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ABSTRACT

This paper describes a novel model for coupling continuous chemical
diffusion and discrete cellular events inside a biologically inspired
simulation environment. Our goal is to define and explore a mini-
malist set of features that are also expressive, enabling the creation
of complex and plausible 2D patterns using just a few rules. By not
being constrained into a static or regular grid, we show that many
different phenomena can be simulated, such as traditional reaction-
diffusion systems, cellular automata, and pigmentation patterns from
living beings. In particular, we demonstrate that adding chemical
saturation increases significantly the range of simulated patterns us-
ing reaction-diffusion, including patterns not possible before such as
the leopard rosettes. Our results suggest a possible universal model
that can integrate previous pattern formation approaches, providing
new ground for experimentation, and realistic-looking textures for
general use in Computer Graphics.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.3.8
[Computer Graphics]: Applications I.6.8 [Simulation and Modeling]:
Types of Simulation—Discrete event

1 INTRODUCTION

Although much is now known about the genetic code and the bio-
chemical mechanisms that occur inside living organisms, we still
understand little about the actual processes that control growth, de-
termine form, and define skin pigmentation [24]. The seminal work
of Alan Turing provided a diverse, yet controversial direction. An
abstract chemical reaction, based on a simple two-reagent system
and modeled by differential equations, gave rise to the possibil-
ity that very simple mechanisms could provide biological diversity.
Turing elegant speculations brought to light the concept of reaction-
diffusion (RD) systems [25], which later led to several important
studies on Biology [10, 17, 20] and Computer Graphics [7, 26, 30].

In parallel, the early work of Turing and von Neumann led to the
theoretical basis of computing, where simple abstract machines were
proven to have the computational power to run arbitrarily complex
algorithms. Cellular automata (CA) were born [28], and led to the
design of very simple yet powerful rule-based systems, like Game
of Life [9] and L-systems [22]. In fact, Computer Graphics has been
widely using RD and CA as base models to generate pigmentation
patterns. Further pioneering work on forms [8], growth [6] and
simulation [29] made modeling natural phenomena a diverse and
multidisciplinary area. However, most of the techniques were still
very specific to the fields they deal with, being sometimes ad hoc
and quite complex.

In this paper, we seek to combine a few of the cited techniques
into a minimalist yet biologically plausible cellular simulation and
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explore the process of diffusion-driven pattern formation. Such
model should reproduce, yet in a simple form, already known and
fundamental mechanisms of living cells. We reinforce that such
plausibility is pursued both qualitatively (by replicating basic cell
processes) and quantitatively (depending on large numbers of cells
to produce an emergent pattern). Figure 1 shows a result of our
model. We simulated the pattern for a particular moray eel (Mu-
raena melanotis) using a single RD equation, where we set distinct
diffusion rates at different parts of the skin, enabling a saturation
limit for the two chemical reagents. The visual result is very close
to the actual pattern as we can see the large distinctive black spot
along the irregular white spots.

Figure 1: The moray eel Muraena melanotis: actual photo (above) and
simulated pattern mapped onto a 3D model (below). Photo courtesy
of Richard Bowes.

2 RELATED WORK

There is extensive literature that discusses reaction-diffusion sys-
tems in different knowledge areas such as Mathematical Modeling,
Physics or Theoretical Biology. In Computer Graphics it has been
pursued as a general pattern generation mechanism in a few land-
mark studies, like [7, 26, 30]. More recently, a few specialized
applications were presented [2, 13, 23]. In fact, Developmental Biol-
ogy is doing most of the current research relating biological patterns
and RD [15, 24].

On the other hand, there are many works on cellular automata
and growth models which usually follow the general assumption
that simple rules can produce complex results. Some pioneering
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works pursued growth models following a biological perspective,
like [1, 22]. However, very few indeed combined both reaction-
diffusion and growth rules within a cellular simulation.

Fleischer [6] proposed a general model inspired by biological
mechanisms. There was a concerted effort to simulate not only the
physical contact between cells but also their chemical and electrical
communication, along with interaction with the surrounding envi-
ronment and support for cell division. The authors opted to employ
very general rules, in a high-level language reminiscent of C, which
added a high complexity to the design of experiments. Interestingly,
their model incorporated diffusing chemicals and the possibility of
running a reaction-diffusion system, albeit restricted to a standard
regular grid that both covered cells and the extracellular space. That
is, the chemical concentrations were not tied to specific cells, but
simulated as an environmental property.

