
FLOWPAK: Flow-based Ornamental Element Packing
Reza Adhitya Saputra*

University of Waterloo
Craig S. Kaplan†

University of Waterloo
Paul Asente‡

Adobe Research
Radomír Měch§

Adobe Research

Figure 1: Ornamental packings of a lion and a unicorn. The diagram next to each animal shows a set of four ornamental elements
used in the packing (top) and the annotated container regions (bottom). Each ornamental element has a red spine that is used to
deform it along a streamline. In the containers, black curves represent boundaries, red curves with arrows represent directional
guides, and green curves are fixed elements copied into the final design. The colours in the final rendering were added manually.

ABSTRACT

We present a technique for drawing ornamental designs consisting
of placed instances of simple shapes. These shapes, which we
call elements, are selected from a small library of templates. The
elements are deformed to flow along a direction field interpolated
from user-supplied strokes, giving a sense of visual flow to the
final composition, and constrained to lie within a container region.
Our implementation computes a vector field based on user strokes,
constructs streamlines that conform to the vector field, and places an
element over each streamline. An iterative refinement process then
shifts and stretches the elements to improve the composition.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.m [Computing Method-
ologies]: Computer Graphics—Miscellaneous;

1 INTRODUCTION

A popular style of ornamental design involves filling a container
region with a number of small decorative elements. Elements are
simple geometric forms, often stylized flora, spirals, or other abstract
shapes. The elements are large enough that they can be appreciated
individually, but they work together to communicate the overall
container shape. Typically, they also form a cohesive stylistic family.
Figure 2 shows four examples of these sorts of compositions, which
we refer to as ornamental packings.

*e-mail: radhitya@uwaterloo.ca
†e-mail: csk@uwaterloo.ca
‡e-mail: asente@adobe.com
§e-mail: rmech@adobe.com

In studying designs like those in Figure 2, we have identified
high-level principles that are important to their construction:
• Balance. A composition does not exhibit too much variation

in local amounts of positive and negative space. Typically, this
goal is accomplished by limiting variation in the diameters of
elements (controlling the variation in positive space), and in
ensuring that elements are spaced evenly (controlling negative
space).
• Flow. In local parts of a composition, the elements are oriented

to communicate a sense of directionality or flow. All of the
examples in Figure 2 exhibit some amount of flow. In the dog,
many elements appear to flow outward from the flower in the
centre of the torso, and then up the neck and down into the legs.
The scales and other elements on the fish flow along the length
of its body. In the lion and skull, elements flow horizontally
outward from a central axis of symmetry, suggesting fur in the
case of the lion. Flow adds visual interest to a composition,
engaging the viewer by providing a sense of progression and
movement through elements.
• Uniformity amidst variety. Repeated elements must balance

between two opposing forces. Uniformity aims for an over-
all unity of design; variety seeks to break up the monotony of
pure repetition. Elements should be permitted to vary in shape,
but in a controlled way. We refer to this principle as unifor-
mity amidst variety, a term borrowed from philosopher Francis
Hutcheson [15]. Gombrich also writes eloquently on the role of
variation in design [9]. In our examples, the dog’s spirals and
the fish’s scales both obey this principle. The lion and skull do
as well, except that half of the elements are reflected copies of
the other half, across a vertical line through the centre of the
composition. This repetition emphasizes the bilateral symmetry
in the design.
• Fixed elements. Compositions use a small number of fixed

elements to solve specific design problems or provide focal
points. In any figurative drawing, eyes serve as a powerful focal

8

16-19 May, Edmonton, Alberta, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.



point; every example in Figure 2 has eyes drawn in as unique
elements (the dog’s eye is expressed via a carefully placed spiral).
Other situations that call for specialized shapes include the dog’s
paws, the fish’s teeth and fins, the lion’s eyes and nose, and
the skull’s teeth. Sharp variation in the balance of positive and
negative space can also be used to emphasize a focal point, as
in the fish’s head and the lion’s face that contain considerable
amount of empty space.
• Boundaries. In many ornamental packings, elements are care-

fully arranged to conform to and emphasize container boundaries.
The fish demonstrates this principle most clearly: we can easily
fill in the gaps between elements to form a mental image of a
continuous outline. The dog’s elements are also well aligned to
indicate the container shape. However, this rule is not universal.
The lion artfully subverts it with elements that flow outward to
an indistinct boundary, helping to convey the appearance of fur.

There has been a moderate amount of past research in computer
graphics, particularly in the field of non-photorealistic rendering, on
the generation of packings or mosaics. See Section 2 for specific
examples. However, this past work is not appropriate for creating
designs like those of Figure 2. Most techniques pack elements via
rigid transformations, leading to high uniformity but insufficient
variety. We believe that there is value in articulating systematic
modes of geometric deformation that can generate plausible families
of related decorative elements from a single input shape. They also
focus on packing large numbers of small elements. We are interested
in the compositional properties of large, visually distinct elements.

