iso-
metric devices are among the most common. For instance, 3Dcon-
nexion’s SpaceNavigator is a desktop 3D mouse that allows users
to control 3D objects by manipulating its pressure-sensitive han-
dle. However, this type of device often requires signi�cant practice,
even for several hours in some cases [32], before the users become
comfortable with them.

Another popular type is the free-moving device, which manip-
ulates 3D information through its rotation and translation in free
space. A free-moving device is generally easy to learn because it
maps the absolute pose of the device directly to the virtual object, but
such devices are often much more complex to design. The controller
of the HTC Vive contains 24 sensors and has to communicate with
two base stations for accurate pose estimation [13]; the result is good
performance but a costly system.

HCI has a history of developing free-moving devices based
on visible light or IR camera data, such as the videomouse [10],
SideSight [1], and HoverFlow [16]. Such systems may perform pro-
cessing that is much more complex than conventional input devices
such as the mouse or trackpad.

74

16-19 May, Edmonton, Alberta, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.



Figure 2: Left: the target smaller cube is detected successfully with
heavy noise in the background. Right: the predicted region Rc within
which the cube is detected.

Previous works [27,30] have demonstrated that there is no strong
dependency between the shape of the input device being haptically
manipulated and the virtual object being visually perceived. This
suggests it is acceptable to use a free-moving device with a particular
shape (e.g. a cube) to manipulate virtual objects with different
shapes.

2.2 Cube-Based Systems
Solid cubes, in some cases instrumented with sensors, have been
used for a variety of purposes in augmented reality (AR), virtual
reality (VR), and tangible user interfaces (e.g. [2,5,7,15,18,23,25,
26]). In Fish Tank VR, the �at surfaces of a cube can act as displays.
In AR systems, the surfaces can hold markers for visual detection.
In AR and tangible UIs, handheld cubes can be aligned in a stable
way with �at surfaces in the environment; further, they support
easy recognition of the cardinal directions in three dimensions. The
wireframe cube described in this paper is similar to pCubee [25]
(a larger, tethered cube), in that it allows for inspection of virtual
objects in its interior. The possibility of interacting with those virtual
objects (e.g., using a stylus) is a current area of our research.

2.3 Pose Estimation with a Single Camera
Input systems with a single camera are much simpler and cheaper
than other sensor-based or multi-camera systems, but the design
of such systems can be very challenging. MagicMouse [31] and
ARToolKit [14] estimate pose by tracking 2D markers. They are
simple and fast, but have several limitations. First, they are sensitive
to occlusions. The pose estimation fails if part of the maker is
covered or the borders are moved outside of the view. Second, the
pose estimation becomes more unreliable if the markers are more
�horizontal� to the camera and the rotation range is limited to 180�

because a 2D marker cannot be tracked after it �ips over. Even with
multi-marker tracking (e.g. the ARToolKit Cube), when the markers
are rotated, the marker-to-marker transition is not smooth and thus
the variance of estimation errors is large. Third, MagicMouse and
ARToolKit are sensitive to the changes in lighting environments.

Color provides useful information to object tracking. Wang and
Popovic [28] track hand pose by detecting a color glove. However,
their system can only estimate the approximate pose which makes it
less useful in applications requiring high accuracy, such as architec-
ture modeling or sculpting in a VR environment. Additionally, its
rotation range is limited due to constraints on joint movement.

Another standard approach is to use RGBD (RGB plus depth)
images from a device like the Kinect. However, such systems [12,
19,22,24,27] are often too complex to set up or unable to achieve
high refresh rate.

3 CUBE TRACKING

The location of the cube in current video frame is predicted based
on the shape of the cube and correlation between successive frames.
Let the minimal region that covers the cube in the previous frame be
Rp, and the minimal region that covers every parts of current cube in

motion beRm. The predicted regionRc that covers the current cube
is the union ofRp andRm since the cube could either stay stationary
or be moved to a new location.

A cube is considered successfully detected if more than three
3D-to-2D correspondences pass the Random Sample Consensus
(RANSAC) test in pose estimation (described below). The 3D
vertices are back-projected to the 2D screen using the estimated
pose. The minimal bounding box that covers them isRp.