While [26] was the first to simulate an RD system on the faces
of a mesh, [4] has shown that the same simulation could run on
unconstrained and free-moving cells. The context of the latter work
was a more general computing model inspired by biological con-
cepts. A recent work [27] employs a simulation for zebrafish skin
patterns, where individual cells are modeled and interact to generate
pigmentation. This model strongly depends on cell migration but
otherwise have mechanics similar to our own. However, the focus
is on the reproduction of particular biochemical phenomena that
matches the real experiments made.

We have thus identified the opportunity for exploring biologically
inspired designs that pairs at the same level RD systems and growth
rules, balancing complexity and generality. This paper summarizes
our findings so far.

3 PROPOSED MODEL

We propose a model that can account for several types of pigmen-
tation patterns; it is both simple and biologically plausible. We
have focused on a minimalistic approach, avoiding ad hoc solutions
and keeping its design strictly adhering to chemical, mechanical
and biological occurring mechanisms. In fact, we use simplicity
as an Occam’s razor to guide the development of a reduced set of
features that can still provide a large diversity of patterns, being
easily controlled. Our primary emphasis is on the mechanochemical
interaction between simulated biological cells, mainly chemical dif-
fusion through membranes and damped collision, besides controlled
cell division.

3.1 Design rationale
We are particularly interested in pigmentation patterns which are
mostly influenced by cell interaction on the organism skin. Thus
our model works at a mesoscale level, abstracting the living cells as
indivisible entities. Therefore, we opted to simulate cells as compact
units with a homogeneous state. A set of rules defines the genetic
programming of a cell, triggered only by simple conditions, and
which results in just simple cell events. All simulated cells bear the
same genetic code, or in other words, are bound by the same set of
rules. Cells can differ regarding their internal state, which will then
trigger different events at different times during the simulation blah.

Although most growth processes happen in 3D inside living or-
ganisms, our focus in pigmentations patterns justifies the constraint
of having cells on a bidimensional domain, analogous to the surface
of the skin. It can be argued that surface curvature can affect the
creation of patterns, but we opted to have a simpler environment;
curvature can still be eventually simulated by activating different
rules based on localized concentrations of some reagent.

We devised the extracellular space as empty, with no cells but with
plenty of space for growth. Hard limits could be imposed to the cell
simulation if needed, constraining the growth to a fixed bounding
box to represent cell compression. We have also opted for strict
locality for cells during the simulation since it is a biological fact that

most signaling happens when cells are touching their membranes.
Therefore, by using local interactions the state change for a given
cells depends only on its nearest neighbors. This assumption both
simplifies implementation and provides more predictability, without
loss of expressivity. Furthermore, such locality also makes possible
the simultaneous and independent evaluation of cells, thus being
amenable to parallel implementation on a GPU.

It directly follows from these choices that there is no global con-
trol or influence after the simulation starts. Cells only move when
subject to a collision, caused by cell division. The reagent concentra-
tions only change when subject to chemical diffusion, synthesis, or
consumption. The only global mechanism that is explicitly allowed
is the passage of time, in the form of activation of rules dependent
on the iteration count since the simulation starts. We have explicitly
not implemented individualized cell rules. Thus it is not possible to
have a rule that affects only a particular cell. Nevertheless, such cell
can be initialized with a different reagent concentration, which then
triggers a specific rule during the simulation.

We justify our model based on the premise that although the
biological pattern generation mechanisms in the literature are quite
varied on their internal processes, many follow the outcome of
the simpler conceptual model of “short-range activation and long-
range inhibition” [17]. That is, even if the chemical and biological
mechanisms are intrinsically different, the net result is very similar:
the establishment of Turing patterns and stationary waves [15]. So
it is valuable to employ a generic yet theoretical reaction-diffusion
model as the basis for pattern generation in Computer Graphics, both
for its simplicity and breadth of previous studies.

3.2 Cell state
A cell within the simulation is modeled as a homogeneous unit and
geometrically as a unit circle. The numerical attributes for a single
cell are summarized in Table 1.

Table 1: Attributes of a single cell.

Attribute Description
position x and y coordinates
birth iteration number the cell was born at
neighbors number of nearby cells
polarity unit vector, with i and j components
R concentration for reagent R
DR diffusion rate for reagent R

At the beginning of a simulation, each cell has their concentrations
established and a set of chemical reagents defined. In analogy to the
biological term, we call this initial configuration a prepattern.