In this paper we present FLOWPAK, a technique for filling a
container region with elements that conform to a user-specified
flow. Elements can be oriented in the local direction of flow, but
can also be deformed to capture changes in flow direction. We
express the user’s desired flow by placing evenly spaced streamlines
inside the container region. Each streamline is then replaced by an
element chosen from a pre-drawn set. The element is bent along the
streamline to communicate flow, and also deformed to balance the
usage of negative space with elements placed on adjacent streamlines.
The final designs, such as the lion and unicorn shown in Figure 1,
aim to obey the design principles articulated above.

2 RELATED WORK

Our work is most closely related to past research on distributing
small geometric elements to create textures or mosaics. Hausner [11]
used a variant of Lloyd’s method to distribute square tiles, oriented
relative to a vector field, in a simulation of traditional mosaics.
Later work extended this approach to distributing distinct element
shapes [12], modelling street networks [4], computing layouts by
packing and deforming polyforms [26], and incorporating an FFT-
based image correlation step to produce more uniform negative
space [6].

A separate thread of research treats the placement of elements
as a form of example-based texture synthesis; see, for example,
the work of Hurtut et al. [14] and AlMeraj et al. [1]. In these
techniques the goal is to reproduce the statistical properties of an
input texture, including the irregular spacing between elements.
Ijiri et al. [16] proposed a growth model in which elements could
be oriented relative to a vector field and constrained by boundary
curves. In these cases, as with the techniques based on Lloyd’s
method, elements are placed via translation and rotation, with no
provision for deformation.

The goal of Jigsaw Image Mosaics (JIMs) [20] was to pack ele-
ments into a container region tightly, leaving no negative space at all.
JIMs were constructed via an optimization that permitted limited
degrees of overlap and deformation. Kwan et al. developed the Pyra-
mid of Arclength Descriptor (PAD) [21] to pack elements tightly
by identifying compatible portions of their boundaries. Kaplan and
Salesin [19] deformed a single user-supplied input shape into one

(a) Dog (b) Fish

(c) Lion (d) Skull
Figure 2: Examples of ornamental packings: (a) Dog (by ComicVec-
tor703 on Shutterstock), including an inset visualizing the flow direc-
tions of elements; (b) Fish in the style of Haida art (by Russ Jones,
used with permission); (c) Lion (from StockUnlimited); (d) Skull (by
alitdesign on Shutterstock).

that could tile the plane. Reinert et al. [27] generated packing layouts
by projecting objects from a high dimensional feature space Rm to
R2 while also inferring users’ intentions when manually placing
elements. However, these techniques do not consider the design
opportunities offered by flow.

A distinct category of past research seeks to develop explicit pro-
cedural models for authoring decorative patterns. Wong et al. [29]
articulated a set of design principles for decorative art: repetition,
balance, and conformation to geometric constraints. They went on
to describe a grammar-like system for laying out floral ornament.
Beneš et al. [3] developed an interactive interface to guide procedu-
ral models in generating decorative elements. Lu et al. developed
DecoBrush [22], in which ornamental elements are deformed along
line art but are not required to fill containers. The recent PATEX
system by Guerrero et al. [10] preserves high-level geometric rela-
tionships like symmetry and repetition while ornamental designs are
edited.

Our work is also related to research on packing individual letter-
forms or blocks of text into container regions. Xu and Kaplan [30]
and Zou et al. [33] constructed calligrams by filling a container with
a small number of letters, making up one or two words. The goal is
to balance between consuming the container space and preserving
legibility. These techniques permit too much deformation (and hence
insufficient uniformity) for our ornamental application. Maharik et
al. explored Digital Micrography [23], in which lines of small-scale
text are deformed to fit along dense streamlines in a container. We
take inspiration from their method, but seek to place fewer, larger
elements taken from a small library of elements and to use shorter,
sparser, and less regular streamlines.

Finally, some recent work has explored the elaboration of or-
namental patterns on surfaces, under constraints imposed by fab-
rication. Chen et al. [5] described a method to synthesize filigree
patterns. Zehnder et al. [32] proposed semi-automated tools for
deforming ornamental curves to cover a surface. In both cases, the
layout of elements must be computed to satisfy both aesthetic and
structural goals—most obviously, elements must overlap to produce
a connected result that will hold together when 3D printed.

9



1) Target containers 3) Creating vector fields and tracing streamlines 4) Sub-region blobs2) Ornamental Elements 
and LR functions

5) Shape matching and deformation

Best Match

Iteration 5 Iteration 15

6) Iterative refinement

Deform

Figure 3: A visualization of the steps in our ornamental packing algorithm. The input containers are shown as three black outlines in (a): the body
and two fins. They are annotated with directional guides in red and fixed elements (in this case, the eye) in green. The steps in the algorithm follow
the description at the beginning of Section 4.