The motion regionRm is detected based on the cube’s overall
shape: a cluster of rods. Adaptive background modeling [6] is
adopted to track pixels in motion, but we use gray-scale images
for simplicity. We propose a �bounding box of bounding boxes�
approach to track the rods of cube. The contours of pixels in motion
are extracted and the minimal oriented bounding boxes are applied
to approximate their shapes. Since the bounding boxes of cube rods
are thin, long rectangles, a bounding box is considered valid only
when its width, height and height-width ratio are all within certain
ranges.Rm is the region of a minimal bounding box that covers all
of the corner points of valid bounding boxes.

In practice, if there are many objects in motion in the background,
the detection ofRm will not decrease the overall accuracy, but it will
increase the computational cost. Therefore, users are allowed to turn
on and off the tracking functions.

The vertices of the cube are detected within regionRc so that
noise in the background is excluded (Figure 2). If the system fails
to detect the vertices,Rc will be reset to the entire frame so that the
system can always recover from tracking failures.

The within-region detection makes it possible for users to switch
among several cubes (Figure 3). If there aren cubes in view of the
camera, a user can activate one of them by moving it. The system
will keep tracking the active cube until the user picks up another one
to use.

The time to activate a cube is short. Assume all cubes have the
same probability1

n to be detected by the system and there are no
overlaps among them. The target cube is always inRm during the
activation process. Once the target is detected, which meansRp
only covers the target, all other cubes will be excluded because they
will neither be inRp norRm. The probability of detecting the target
within k frames (denoted asPk) and the activation timeTactivationare
computed as:

Pk = 1 � (1 �
1
n

)k

Tactivation= (

&
ln(1 � pt )
ln(1 � 1

n)

’

� 1) �
1
F

(1)

wherept is the threshold of probability andF is the frame rate. For
instance, if there are two cubes in view,pt is 0.99 andF is 60 FPS,
Tactivationwill be about 0.1 seconds, which means the activation time
is no more than 0.1 seconds with probability of 0.99.

Figure 3: The demonstration of switching between two models of
cubes. Left: the user activated the larger cube and a robot was
rendered inside. Right: the user activated the smaller cube and a
teapot was rendered inside.

75



Figure 4: Black contours: optimal color ranges of the eight cube
vertices in Hue-Saturation space. Red and cyan dash contours: the
minimum and maximum ranges of cyan vertex on the color wheel.

4 VERTEX DETECTION

The cube’s vertices are detected based on their colors and shapes.
The Hue, Saturation and Value (HSV) color space is used to separate
the eight vertex colors. We use HSV rather than RGB because hue
and saturation are invariant to changes in illumination.

The colors of surface points of a vertex look similar to each other,
but not identical. First, the points are captured from slightly different
perspectives by camera. Second, it is infeasible to paint each point
on a surface evenly in practice. Therefore, each vertex has a hue and
a saturation range on the color wheel. An example of optimal ranges
of the eight cube vertices that are generated by our automatic color
adjustment system (described below) is shown in Figure 4. Note
that the range of red is the combination of two ranges because it is
a border case near the hue angle of0� . For each color, the source
frame is converted to a binary image by applying thresholding with
the corresponding ranges.

The vertices are located using a blob detector for robustness.
Each vertex is a blob in the binary images and the center of the
blob is the location of the vertex. The binary images are blurred
using a Gaussian �lter with a 9 by 9 kernel before applying the blob
detector so that the �holes� within the blobs are �lled and noise in
the background is �ltered out. A blob is considered valid if its size
is large enough and it is approximately circular. If there is more than
one valid blob in a single binary image, the blob with the largest
area is chosen to represent the vertex.

The eight vertices are detected separately, so this step can run in
parallel. Eight threads are used to detect the vertices, which is about
three times faster than a single-threaded approach.