Our model neither explicitly establishes different cell types nor
discrete cell states. Thus any functional specialization by cells can
only be the result of different reagent concentrations, which in effect
can activate different rules. The actual meaning for any reagent is
up to the design of the rules.

The cell membrane is thought as having varying porosity, thus
being permeable or not to the diffusion of its reagents. The diffusion
rate (or permeability) of each reagent is individualized and per cell.
Each cell has an orientation, represented by a unit vector. Albeit cells
are modeled as perfect circles, biological cells can assume polarity
in the sense that they gain a preferred direction [11]. Polarity is
a critical feature of our model, as we have a way to establish and
maintain directionality during either division or diffusion. Cell
polarity can be defined explicitly in the prepattern, as a direct result
of cell division or by the activation of a rule that aligns the cell’s
polarity to the concentration gradient of a given chemical reagent.

Finally, each cell has a counter for how many neighbors it has.
Neighbors are the cells whose membranes are touching, and which
therefore can interact with this particular cell, either by diffusion or
collision. This counter is updated at each simulation iteration and
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gives a simple mechanism to evaluate whether a cell is under strong
compression or whether it is in a tissue border. It is also used to
prevent excessive division.

3.3 Diffusion and anisotropy

A fundamental idea of our model is to decouple reaction from dif-
fusion. Diffusion is seen as a simple chemical process, where a
given substance spreads within some substrate. Therefore, diffusion
occurs continuously among cells, at every simulation step. On the
other hand, reaction is seen as a per-cell condition-triggered event,
and therefore must be explicitly initiated by some rule (Section 3.4).

a
b

c

Figure 2: Normal diffu-
sion: b has highest con-
centration and c, low-
est. The amount of dif-
fused reagent is indi-
cated by the width of
the red arrows.

Naturally, diffusion occurs through
the cell membranes, so it is controlled
by the diffusion rate of each cell in-
volved in the process. As the actual dif-
fusion is computed as a summation of
pairwise cell contributions, the actual
diffusion rate is a combination of the
individual diffusion rates of the two
cells in contact. If one of such cells is
impermeable, no diffusion will occur
between them, and therefore besides
collision, the only possible interaction
between nearby cells is chemical dif-
fusion. Figure 2 illustrates normal dif-
fusion between three cells.

Being empty, the extracellular
space does not allow diffusion, which
is equivalent to a zero-flux or Neu-
mann boundary condition. Therefore, each group of nearly placed
cells can be thought of a closed system, functioning independently
from other connected groups of cells within the same simulation.

a
b

c

Figure 3: Anisotropic
diffusion: cell polarity is
indicated by the black
arrows.

Diffusion is normally isotropic.
However, we have also made possi-
ble anisotropic diffusion for a given
chemical reagent. Such diffusion can
be constrained to happen in the same
direction given by the cell polarity. As
such, the actual amount transferred be-
tween cells is modulated by their rela-
tive orientations, as shown in Figure 3.
Anisotropy has been used to constrain
reaction-diffusion systems in several
previous works [14,23,30], but always
within a fixed and regular cell arrange-
ment.

3.4 Cell events

Here we give an overview of the discrete cell events that can happen
within the simulation. Any such event is triggered when a specific
condition is met, as described by the set of rules that comprises the
genome for a particular experiment. Each rule has a condition and an
action. The conditions are restricted to testing for either the iteration
counter or simple comparisons between current cell attributes and
real values. When a condition is met, the action is immediately
performed, which results in the occurrence of one of the cell events
described in Table 2.

Table 2: Possible cell events within the simulation.

Action Cell event
change produce or consume reagent i
change change the diffusion rate for reagent i
react modify concentration according to a RD equation
divide perform instantaneous cell division
polarize change polarization along concentration gradient

The simplest event is the production or consumption of a chemical
reagent within the cell. By design, an action cannot set the internal
concentration of a reagent to a specific value. It is only possible to
increase it or decrease it by a given amount. This was established
based on two particular arguments. First, although we are simulating
discrete cells within discrete time steps within the simulation, we
are modeling real phenomena where concentrations change continu-
ously. So it makes sense to either produce more or consume part of
the chemical diluted inside the cell. Second, reagent concentration
is changing constantly as the result of chemical diffusion, then such
change is added to the production or consumption of a given reagent.