3 PROBLEM FORMULATION

We formally define the problem to be solved as follows. The user
provides several pieces of input to our system:

1. A set of target containers. Each container is a closed curve to
be filled with ornamental elements.

2. A set of direction guides that guide the placement algorithm,
defining the flow of the results. Every target container must
have at least one guide, and some or all of the guides typically
follow the container boundaries.

3. An optional set of fixed elements that we transfer directly to
the result.

4. A set of ornamental elements, each with a spine that will
control its deformation.

The first three inputs are combined into a single diagram, where they
are distinguished by their colors; see the left and right drawings in
Figure 1. The goal of our algorithm is to fill each target container
with elements, trying to satisfy several guiding principles:

1. Follow the flow defined by the direction guides.
2. Have as little empty space as possible.
3. Make the spacing between elements be as even as possible.
4. Conform to container boundaries.
5. Vary element width and length to avoid an excessively uniform

arrangement.
The next section describes how we achieve these results.

4 APPROACH

Figure 3 gives an overall view of our system. The numbers in the
following steps correspond to parts of the figure.

1. Read the input target containers and copy any fixed elements
to the output art (Section 4.1).

2. Analyze the ornamental elements, creating a shape descriptor
for each (Section 4.2).

3. Use the direction guides to fill each target container with a
vector field then trace streamlines (Section 4.3).

4. Divide the target containers into blobs around the streamlines
(Section 4.4).

5. Use the element shape descriptors to determine the best ele-
ment for each blob. Place the element in the blob, treating it
as a skeletal stroke and mapping its spine to the streamline
(Section 4.5).

6. Iteratively refine the placement to eliminate empty areas and
make the spacing more even (Section 4.6).

4.1 Target containers
The input diagram contains a set of target containers. Each is a
single closed curve defining an area to be filled. Most non-trivial

examples include more than one target container. For the most part,
our algorithm fills each container separately, and so the following
explanation is given in terms of a single container. Containers will
later be merged in the iterative refinement step.

The artist has the option of including a set of fixed elements that
we copy directly into the final result. The following sections include
descriptions of how the fixed elements affect the filling algorithm.

We define input_size to be the maximum of the combined width
or height of all the target containers and fixed elements as laid out
by the artist. This value will be used to set various parameters in the
synthesis process.

4.2 Ornamental elements and LR functions
An ornamental element is defined as one or more closed curves.
Our placement method will eventually deform copies of the element
(Section 4.5) using a simple skeletal stroke algorithm [13], so each
element must be annotated with a straight spine to guide the defor-
mation. The spine does not need to go through the center of the
element—it can be anywhere.

We define two classes of elements: a full element extends across
both sides of its spine, and a half element lies entirely on one side
of its spine. Figure 4 shows examples of full and half elements. If
the input to our algorithm includes direction guides that coincide
with target container boundaries, the placement method will align
half elements along these boundaries. If half elements have edges
that closely follow their spines, they will visually reinforce container
boundaries, as shown in our examples.

We define a simple shape descriptor called an LR function that
will be used in Section 4.5 to choose which element to place in a
particular location. Inspired by the work of Gal et al. [7], we sample
the element’s spine at n locations and at each location determine
how far the ornament extends to the left and right of the spine. The
LR function is the set {L,R} where L = {`1, . . . , `n_ f } is the left
function and R = {r1, . . . ,rn_ f } is the right function. The number of
samples is denoted by n_ f .

The LR function is made scale-invariant by normalizing its do-
main and range to [0,1]. Note that swapping the L and R functions
corresponds to reflecting the element across its spine, and reversing
each of L and R corresponds to reflecting the element along its spine.
We will consider all four combinations of these two reflections when
placing an element in a blob (Section 4.4), in order to achieve the
best possible fit.

Intuitively, LR functions give an approximate area an ornamental
element can claim. Figure 4 shows elements with their left values
in green and their right values in red. We have found that n = 100
gives sufficient granularity for our algorithm.

10



Full Elements

Half Elements

Figure 4: Ornamental elements and their LR functions. Full elements
have non-empty left and right sides, while half elements have only
one non-empty side. We normalize the LR functions to a unit square.

s1

s2

s3
s4

s6
s7
s8 s5

d_gap

Figure 5: The streamline tracing process. The first streamline s1
always begins on a directional guide or the container boundary. Sub-
sequent streamlines begin on the container boundary, a directional
guide, or at a point that is d_gap away from a previous streamline.

4.3 Creating vector fields and tracing streamlines
To implement the flow principle described in the introduction, we fill
each target container with a vector field, constrained by the direction
guides in that container.

We sample the directional guides D = {d1,d2, ...,dn_d} and use
the tangent at every sampled point as a directional constraint. We
then construct a vector field using the N-RoSy algorithm of Palacios
and Zhang [25]. Note that, as shown in Step 3 of Figure 3, fixed
elements do not affect the vector field. The artist can include di-
rectional guides to guide the vector field around fixed elements if
desired.

