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ABSTRACT

Supporting programming on touchscreen devices requires effective
text input and editing methods. Unfortunately, the virtual keyboard
can be inefficient and uses valuable screen space on already small
devices. Recent advances in stylus input make handwriting a po-
tentially viable text input solution for programming on touchscreen
devices. The primary barrier, however, is that handwriting recog-
nition systems are built to take advantage of the rules of natural
language, not those of a programming language. In this paper, we
explore this particular problem of handwriting recognition for source
code. We collect and make publicly available a dataset of handwrit-
ten Python code samples from 15 participants and we characterize
the typical recognition errors for this handwritten Python source
code when using a state-of-the-art handwriting recognition tool. We
present an approach to improve the recognition accuracy by aug-
menting a handwriting recognizer with the programming language
grammar rules. Our experiment on the collected dataset shows an
8.6% word error rate and a 3.6% character error rate which out-
performs standard handwriting recognition systems and compares
favorably to typing source code on virtual keyboards.

Keywords: programming, handwriting recognition, touch screen,
source code, python.

Index Terms: H.1.2. [User/Machine Systems]: Human infor-
mation processing; H.5.2. [User Interfaces]: Input devices and
strategies (e.g., mouse, touchscreen)

1 INTRODUCTION

With the rapid technology shift in current computing devices, high-
quality low-cost mobile devices such as tablets and smartphones
are being increasingly used in everyday activities. Many tasks that
previously required a PC are now feasible on mobile devices. For
example, tablets are typically equipped with powerful batteries,
advanced graphic processors, high-resolution screens and fast pro-
cessors, making writing and compiling code on them completely
plausible. TouchDevelop, for example, is a novel programming
environment, language and code editor for mobile devices [41].
Furthermore, Tillmann et al. predict that programming on mobile
devices will be widely used for teaching programming [42]. How-
ever, mobile devices are also inherently restricted by their limitations
such as small screens and the clumsy virtual keyboard. Entering
and editing large amounts of text for programming tasks can quickly
become difficult and time consuming with these virtual keyboards
because they are notoriously difficult to use when compared to a
physical keyboard and they consume valuable screen space [35].
While keyboards have been the primary input device for enter-
ing computer programs since the computer was invented [15], this
predominant mechanism is not ideal for all programming situations.
For example, software developers that suffer from repetitive strain
injuries (RSI) and related disabilities may find typing on a keyboard
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difficult or impossible [4]. Instead, handwriting with a stylus may
be a preferred input mechanism for some of these users [27]. In
addition, some physical configurations (e.g. seated on a plane) may
simply be more suited to the writing posture than a typing posture
for many users.

Handwriting has also been shown to have potential cognitive
benefits [3]. In particular, Mueller and Oppenheimer found that
students who took longhand notes performed better on conceptual
questions than those that typed notes on a laptop [30]. Given these
findings, and that fact that many programmers write pseudocode by
hand before typing, it is reasonable to consider that handwriting may
provide cognitive benefits for programming, especially on mobile
devices. Furthermore, recent advances in pen-based input and hand-
writing recognition technology are quickly making handwriting a
viable alternative to typing.

In this paper, we explore the use of handwriting as a means for
source code text input. There are two ways to approach this problem.
One alternative is to develop or modify a handwriting recognition
engine to take source code directly into account. Given that source
code often includes English language words, another alternative is
to leverage the capabilities of an existing English language hand-
writing recognition engine. We explore this latter option. First,
we collect and present a publicly available dataset of handwritten
Python source code for use in handwriting recognition research. Sec-
ond, we explore the use of the state-of-the-art recognition system,
MySecript [31] for recognizing Python source code. We characterize
the errors made by the MyScript engine and present a method for
post-processing the engine’s results to improve recognition perfor-
mance on handwritten Python source code.

After presenting related work and necessary background infor-
mation, we describe our data collection process and the resulting
publicly available dataset. We then describe the performance of
MyScript on recognizing the handwritten source code and present
our algorithm for leveraging the MyScript engine to produce im-
proved results. We discuss those results in Section 7 and conclude
with avenues of future work.