There is no restriction on the amount of reagent either produced
or consumed in a single action. However, chemical concentration
cannot be negative and can be bounded above by a certain saturation
amount. Such saturation level is optional, being globally defined for
each reagent, and cannot be changed during the simulation. Besides
the change in a reagent concentration, actions can also change the
current diffusion rate for a given reagent.

A critical part of our model is the reaction, which is the equivalent
part of a reaction-diffusion system. When a rule activates reaction,
two or more reagents inside the current cell are modified through
the application of a specific set of RD equations. As said before,
whereas diffusion happens continuously, the specific reaction part
must be triggered.

Another event is cell division. When triggered, mitosis occur, and
a new cell is instantaneously created. It is identical to its parent,
except for two attributes: birth and polarity. Its birth is set to the
next iteration, whereas the polarity for a child cell is defined relative
to its parent’s polarity, following an angle given as parameter for this
action. A division event is usually tied to a probabilistic condition,
where the chance of happening is explicitly set.

We have also defined a simple mechanism to prevent excessive
division. Biological tissues have complex growth controls to regulate
division and thus maintain its integrity. We have opted to employ
a simple approximation for cell compression that prevents division
above a certain limit: a global parameter can be used to prevent
cells from dividing if they have more than a given number of close
neighbors. It is interesting to note that no explicit mechanism for cell
death is needed, as the combination of a uniform chance of mitosis
and a maximum division limit seems to be enough so far to provide
consistent growth of tissue-like structures.

Finally, we have a “polarize” event that orients a cell towards the
higher concentration of a given chemical reagent. As diffusion is a
process that happens for all chemical reagents, their concentrations
are usually continuous. Therefore, we can derive a local chemical
gradient by only examining the concentrations of the closest cells,
providing a simple but powerful control mechanism, were many cells
can be consistently oriented by setting up a single cell producing a
chemical reagent. Such approach makes possible the exploration of
several hypotheses related to the theory of morphogen gradients [24].

4 IMPLEMENTATION

We have set the specific requirement for the implementation to be
scalable, in the sense that it must be able to handle a large number
of cells. In fact, we pursue a directly parallelizable simulation
loop, amenable to be run entirely on the GPU in the future. This
demand reinforces several design choices already described before,
particularly the strict locality of cells and the sharing of the same
static set of rules during simulation.

The interaction between cells, either diffusion or collision, de-
pends on locating all nearest neighbors within some influence range.
Although this can be easily changed, we have settled for a radius
of 3.0 centered at each cell. As each cell radius is 1.0, this enables
the location of either the immediate eight neighbors in a typical
Moore neighborhood (defined on a square lattice) or six neighbors
(in a regular hexagonal lattice). In fact, most compact yet non-

150



regular arrangement of cells would result in an approximation for
this hexagonal case. Figure 4 illustrates these three cases.

(a) (b) (c)

Figure 4: Neighborhoods: (a) square lattice, (b) hexagonal lattice, and
(c) general situation. The black circumference marks the influence
radius for the red cell. Cells within this range are shown in yellow.

Diffusion is performed by the change in the concentration of the
current cell based on the sum of relative concentration differences
among closest cells. The calculation follows Fick’s second law, by
using a numerical implementation of the Laplacian ∇ operator over
the nearest neighbors. In fact, the integration scheme is similar to
a generalized five point stencil, where the center cell has the same
weight as its neighbors. Eventually, the relative diffusion can also be
modulated by the polarity of the current cell, having full diffusion
with cells positioned over its main direction and gradually weaker
diffusion along cells perpendicular to it. Currently, a Euler integrator
is used, with a user-defined time step, as usually done in previous
works [19, 23, 26]. Anisotropic diffusion is achieved modulating the
full diffusion between two cells by using the dot product of their
polarity vectors.

4.1 Nearest Neighbor Search

Our fundamental problem is the efficient location of nearest neigh-
bors, a costly operation that has to be executed for each cell, during
each simulation iteration. We have thoroughly researched the Near-
est Neighbor Search (NNS) problem and refined the specific and
little-known technique of spatial sorting [5]. In short, we have
sought for a dynamic data structure that would not need to be rebuilt
from scratch for each simulation step. We have evaluated that spatial
sorting is optimal for our particular case, being memory efficient
and capable of taking advantage of small local changes in the cell
positions. Furthermore, by not relying on global counters or linked
data structures, spatial sorting can be easily parallelizable. The ma-
jor limitation is being an approximate NNS method, so care must be
taken for the trade-off between precision and performance.