The next step is to trace streamlines in the vector field, guided by
three input parameters:

d_gap is the desired space between streamlines
s_max is the maximum desired streamline length
s_min is the minimum desired streamline length

Because we will ultimately place elements along streamlines
without overlap, d_gap determines the approximate width of the
placed elements, and s_max the maximum length. We also derive
a value d_stop that prevents streamlines from coming too close to
each other; in our implementation we compute d_stop = 0.8d_gap.

We adapt the streamline tracing algorithm of Jobard and
Lefer [17]. First we generate a set of potential seed points P =
{p1, p2, ..., pn_p} by densely resampling the target container bound-
ary T and the directional guides in D. We use a sampling distance
of 0.005 input_size. The first streamline s is generated by randomly
removing a seed point from P and following the vector field until
one of the following conditions holds:

1. the length of s would exceed s_max.
2. s would come within d_stop of another streamline.
3. s would cross T , leaving the container.
4. s would cross the boundary of a fixed element.

If the length of s is less than s_min, we discard it. Otherwise we
sample s, again using 0.005 input_size, and at each point generate
two more potential seeds that are d_gap away from s on either
side. If a seed is inside the container, we add it to P. The process
is repeated until P is empty. Note that the d_stop distance test

combined with the s_min length test imply that many attempts to
form streamlines will stop immediately, especially as the container
fills with streamlines.

Figure 5 shows the creation process, and Algorithm 1 shows
the pseudocode. The sort function SORT(P) orders the points in P
according to their distance from the boundary T and the directional
guides in D, with closer points first and equally distant points ordered
randomly. Because the initial points are all on T or on a path in
D, their sort value is zero, and they will be processed before any
derived points.

Algorithm 1 Tracing streamlines
Create a seed list P = {p1, p2, ..., pn_p} by uniformly resampling

T and the guides in D.
Create an empty set S of streamlines.
Randomly order the elements of P.
while P is not empty do

Generate a new streamline s from p1.
Remove p1 from P.
if s is longer than s_min then

Add s to S.
Create seed points that are d_gap away from s and

add them to P.
SORT(P).

end if
end while

4.4 Sub-region blobs
To assist in choosing which element to place along each streamline,
we first subtract the areas of any fixed elements from the target
container. We then construct an approximate generalized Voronoi
diagram of the interior using the method of Osher and Sethian [24].
The streamlines are then extended at each end, following the vector
field, until they encounter the boundaries of their Voronoi regions.
We call the area around each streamline a sub-region blob. Step 4 of
Figure 3 shows the blobs for the sample fish.

We then compute an LR function for each blob as described in
Section 4.2, using the streamline as the spine. Because the streamline
is not usually straight, we compute the left and right distances along
the normals to the streamline. The LR function approximates the
blob’s shape if the streamline were to be straightened.

4.5 Shape matching and deformation
The next step is to place an ornamental element in each blob. We
choose which element to place in the blob by finding the element
that minimizes a sum of least squares distance, defined as

N

∑
i=1

(αli−βli)
2 +

N

∑
i=1

(αri−βri)
2 (1)

where

αl is the element left function
αr is the element right function
βl is the blob left function
βr is the blob right function

Every element can be placed in one of four orientations, by op-
tionally incorporating reflections across and along its spine. These
reflections correspond, respectively, to swapping the L and R func-
tions and reversing them. When comparing the LR functions for
an element and a blob, we compute the least squares distances for
all four orientations and choose the orientation with the smallest
distance. Note that this matching method automatically places half
elements along streamlines that follow container boundaries, visually
reinforcing the overall shape.

11



Figure 6: The deformation process bends the element along the
streamline and scales it to fit inside the blob.

pstart pend

p’start

p’end p’end

p’start

Figure 7: Streamline shifting. We move the streamline’s start and end
points along perpendiculars, stopping before intersecting neighbour-
ing elements.

p’start

p’end
Figure 8: Tracing a shortest path using Dijkstra’s algorithm. We
generate the orange nodes by resampling and offsetting the original
red streamline. The search directions at a node are shown with green
arrows.

We investigated alternatives for shape matching, using an ap-
proach discussed by Gal et al. [8] that tries to fill a sub-region blob
as much as possible, with heavy penalties if a part of an element
protrudes outside the boundary of the blob. However, we found
this computation to be more expensive without providing significant
advantages over our LR functions.

Once we have chosen an element, we place it along the streamline
using a simple skeletal stroke algorithm [13]. We uniformly scale
the element’s width to make it as wide as possible while still staying
inside the blob (Figure 6).

4.6 Iterative refinement
We now refine the overall composition in an iterative process. We
perform this part of the algorithm globally, by merging all containers
and allowing the elements within them to interact.

The refinement process aims to reduce the amount of negative
space and make it more even by growing and shifting the placed
ornamental elements. It would be possible to use a greedy approach,
improving the placement of each element as much as possible before
moving on to the next, However, we have found that gradually
improving the placement of all elements leads to a more even result.