2 BACKGROUND AND RELATED WORK

Many alternatives to typed source code have been considered, typi-
cally in the context of making programming more accessible. Most
of those appoaches fall in the realm of speech-based program-
ming [7, 15], however speech is not always an acceptable solution,
especially in quiet environments or with applications that require
privacy. Given the recent advances in pen-based input, handwriting
is a potentially viable alternative. The pendragon supports people
who are unable to use a keyboard and seeks to find new interaction
techniques for input which may improve communication speed [26].
Mankoff et al.also suggest that word prediction, sentence comple-
tion and the syntax of programming languages could be used for
handwriting source code [27]. Most closely related to our work is
a programming IDE integrated with a handwriting area in which
the handwritten code is recognized by an enhanced handwriting
recognition system [14]. This work, however, does not present an
evaluation of the recognition engine or guidance for how to improve
general handwriting recognition engines for application to source
code recognition. In this paper, we focus on the recognition step of
handwritten source code as the most important step for developing
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an effective handwriting interface for source code input and editing.
Research in handwriting recognition has a long history dating
back to the 1960s [40]. Hidden Markov Model (HMM) based hand-
writing recognition [19,23,32] is one of the most widely used ap-
proaches while neural networks are gaining in popularity [20]. Some
approaches also leverage additional constraints for recognizing hand-
writing in specific domains such as postal addresses [38, 39] and
banking checks [1, 16]. These handwriting recognition systems are
developed to take advantage of the English language [44], which
is intrinsically different from source code. For instance, variable
names are often created from concatenated words (e.g. camelCase or
underscore naming), which poses a problem for the traditional hand-
writing recognition system as it expects spaces to appear between
words contained within its dictionary. We do not aim to contribute
to the extensive literature in handwriting recognition, but rather,
we intend to examine how we can leverage this existing work for
application to handwritten source code recognition interfaces.

3 DATA COLLECTION

Our first contribution in this paper is a data collection study designed
to generate a sample set of handwritten source code for research pur-
poses. The first question to consider is what programming language
to study. We decided to collect handwritten Python source code be-
cause of the current popularity of Python' and its projected growth
rate [36]. We chose a “copying task”, where three code samples are
provided for every participant to copy on the tablet using the stylus.
While we understand that a “copying task” may be cognitively quite
different from other writing tasks that require synthesis, we sought to
eliminate sources of cognitive load that could impact timing as well
as writing quality for the purposes of this data collection task. The
three shared code samples allow for comparison across participants.
To broaden our dataset of unique handwritten source code samples,
we also randomly selected a fourth source code sample function (per
participant) that was unique to that participant. In this section, we
describe our data collection process and the resulting database of
handwritten Python samples.

3.1 Participants

We recruited 15 participants (9 females) from the University of Notre
Dame for our study. Thirteen of the participants were computer
science majors and all participants had at least two semesters of
programming experience. Their ages ranged from 19 to 29 (mean
= 22.3). Two participants were left-handed. Eight participants had
used a pen/stylus for handwriting on a touchscreen device and only
one participant had used a tablet for inputting source code (via the
virtual keyboard). All participants were compensated $5 for the
study which took approximately 30 minutes each.

3.2 Apparatus and Software

We used a 12.9 inch iPad Pro with a 2732-by-2048 screen resolution
at 264 pixels per inch (PPI) and fingerprint-resistant oleophobic
coating. Participants used the Apple Pencil as the stylus device. We
implemented a web application with a writing area to record user
input. This application was responsible for converting touch points
of the stylus into handwriting strokes and saving strokes to a JSON
file. Each stroke consists of the coordinates of the sampled points
and time-stamp information for each coordinate. The writing area in
this application measured 795 * 805 pixels with subtle lines on the
background to provide guides for the participants (See Fig. 1). We
also implemented functions to undo or redo the previous stroke as
well as clear the writing area of all strokes.
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Figure 1: Screen shot of our data collection web application. Partici-
pants entered their name and code sample number into the boxes in
the upper left. They then entered the code sample using the Apple
Pencil and selected ‘Save’ when finished.