Therefore, besides spatial sorting, we have added a fast and
specialized k-d tree as an alternative and exact NNS, based on
Nanoflann, which can be used by the simulation. Moreover, we
have also added a simple and very fast square lattice NNS, for static
experiments where cells lay in a regular grid. In Section 5.7 we
briefly discuss performance.

4.2 Code organization and interface

The implementation is called Pattern Explorer, organized into several
modules. The more important modules are the NNS algorithms and
the simulation loop itself. These are the ones that are planned to be
rewritten in CUDA for running entirely on a GPU so that the rules
can be loaded into the constant memory and cells then would be
simulated in parallel. The simulation loop itself is quite compact,
being about 500 lines of C++ code.

The simulation can be called from an API, thus text-mode stand-
alone programs can be compiled. In fact, all timing calculations
were done with this setup. We have also implemented a simple
graphical user interface (GUI), using the OpenGL, FreeGLUT and
AntTweakBar libraries. The GUI allows real-time visualization of
the simulation, thus being able to monitor the pattern formation
process and track the internal state of single cells.

To enable a fast cycle of experimenting different ideas for pat-
tern formation, we have defined a simple text-based language, for
specifying both the prepattern and the rules to be followed. Each
text file is usually self-contained, which we call an experiment. The
Supplementary Material gives a brief overview of this language,
which is the same used to generate the results of this paper.

We also have other modules for output in different formats. We
have an automated screenshot feature for capturing the evolution
of patterns, an export for the cell positions and colors in vector
format, and a high-quality image interpolation. This interpolation
makes possible the generation of high-resolution textures, that can
be applied to the 3D models. The interpolation algorithm itself is
based on Natural Neighbor Coordinates, as provided by the CGAL
4.9 package. Source code for the complete implementation and all
experiment files will be made publicly available1.

4.3 Division and collision
We suppose that cells live within a limited environment. Since they
are part of a tissue or immersed into a viscous extracellular fluid,
their movement is highly constrained. Therefore, cells only move as
a result of collisions, and collisions only happen after a division.

We have evaluated several possible mechanisms to model divi-
sion, but have settled for the simplest one: division happens instan-
taneously, by creating a new cell at some small distance apart from
the parent. Right after division, there is always some overlapping of
the newborn cell with its parent and other nearby ones, which then
causes collisions. Figure 5 illustrates the process.

Figure 5: The red cell divides and the green cell is created. In the
following iterations collision occurs and spreads all cells apart.

Collision testing runs for the same set of closest neighbors as
diffusion, given by the fixed influence radius. When cells overlap we
employ an impulse offset that makes them move apart. This scheme
is a simplified version based on [3], as we do not need to explicitly
compute resulting forces or maintain momentum for the cells. The
actual offset is computed from the summation of impulses given by
nearby cells and is proportional to how much overlap there is. The
overall effect is that cells slowly push others apart, taking possibly
several iterations until they are not overlapping anymore.

5 RESULTS

Here we give an overview of relevant results obtained. Our model
has a broad expressivity, as will be clear from the experiments,
and its design allows ease of experimentation. The Supplementary
Material presents more results.

We have chosen a slight variation of Turing’s original RD system
(as implemented by Turk in [26]) due to its simplicity. This model
is given by Equations 1 and 2, where α and β are usually fixed
parameters. A scale parameter is given by s, which affects the
intensity of the reaction part for both equations, having as effect the
direct control of pattern wavelength. The chemical concentrations
are given by U and V , and their respective diffusion rates are DU
and DV . The actual diffusion is given by the Laplacian ∇2 operator.

In all examples shown here, we only used this RD model. More-
over, we have also fixed α = 16 and beta = 12. We were interested
in finding out how much variety we could achieve by adjusting only
the scale factor (that only results in either chemical production or

1http://github.com/mgmalheiros/pattern-explorer
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consumption) and the diffusion rates (which are just per-cell mem-
brane permeability coefficients). That is, we have not varied the
overall behavior of the RD model (which would happen by changes
in al pha or beta), but restricted ourselves to “play” with naturally
varying biochemical quantities.

∂U
∂ t

= s(α−UV )+DU ∇
2U (1)

∂V
∂ t

= s(UV −V −β )+DV ∇
2V (2)

Figure 6 shows a parameter map using the Ready [12] package,
that further mapped the kind of patterns we would like to reproduce.
For our experiments, we further set as reference s = 0.01 and DV =
0.01, and let DU vary within the interval [0.0,0.8]. Then we can
go from negative spots to labyrinthine patterns to larger spots, in
relation to chemical V .