Each refinement iteration has two phases. First, we shift the
streamlines to more accurately follow the space that is available, as
shown in Figure 7. After shifting, we recalculate the LR function
for the blob to reflect the new position, and repeat a variant of the
element placement process that allows the elements to rotate slightly
in their space. Second, we expand each blob to allow it to use
adjacent space that is not filled with another element, as shown in
Figure 9.

Each refinement iteration considers the blobs in increasing order
of placed element area, allowing smaller elements to grow more.
While each step usually results in a larger placed element, some

Algorithm 2 Iterative refinement
Input: E = {e1,e2, ...,en_e} as the ornamental element list.
Input: S = {s1,s2, ...,sn_s} as the streamline list.
Input: B = {b1,b2, ...,bn_b} as the blob list.
Input: α as the growth tolerance
Input: t as the number of iterations

for t times do
Sort E, S, and B by AREA(ei) (smallest first)
for Element ei in E do

si is the corresponding streamline of ei
Calculate s′i by shifting si.
Recompute the LR function of bi to give b′i
Calculate e′i by placing ei inside b′i
if AREA(e′i)×α > AREA(ei) then

si← s′i
bi← b′i
ei← e′i

end if
end for
Sort E, S, and B by AREA(ei) (smallest first)
for Element ei in E do

bi is the corresponding blob of ei
Calculate b′i by growing bi.
Calculate s′i based on b′i
Calculate e′i by placing ei inside b′i
bi← b′i
if AREA(e′i)×α > AREA(ei) then

si← s′i
ei← e′i

end if
end for

end for

configurations can result in a smaller one. We only accept the new
element if its area is no smaller than α times its old area, where α

is a growth tolerance that we set to 0.9. Elements therefore have
some freedom to grow or shrink, in the search for more globally
even spacing.

Algorithm 2 gives the overall method, and the following sections
give details. We have found that 15 iterations suffice for most
designs. Note that in Algorithm 2, the variable E is the list of placed,
distorted ornamental elements, and not the set of prototype elements
discussed earlier.

Shifting streamlines. There are two issues that keep the initial
placement of elements from being evenly distributed. Our stream-
line placement method keeps streamlines apart, but they may not
be spaced completely evenly. More significantly, the ornamental
elements often have unbalanced left and right sides and concavities,
leading to extra space on one side or the other. Our refinement
process shifts streamlines to address these problems.

The shifting process allows the endpoints of the streamline to
move to the left or the right relative to the streamline, depending
on which side has more empty space. This allows the streamline’s
element to become wider and fill more of the space (Figure 7). It
also gives the streamline room to extend if its endpoints were too
close to boundaries of other placed elements.

Given the endpoints pstart and pend, we calculate new endpoints
p′start and p′end. We generate perpendicular vectors to the left side
and to the right side at each endpoint and construct a line segment
joining the points where the vectors intersect other placed elements.
We then move the endpoint of the streamline towards the midpoint
of this segment. To enforce the principle of gradual refinement, we
do not allow the endpoint to move more than glimit units, where
glimit = 0.005 input_size (Recall that input_size is the maximum
dimension of the design as described in Section 4.1).

12



Figure 9: (a) An elementt with its sub-region blob shown in dashed
green line. Note that any blob is constrained by the neighboring
elements. (b) The dashed red line is the grown blob, which accommo-
dates an enlarged element.

... ... ... ...
-10

o
-5

o
0
o

5
o

10
o

Figure 10: Top row: rotated versions of the original element. The
best rotation angle is chosen via least squares matching. Bottom row:
original, rotated, and enlarged versions of an element.

Figure 11: An element that reflects across its spine during iterative
refinement. LR functions and least squares shape matching allow an
element to reflect across its spine, along its spine, or both.

We replace the streamline with a path joining p′start and p′end.
Our goal is to create a path that is smooth and does not deviate
too much from the vector field. We calculate the shifted streamline
by performing Dijkstra’s algorithm on a non-rectangular graph that
respects the vector field (Figure 8), using a method similar to one by
Xu and Mould [31] for pathfinding in a vector field.

To construct the graph, we begin by densely sampling the original
streamline with a distance of 0.25glimit. We then duplicate the points,
offset to the left and right, again using 0.25glimit. The duplication is
repeated until the graph extends to the left and right of the streamline
by a distance equal to the maximum left and right widths of the blob
(i.e., the maximum values in an unnormalized version of the blob’s
LR function).

For a node, we check its N = 150 nearest neighbors, considering
only neighbors where the angle between the line into the current
node and the line to the neighbor form an angle greater than 90◦,
thereby preventing the streamline from backtracking. The cost of an
edge from na to nb is

w = w f (1− f p)+wd D(si,na) (2)

where

f is (nb−na) ·~v
~v is a sampled vector of the vector field
si is the original streamline
D() is a distance function between a polyline and a point

In practice, we set wd = 0.1, w f = 1, and p = 3.
After finding a set of points, we fit cubic Bézier curves using a

method devised by Schneider [28] and extend the path at both ends
by following the vector field until it intersects the edges of its blob.