5 POSE ESTIMATION AND MODEL MATCHING

The pose of the camera is estimated from the 3D-to-2D correspon-
dences by solving the Perspective-n-Point (PnP) problem. LetX be
a set of 3D coordinates of vertices,C be a set of colors andx be a
set of coordinates of 2D points on the screen. A functionfk is used
to map each color inC to the 3D coordinatesX:

Xj = fk(Ci) (2)

wherei and j are the indices of the elements in their sets. A model
cube is de�ned with a list ofhfk(Ci);Ci i pairs. Figure 1 demon-
strates an example of a model and its corresponding physical cube.
After the vertex detection process, the 2D coordinatesxi of colorCi
are known. A list of color-to-2D correspondenceshCi ;xi i is built ac-
cordingly. Those two lists are joined together and a list of 3D-to-2D
correspondences can be constructed from the joined list.

The PnP problem is to estimate the location and orientation of
a camera with respect to an object in the scene from the list of

hfk(Ci);xi i correspondences. The approach of Gao et al. [8], which
is a fast solution with high accuracy, is adopted to solve this problem.
At least three 3D-to-2D point correspondences are required to solve
the PnP problem. The cube has eight vertices. Therefore, the pose
can be estimated accurately even if some vertices are occluded,
which improves robustness.

RANSAC is applied to eliminate outliers after solving the PnP
problem. The number of inliers is a good indicator of how well the
detected 2D points �t the model. Suppose there aren models de�ned
by f1; ::: fk; ::: fn. The detected 2D pointsxi are checked against each
of the models by constructinghfk(Ci);xi i for eachk. The model
with the highest number of inliers is chosen as the matched model.

Note that the activation process described in previous sections
does not require that the cubes are built from different models. That
being said, even identical physical cubes can be activated individ-
ually. However, if the users want the system to recognize different
cubes and treat them differently, the cubes have to be built from
different models. For example, Figure 3 shows switching between
two models of two cubes. Thefk for the larger and smaller cubes are
different since they have different layouts of colored corners. After
activation, different 3D objects are rendered inside to demonstrate
they are recognized respectively by the system.

6 AUTOMATIC COLOR ADJUSTMENT SYSTEM

In practice, the changes in lighting environment or background may
add noise to the algorithm and affect the accuracy of the device. An
automatic color adjustment system is developed to dynamically gen-
erate the optimal Hue and Saturation (HS) ranges to minimize noise.
The Value ranges are set to the maximum possible for robustness.

The system consists of two major parts: a monitoring and an
adjustment thread. The monitoring thread runs for every frame to
check if the current noise is within a tolerable range (Eq.3). The
adjustment thread is triggered if Eq.3 does not hold.

After pose estimation, the 3D model of each corner is back-
projected to the 2D screen, resulting in a circle-like areac. In the
thresholded binary image of each corner, the pixels inc are the
�correct� ones (denoted bySin) while the rest are �incorrect� ones,
or noise (denoted bySout). The initial value of noise (denoted by
Sinit ) is set to one at �rst, but updated toSout after each run of the
adjustment thread.t0 andt1 are lower and upper thresholds. If the
background noise does not change,Sout

Sinit
is one. If the noise increases

signi�cantly such thatSout
Sinit

> t1, the adjustment thread is run to
obtain smaller HS ranges, so noise can be �ltered out (Figure 5).
If the noise decreases such thatSout

Sinit
< t0, the adjustment thread is

run to obtain larger HS ranges for improved robustness. Note that
the changes in the lighting environment can increase noise (Sout),
but can not decreaseSin because the optimal ranges are much larger
than the minimum ones.

t0 �
Sout
Sinit

� t1 (3)

The adjustment process has two phases: shrink and expand. In
phase one, the HS ranges are shrunk to the minimum allowable
values while Eq.4 holds.Sc is the area of circlec. ts is a threshold
for the shrinking phase.

Sin
Sc

> ts (4)

The �rst phase minimizes the background noise while maintaining
a good shape of the target vertex to ensure that it is detectable.
The second phase is designed to expand the HS ranges for better
recognition robustness without sacri�cing accuracy. In phase two,
starting from the minimum ranges from phase one, the HS ranges are
expanded to the maximum allowable values as long as Eq.5 holds.
te is a threshold for the expanding phase.

76