3.3 Representative Source Code Material

Our goal was to create a database of representative samples of hand-
written Python source code for use in evaluating the performance of
a handwriting recognition system. Because different Python samples
contain different language elements, there is no single representa-
tive corpus [2]. Ideally, representative code samples should contain
a variety of language constructs and not be restricted to a single
project.

Our process for choosing source code samples is based on that
used by McMillan et al. [29,37]. First, we selected six popular
Python projects on Github. Table 1 summarizes the details of these
projects. We then extracted all functions from the project source
code and eliminated comments in order to focus solely on the source
code of the samples. Next, to obtain functions that were sufficiently
long to collect a substantial amount of handwriting, but not so long
as to require multiple pages of handwriting, we filtered the functions
to those with between 9 and 18 lines of source code and those with no
lines greater than 60 characters (to eliminate long, wrapping lines).
We also manually filtered out highly repetitive functions, such as a
function that includes only assignment statements for variables. The
result was 1324 eligible functions. We randomly selected the three
shared test code samples from this set for use by all participants and
one additional unique code sample to be entered by each participant
in the study. Although Python syntax considers whitespace, we
decided to ignore indentation for the purposes of focusing purely on
handwriting recognition.

3.4 Procedure

For every participant, we began our data collection with an informed
consent process. Each participant then filled out a pre-study question-
naire about demographics and experience using touchscreen devices
and a stylus. Participants were given a practice task to familiarize
them with the process. For each of the four tasks, participants were
given a sheet of paper with the sample typed Python source code.
Participants entered their name and code sample number into the
web application and then entered the code sample using the Apple
Pencil and selected ‘Save’” when finished. After completing all four
input tasks, participants were compensated and the session ended.

3.5 Data Collection Results

The final dataset includes stroke data for four code samples for each
of 15 participants resulting in a total of 60 handwritten source code
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Project Lines Fuctions Eligible Functions
AlphaGo 1,963 151 1
Bittorrent 7,164 570 39
Blender 265,684 12,774 1,126
Instagram 1,265 145 8
Requests 14,009 862 84
Webpy 10,199 1,029 66

Table 1: Python projects used for selecting code samples

samples. So, for each of 3 given source code input samples, we have
15 copies of handwritten source code (for a total of 45 handwritten
source code samples). The remaining 15 are handwritten samples
of unique input source code examples from each participant. The
handwritten source code data can be downloaded at
http://www.purl.org/recognizinghandwrittencode/
data.

4 SOURCE CODE RECOGNITION ERRORS

Current commercial handwriting recognition systems are built to
take advantage of the rules of the English language as opposed to
that of a programming language, therefore it is not surprising that
these systems might perform poorly on source code recognition [14].
There is, however, no previous research that evaluates how well
existing state-of-the-art handwriting recognition systems perform
on handwritten source code. Here we describe the state-of-the-art
handwriting recognition system we employed and characterize the
errors based on the dataset we collected.

4.1 State-of-the-art: Myscript

Automatic recognition of handwriting is now a mature discipline that
has found many commercial uses [33]. MyScript [31] is an online
handwriting recognition engine that supports more than 80 languages
and achieved the best recognition rate in the International Conference
on Document Analysis and Recognition competition [11]. Here we
use the MyScript engine as our baseline for comparison and study
the typical recognition errors produced when applied to handwritten
source code to better understand the complexities introduced by
Python source code and source code in general.