Growing blobs. The growth process tries to enlarge each sub-
region blob to claim empty space. Given a blob bi, we calculate a
larger blog b′i by offsetting its boundaries until they intersect other

placed elements (Figure 9). To enforce gradual growth, the offset
cannot be larger than glimit, where glimit = 0.005 input_size.

The value glimit used in growing blobs and shifting streamlines
limits the speed of the refinement. Making it larger would require
fewer iterations to fill the available space, but at a cost of elements
growing less evenly.

Element placement. In the refinement process, we allow a more
flexible element placement so that the elements can fill more of their
blobs. We allow the element to rotate by a small amount, up to
ten degrees, before placing it, as shown in Figure 10. We generate
rotated versions of ei with varying angles rangle = 1◦,2◦,3◦, ...,10◦
and precompute LR functions for each. The shape matching algo-
rithm (Section 4.5) automatically choses the best rotation. It can
also choose to reflect the element across its spine, along its spine, or
both (Figure 11).

5 IMPLEMENTATION AND RESULTS

We design our containers and decorative elements in a vector graph-
ics editor, and then use them as input to a C++ program that outputs
final placed elements in an SVG file. We use the Clipper library [18]
for calculation of LR functions and for testing polygon intersections
during deformation and growth. As a postprocess, we optionally
smooth outlines and replace polygonal paths with Bézier curves.
Finally, we apply colours and other treatments in an editor.

Our technique is fast except for the iterative refinement process,
which considers a large number of variations to the composition
via brute-force computation. On a computer with an Intel i7-4790K
processor at 4.0 Ghz, 15 iterations of refinement on a packing of 50
elements takes about an hour. Our software is not intended to run
interactively; still, we believe the performance could be improved
significantly through the use of more sophisticated 2D geometric
data structures like quadtrees.

We tested our approach using a variety of container shapes, based
mostly on animals, and many different ornamental elements with
varying amounts of geometric complexity. In Figure 12, we show a
packing of a rhinoceros with simple teardrop elements that demon-
strates the variety we achieve in shape and curvature. We use more
complex leaf elements on the bear in Figure 13, and adjust the trac-
ing parameters to obtain shorter placed elements. We also process
the placed elements to create a distressed look.

The packing of a cat in Figure 14 demonstrates a symmetric pack-
ing with a fur contour inspired by Figure 2c. We only compute the
left part and reflect the result. The elements around the cheeks and
the chin extend outward, not following the boundary, and creating
the appearance of fur.

We experimented with two extensions to our pipeline, which
could enhance its aesthetic value and flexibility. First, in Figure 15
we allow the user to draw fixed spines in addition to fixed elements.
These fixed spines act like pre-placed streamlines, which will be
assigned blobs and then elements. However, they are not required to
follow the surrounding vector field, and are not shifted during the
refinement process. Fixed spines are used in Figure 15 for the flower
petals in the torso and the paws. Second, in Figure 16 we construct
explicit new shapes (drawn in brown) to fill the negative space
between placed elements (in black), by computing offset polygons
from the negative space between elements. The result is a distinct
and appealing style.

Finally, we asked an artist to draw containers and a decorative
elements. The result is the bird design shown in Figure 17. The artist
requested that different elements and densities be used in different
container regions; the result has sparse “Y” elements in the breast
and head, and denser “O” elements in the wings. The artist was
pleased with the results.

13



Figure 12: A packing of a rhinoceros. Simple teardrop-shaped ele-
ments lead to variety in size and curvature.

Figure 13: A bear packed with leaf elements. We manually add noise
to the elements in the output to create a distressed look.

6 CONCLUSION AND FUTURE WORK

We have demonstrated a method to create ornamental packings in
which vector fields are used to provide a sense of visual flow. We
achieve a degree of uniformity by using repeated copies of a small
set of initial decorative elements, but balance that uniformity with
variety by deforming those elements. An iterative refinement process
improves upon an initial placement of elements, arriving at a final
composition with a more even use of negative space.

We see many possibilities for further improvements to our algo-
rithm and future research on ornamental packing.
• In our current algorithm, elements must completely fill stream-

lines. It would be worthwhile to investigate whether multiple
shorter elements could be threaded along streamlines.
• Our results do not have significant high-curvature streamlines

like u-turns, since they could unpleasantly fold the decorative
elements. This could be solved with a folding avoidance algo-
rithm [2].
• Our iterative refinement process uses a greedy approach, in

which we iterate over all placed elements in a fixed order from
smallest to largest. We would like to investigate global optimiza-
tions that could be applied to improve the overall composition
in an order-independent way. A natural first choice would be an
approach based on simulated annealing, although performance
could become a more serious issue in that case.
• As with many research projects in non-photorealistic rendering,

this work raises deep questions about the aesthetics of ornamen-
tal packings. What compositions are most appealing? What
is the most effective way to distribute negative space? Some

Figure 14: A packing with a symmetric layout; we only compute the
left half and reflect the result. The elements around the cheeks and
the chin are not aligned to the boundary, creating a fur-like effect.