Figure 6: Parameter map for the Turing equations, ranging from blue
(lower value) to red (highest) concentrations for chemical V . Diffusion
rate for U varies from 0.0 (on the left) to 0.8 (on the right).

Each experiment consists of three parts: global settings, the
prepattern definition, and the rules to be run during the simula-
tion. The input files for all results are available in the Supplementary
Material.

5.1 Gradients and anisotropy
A simple, steady chemical gradient can be defined by two chemicals,
P, and G. The first is used to mark producer cells, whereas the second
defines the concentration gradient itself. Marked cells continuously
produce some amount of G, whereas all other cells consume it. By
adjusting the production and consumption rates, we can define the
reach of the gradient. The resulting concentrations, mapped to a
rainbow color map, are shown in Figure 7.

define chemical P // producer
define chemical G // gradient
use chemical P conc 0 diff 0
use chemical G conc 0 diff 0.1
create sqr_grid 20 2
set cell 0 chemical P conc 1
set cell 20 chemical P conc 1
rule if P conc == 1 change G conc 1
rule if P conc == 0 change G conc -0.06

Figure 7: Simple stable linear gradient, for chemical P (above) and G
(below). The experiment file is shown at top.

We may use a circular gradient, at the center of the pattern, to
induce cell polarization. If we perform anisotropic diffusion, we
can generate oriented stripes in a typical reaction-diffusion system.
As already noted in [14], applying anisotropy to both U and V does
not generate significative changes over the final pattern, but when
applying to only one reagent, the results are striking. Figure 8 shows
the result of enabling anisotropic diffusion only for V , where cells

are oriented along a radial gradient: stripes orient along the radial
lines. On the right side, we show the equivalent result from [23],
which employed actual modulation of the RD equation parameters.

If we set anisotropy only for the U reagent, the RD system now
creates concentric, yet slowing moving, stripes, as seen in Figure 9.
Note that the Turing parameters were only slightly altered from the
previous experiment, yet we can achieve a very similar result to the
one from [23], which still used manual modulation of parameters.

Figure 8: Effect of anisotropic diffusion for V reagent only (left) and
similar results from [23], made by parameter modulation (right).

Figure 9: Effect of anisotropic diffusion for U reagent only (left) and
similar results from [23], made by parameter modulation (right).

5.2 Simple growth pattern
We can reproduce the pigment of a mollusk shell, like in [7], by
creating a growing front of cells. On the left of Figure 10, we keep
the row of cells at bottom both dividing and with active RD. After
division, the pattern is frozen on the parent cells by making the
diffusion rate drop to zero, whereas RD continues on the newborn
cells, which again divide in the next iteration.

Figure 10: Growing front that freezes the older generated pattern (left)
and result from [7] (right).

5.3 Pattern enlargement
A well-known feature of standard RD systems is that the pattern
can adjust itself to changes in its domain, thus keeping an overall
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wavelength for its features, like the distribution of spots or width
of stripes. We studied a particular problem: after the hypothetical
production of melanin-like pigmentation defines a pattern, how does
it maintain its form during natural growth?

Suppose a uniform growth, where divisions occur with equal
probability for each cell. If RD stays active during the process, after
many cell divisions, the pattern would adjust to a larger area, and
thus new details with the same wavelength would be introduced, as
show in the (a) transition of Figure 11. However, if we stop diffusion
to keep the concentrations, as in (b), division of cells would introduce
exact duplicates, which then would add irregularities to the original
pattern. On the other hand, if we only stop the reaction, diffusion
would make the pattern fade and result in less-defined boundaries.

We have experimented with several mechanisms and settled for a
particular one that is both simple and seems to be robust to global
or local tissue growth. We “copy” the initial pattern from either
U or V to another reagent, here called P, with a low diffusion rate
(this is shown as the (c) transition in Figure 11). Then we add two
mutually exclusive rules to reinforce P concentrations close to either
0.0 or 2.0. When the current concentration is under 0.9, the first rule
would gradually decrease P, whereas when the concentrations are
above 1.1, it would increase P towards the upper limit. The result is
that these rules oppose the diffusion effect, by keeping the high and
low concentration regions mostly unchanged during growth. The
net effect is that some minor detail is lost, but the overall pattern is
maintained, as in (d).