Figure 15: A packing of a dog. The fixed elements, shown as green
shapes in the diagram, are copied as-is to the output; fixed spines,
shown as green paths, force the placement of new elements at the
given locations.

Figure 16: A packing of the same container as in Figure 13. We place
longer and sparser elements and synthesize additional forms to fill
negative space.

Figure 17: A packing of a bird, based on input provided by an artist.

14



hand-drawn compositions insert additional small elements, like
circles and squares, to break up large areas of negative space; an
automated simulation of this process would be helpful.
• We would like to explore the automatic creation and placement

of the fixed elements, perhaps by discovering them as salient
regions in source photographs, and extracting and vectorizing
them. This extraction must be carried out carefully, yielding
enough fixed elements to communicate a container clearly with-
out disrupting the uniformity of the design.

ACKNOWLEDGMENTS

We thank the reviewers for helpful feedback. Thanks to Russ Jones
for permission to use the fish art in Figure 2. Yusuf Umar designed
elements used in Figure 17 and Daichi Ito gave us early feedback
on creating good ornamental artwork. This research began as an
internship at Adobe Research and was sponsored in part by generous
gifts from Adobe Research and NSERC.

REFERENCES

[1] Z. AlMeraj, C. S. Kaplan, and P. Asente. Patch-based geometric
texture synthesis. In Proceedings of the Symposium on Computational
Aesthetics, CAE ’13, pp. 15–19. ACM, New York, NY, USA, 2013.
doi: 10.1145/2487276.2487278

[2] P. J. Asente. Folding Avoidance in Skeletal Strokes. In M. Alexa and
E. Y.-L. Do, eds., Eurographics Workshop on Sketch-Based Interfaces
and Modeling. The Eurographics Association, 2010. doi: 10.2312/
SBM/SBM10/033-040

[3] B. Beneš, O. Št’ava, R. Měch, and G. Miller. Guided procedural
modeling. Computer Graphics Forum, 30(2):325–334, 2011. doi: 10.
1111/j.1467-8659.2011.01886.x

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Interactive
procedural street modeling. In ACM SIGGRAPH 2008 Papers, SIG-
GRAPH ’08, pp. 103:1–103:10. ACM, New York, NY, USA, 2008. doi:
10.1145/1399504.1360702

[5] W. Chen, X. Zhang, S. Xin, Y. Xia, S. Lefebvre, and W. Wang. Synthe-
sis of filigrees for digital fabrication. ACM Trans. Graph., 35(4):98:1–
98:13, July 2016. doi: 10.1145/2897824.2925911

[6] K. Dalal, A. W. Klein, Y. Liu, and K. Smith. A spectral approach to
NPR packing. In Proceedings of the 4th International Symposium on
Non-photorealistic Animation and Rendering, NPAR ’06, pp. 71–78.
ACM, New York, NY, USA, 2006. doi: 10.1145/1124728.1124741

[7] R. Gal, A. Shamir, and D. Cohen-Or. Pose-oblivious shape signa-
ture. IEEE Transactions on Visualization and Computer Graphics,
13(2):261–271, Mar. 2007. doi: 10.1109/TVCG.2007.45

[8] R. Gal, O. Sorkine, T. Popa, A. Sheffer, and D. Cohen-Or. 3D col-
lage: Expressive non-realistic modeling. In Proceedings of the 5th
International Symposium on Non-photorealistic Animation and Ren-
dering, NPAR ’07, pp. 7–14. ACM, New York, NY, USA, 2007. doi:
10.1145/1274871.1274873

[9] E. H. Gombrich. The Sense of Order: A Study in the Psychology of
Decorative Art. Phaidon Press Limited, 1984.

[10] P. Guerrero, G. Bernstein, W. Li, and N. J. Mitra. PATEX: Exploring
pattern variations. ACM Trans. Graph., 35(4):48:1–48:13, July 2016.
doi: 10.1145/2897824.2925950

[11] A. Hausner. Simulating decorative mosaics. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01, pp. 573–580. ACM, New York, NY, USA, 2001. doi:
10.1145/383259.383327

[12] S. Hiller, H. Hellwig, and O. Deussen. Beyond Stippling - Methods for
Distributing Objects on the Plane. Computer Graphics Forum, 2003.
doi: 10.1111/1467-8659.00699

[13] S. C. Hsu, I. H. H. Lee, and N. E. Wiseman. Skeletal strokes. In
Proceedings of the 6th Annual ACM Symposium on User Interface
Software and Technology, UIST ’93, pp. 197–206. ACM, New York,
NY, USA, 1993. doi: 10.1145/168642.168662

[14] T. Hurtut, P.-E. Landes, J. Thollot, Y. Gousseau, R. Drouillhet, and J.-F.
Coeurjolly. Appearance-guided synthesis of element arrangements
by example. In Proceedings of the 7th International Symposium on

Non-Photorealistic Animation and Rendering, NPAR ’09, pp. 51–60.
ACM, New York, NY, USA, 2009. doi: 10.1145/1572614.1572623

[15] F. Hutcheson. An Inquiry Into the Original of Our Ideas of Beauty and
Virtue. J. and J. Knapton and others, 1729.

[16] T. Ijiri, R. Mečh, T. Igarashi, and G. S. P. Miller. An example-based
procedural system for element arrangement. Comput. Graph. Forum,
27:429–436, 2008.

[17] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of ar-
bitrary density. In W. Lefer and M. Grave, eds., Visualization in
Scientific Computing ’97: Proceedings of the Eurographics Workshop
in Boulogne-sur-Mer France, April 28–30, 1997, pp. 43–55. Springer
Vienna, Vienna, 1997. doi: 10.1007/978-3-7091-6876-9_5

[18] A. Johnson. Clipper—an open source freeware library for clipping and
offsetting lines and polygons. http://www.angusj.com/delphi/
clipper.php, 2014.

[19] C. S. Kaplan and D. H. Salesin. Escherization. In Proceedings of the
27th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’00, pp. 499–510. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000. doi: 10.1145/344779.
345022

[20] J. Kim and F. Pellacini. Jigsaw image mosaics. In Proceedings of
the 29th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pp. 657–664. ACM, New York, NY, USA,
2002. doi: 10.1145/566570.566633

[21] K. C. Kwan, L. T. Sinn, C. Han, T.-T. Wong, and C.-W. Fu. Pyra-
mid of arclength descriptor for generating collage of shapes. ACM
Trans. Graph., 35(6):229:1–229:12, Nov. 2016. doi: 10.1145/2980179.
2980234

[22] J. Lu, C. Barnes, C. Wan, P. Asente, R. Mečh, and A. Finkelstein.
DecoBrush: Drawing structured decorative patterns by example. ACM
Trans. Graph., 33(4):90:1–90:9, July 2014. doi: 10.1145/2601097.
2601190

[23] R. Maharik, M. Bessmeltsev, A. Sheffer, A. Shamir, and N. Carr.
Digital micrography. In ACM SIGGRAPH 2011 Papers, SIGGRAPH
’11, pp. 100:1–100:12. ACM, New York, NY, USA, 2011. doi: 10.
1145/1964921.1964995

[24] S. Osher and J. A. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton-jacobi formulations.
J. Comput. Phys., 79(1):12–49, Nov. 1988. doi: 10.1016/0021-9991
(88)90002-2

[25] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces.
In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07. ACM, New York,
NY, USA, 2007. doi: 10.1145/1275808.1276446

[26] C.-H. Peng, Y.-L. Yang, and P. Wonka. Computing layouts with de-
formable templates. ACM Trans. Graph., 33(4):99:1–99:11, July 2014.
doi: 10.1145/2601097.2601164

[27] B. Reinert, T. Ritschel, and H.-P. Seidel. Interactive by-example design
of artistic packing layouts. ACM Trans. Graph., 32(6):218:1–218:7,
Nov. 2013. doi: 10.1145/2508363.2508409

[28] P. J. Schneider. An algorithm for automatically fitting digitized curves.
In A. S. Glassner, ed., Graphics Gems, pp. 612–626. Academic Press
Professional, Inc., San Diego, CA, USA, 1990.

[29] M. T. Wong, D. E. Zongker, and D. H. Salesin. Computer-generated
floral ornament. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp.
423–434. ACM, New York, NY, USA, 1998. doi: 10.1145/280814.
280948

[30] J. Xu and C. S. Kaplan. Calligraphic packing. In Proceedings of
Graphics Interface 2007, GI ’07, pp. 43–50. ACM, New York, NY,
USA, 2007. doi: 10.1145/1268517.1268527

[31] L. Xu and D. Mould. Procedural tree modeling with guiding vectors.
Comput. Graph. Forum, 34(7):47–56, Oct. 2015. doi: 10.1111/cgf.
12744

[32] J. Zehnder, S. Coros, and B. Thomaszewski. Designing structurally-
sound ornamental curve networks. ACM Trans. Graph., 35(4):99:1–
99:10, July 2016. doi: 10.1145/2897824.2925888

[33] C. Zou, J. Cao, W. Ranaweera, I. Alhashim, P. Tan, A. Sheffer,
and H. Zhang. Legible compact calligrams. ACM Trans. Graph.,
35(4):122:1–122:12, July 2016. doi: 10.1145/2897824.2925887

15

http://www.angusj.com/delphi/clipper.php
http://www.angusj.com/delphi/clipper.php