(a) (b) (d)

(c)

Figure 11: Distinct behavior during tissue growth. Transition (a) shows
the effect of domain growth, whereas (b) shows cell division with
inactive RD. The copy of concentrations to a third chemical (c) makes
possible to keep the overall pattern under uniform growth (d).

5.4 Reinforcement mechanisms

Early versions of our model did not incorporate chemical saturation
for the reagents. Some RD systems constrain chemical concentra-
tions to be non-negative, and that was our only assumption from the
beginning, as it makes sense in a real chemical process. However, we
have since explored rules like the ones used for pattern enlargement
and saw that imposing a limit concentration is both plausible and a
common mechanism in biological organisms.

In fact, the explicit setting of an upper bound for chemical con-
centrations made possible a new category of patterns, based on a
single reagent, which we called reinforcement patterns. We are not
aware of previous studies discussing this mechanism. The three
experiments shown in Figure 12 start with random concentrations
for the single chemical P and achieve stability under 2000 iterations.
The resulting concentration for P was then simply mapped to an
interpolated color map.

define chemical P limit 1
use chemical P conc 0.5 dev 0.5 diff 0.01
create sqr_grid 100 100
rule if P conc > 0.7 change P conc +0.01
rule if P conc < 0.3 change P conc -0.01

Figure 12: Stable reinforcement patterns: cow (Bos taurus, left col-
umn), Dalmatian (Canis lupus familiaris, center) and African wild dog
(Lycaon pictus, right). The experiment file for the cow-like spots is
shown on top. Photos in the public domain.

5.5 Saturated reaction-diffusion
We have discovered that the classic Turing RD system gains very
compelling behavior when saturation limits are imposed to one or
more reagents. The first example shows the emergence of a stable
giraffe pattern from a random amount of initial concentrations for
U and V chemicals, as in Figure 13. The RD system first produces
irregularly spaced spots with similar size. Gradually, some spots
increase and absorb smaller spots, creating larger regions, moving
to a stable configuration.

define chemical U limit 6.3
define chemical V limit 6.3
use chemical U conc 4 dev 3 diff 0.04
use chemical V conc 4 dev 3 diff 0.01
create sqr_grid 100 100 wrap
rule always react U V scale 0.005 turing alpha 16 beta 12

Figure 13: Reaction-diffusion where both U and V reagents achieve
saturation, with emergent giraffe (Giraffa reticulata) pattern. The
experiment file is show on top. Photo in the public domain.

Particularly striking are the dynamics provided by saturation:
when one reagent hits its upper concentration limit, the other one is
usually forced to zero. The use of saturation tends to create large
areas of zero concentration and others of maximum concentration.
This behavior is exactly what we were previously trying to achieve
for pattern growing. That means that saturated RD is resilient to
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domain growth, and now makes possible the creation of large areas,
thus breaking the fixed wavelength from the standard Turing equa-
tions. Moreover, the implementation of saturation is trivial, being
just a max(limit, concentration) operation. Finally, it is biologically
plausible, being a universal chemical phenomenon.

When exploring the dynamics of the patterns generated by satu-
rated reaction-diffusion, we found that the most visually interesting
and capable of generating realistic biological patterns arrived from
imposing a limit to either U or the same limit to both U and V .
Figure 14 shows the parameter map for the situation where only U
is limited. Figure 16 shows a few randomly generated patterns.
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Figure 14: Parameter map for V , where DU varies the horizontal axis,
and saturation limit L varies in the vertical axis. In the darkened area
the concentrations fluctuate below the limit, so there is no difference
from the standard RD behavior. No steady patterns appear in the blue
areas, as the reagents tend to constant concentration.

Figure 15: Emerging leopard (Panthera pardus) rosettes from com-
bined uniform growth and saturated RD. Photo in the public domain.

We have confirmed the conjecture from [16] that leopard rosettes
would spontaneously appear from the growth of the tissue, albeit
with a simple mechanism and more accurate results, as shown in

Figure 15. We have coupled uniform growth and saturated RD,
imposing a limit only to U . To make the growth rate consistent
over the simulated tissue, we further constrained the pattern into a
growing square domain, and explicitly seeded the prepattern with
uniformly spaced spots. Note that previous results for both giraffe
and rosettes were only possible with cascade RD processes or more
specialized computations [16, 26, 29, 30].

Figure 1 shows another experiment, where a simulation is run
to generate the texture for a specific moray eel species, Muraena
melanotis. We again employed saturated RD, involving U and V . For
the distinct parts of the body, we simply set different diffusion rates
for U . The closeness of cells ensures the continuity of concentrations
in the interface of such parts. For the distinctive black spot, we
created an approximate elliptical gradient, based on two producer
cells, and let nearby cells affected by this gradient to continually
produce V , which prevented the emergence of white spots.

5.6 Cellular automata
Although our focus is on patterns created by RD systems, our model
is also capable of running several types of cellular automata. In fact,
we understand that it falls in the category of continuous automata,
where valid states are no longer limited to be discrete numbers.
Albeit there is no explicit support in our model for identifying who
are the neighbors for a given cell (only the number of neighbors
is available), we can control and measure local chemical diffusion
as a mechanism to evaluate neighborhoods. In the Supplementary
Material we present experiments implementing the classic Game
of Life and Wireworld cellular automata, and also a more complex
example of approximate Laplacian Growth.

5.7 Performance
Simulation time is dependent on five major factors: number of
iterations, number of cells, number of chemicals, choice of rules and
choice of NNS algorithm. That is, for each iteration and each cell
we must evaluate all rules and then locate the cell’s neighbors. If we
consider a static regular grid arrangement, with cells having a fixed
number of neighbors which can be located at constant time, we have
an expected time complexity of O(mn(r+ c)), being m, n, r, and c
the number of iterations, cells, rules, and chemicals respectively.

If growth is enabled, a regular grid can no longer be used, and we
must either use an exact NNS, like a k-d tree, or an approximate one
like spatial sorting. Then we must take into account that these NNS
techniques need two distinct operations: overall setup and per-cell
query. During setup, we must either build the k-tree from scratch or
spatially sort cell positions, which are both done at each iteration.
Then, for each cell, we have to perform a query to locate the actual
neighbors. We can suppose an upper limit for the number of nearest
cells because in practice we employ a limited influence radius and
an explicit control to prevent excessive cell division.

The worst case time complexity for the k-d tree setup is O(nlogn),
whereas a single query operation is O(logn). The overall complex-
ity of the whole simulation using k-d tree is O(mn(logn+ r+ c)).
We have analyzed spatial sorting in [5] and found an experimental
complexity of O(nlogn) for sorting, whereas the query can be done
in constant O(1) time. Thus, when using spatial sorting, we estimate
the worst case time complexity also as O(mn(logn+ r+ c)).

Detailed timing information is given for all results in the Supple-
mentary Material. We briefly discuss here two cases. The moray
example has 20,000 cells, runs for 5,000 iterations and uses a square
grid NNS, just taking 21 seconds to execute. The leopard example
reaches 6,228 cells in 14,000 iterations. When run using a k-d tree,
it takes 43 seconds, whereas with spatial sorting it takes 22 seconds.
Spatial sorting is consistently faster than the k-d tree, and in this
particular case, the average miss rate when detecting neighbors is
0.5%, using a 48 Moore neighborhood. The test machine is powered
by an Intel Core i7-4500U CPU running at 1.80 GHz.
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6 CONCLUSION

We have presented a parsimonious yet elegant simulation model,
trying to mimic the fundamental workings of growing organisms,
where the complexity of a few realistic biological patterns emerged
from the combination of reaction, diffusion, chemical saturation and
the application of simple rules.

We have strived to maintain minimalism and follow biological
plausibility as our primary design goal. The resulting limited set of
features made possible the systematic exploration of several com-
binations of RD parameters, timed and chemical conditions, and
cellular actions. The results show that our model has the potential to
generate patterns across a wide range of possibilities.

As future work, we plan to further evaluate the interrelation be-
tween growth and definition of cell polarity, as a mechanism for the
emergence of oriented patterns. We also plan to implement the sim-
ulation loop entirely on GPUs, to simulate a larger number of cells.
Furthermore, we plan to design an approach that makes possible the
interactive and artist-oriented design of patterns.

Although we have only implemented Turing equations, it is
straightforward to add Gray-Scott [21], Miyazawa’s [19] or one
of Meinhardt’s equations [17, 18] to our model. Therefore, another
future work is the exploration of the effect of chemical saturation on
other, more complex RD models.

Figure 16: “Saturated Bunnies”, made from randomly generated ex-
periments.
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