4.2 Data Pre-Processing

In order to use MyScript efficiently and to make a fair comparison
between its performance and our algorithm, we apply two simple pre-
processing steps to the data. First, we provide MyScript with Python
specific context through the Subset Knowledge (SK) facility and a
custom lexicon. SK is a MyScript feature for telling the recognizer
that we only want it to enable recognition of certain characters. For
example, for a phone number field, we may want only digits to be
recognized. We created an SK resource in MyScript to allow only
characters that can legally appear in Python source code. We also
provide the legal Python keywords through a user-defined lexicon.
The MyScript Cloud Development Kit (CDK) is an HTTP-based
set of services that take handwritten strokes as input and produce
potential recognition results as output. To use the CDK in exper-
iments, we must send strokes to the recognizer at some level of
granularity (e.g. single character, whole word, whole line, etc). We
chose to break the stroke data into lines assuming developers might
write a statement at a time on a single line. To do so, we analyze
stroke coordinates and create a new line each time the user moves
to a new vertical position. Each line is then sent one at a time to
the MyScript CDK. This simulates a developer writing one pro-
gramming statement (one line) at a time, pausing at the end of each
line. Alternative pre-processing is possible given the raw stroke data
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Figure 2: Average error numbers of all participants for each code
sample from MyScript general handwriting recognition engine

and timestamp information (e.g. sending incomplete lines when a
participant pauses).

4.3 Characterizing errors

We processed all of the handwritten data as described above to
collect baseline recognition results for all handwritten samples in
our dataset. We then set out to understand the types of recognition
errors that were present in the final recognized text. We identified
three major types of recognition errors: word errors, symbol errors,
and space errors.

Word errors occur when MyScript simply incorrectly recognizes
a written word. This is typically due to poor writing and can occur
for keywords as well as non-keywords. For example, when the hand-
written word ‘self” is recognized as ‘silt’, we characterize this as a
word error. Symbol errors represent incorrect recognition of symbols
or non alpha-numeric characters. For example, an ‘_’ (underscore)
is often recognized as a ‘-’ (dash). Finally, a space error results
when the system inserts an unexpected space. For example, when
‘ConflictError’ is recognized as ‘Conflict Error’, we characterize it
as a space error.

Most of the word errors and symbol errors can be attributed to
poor writing or cursive writing (characters are written joined together
in a flowing manner) which is inherently more difficult for MyScript
to recognize than block writing (characters are written separately).
Space errors, on the other hand, appear to depend on the language
model of the recognizer, which most likely does not include training
on CamelCase? or proper English words separated by dot notation
(e.g. student.name). The result is that MyScript inserts space at
these word and dot notation separators.

In summary, from the statistical results for each type of error
presented in Fig. 2, space errors, mainly caused by the internal
mechanism of English handwriting recognition system, represent
the most prevalent recognition error. In addition, poor writing and
the tendency to return an English word for a non-English word in
the source code lead to word errors, which also represents a signifi-
cant portion of all errors. Symbol errors are also a prevalent error
type. This makes sense given that MyScript is designed to recognize
general words, however, symbols, dot notation, and combinations
of symbols and words are typically not present in general text, espe-
cially in the way that they are used in source code. For example, the
most problematic symbols includes underscore ‘_’, parentheses ‘( )’
and equal ‘=’.

Zhttps://en.wikipedia.org/wiki/Camel_case
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Class  Frequency Class  Frequency
def 3 except 1
if 7 while 1
for 3 try 1
raise 2 break 1
return 2 else 1
yield 2 assignment 13

Table 2: Frequency for each statement class in three test code sam-
ples

5 HANDWRITTEN SOURCE CODE RECOGNITION PIPELINE

A programming language is governed by grammar rules, which
stipulate the positions of keywords and symbols. For example, in
Python, a def sentence must end with a ‘:’. However, handwrit-
ten symbols are often problematic. For example, colons “:’ are
sometimes recognized as semicolons ‘;’. In addition to grammar
rules, programming languages are highly repetitive with predictable
properties [18]. Function names and variable names are the most
common repetitive words in a single source code project. If a func-
tion name appears more than once in the same handwritten code
sample, however, it is impossible for users to hand write the exact
same strokes for this function name, which makes different recogni-
tion results of the same handwritten function name a possibility that
we must account for.

In this section, we present an approach to improve the recognition
rate for handwritten source code by addressing these issues as well
as those common errors characterized in Section 4.3. We leverage
what we know about the predictability and structure of source code
to improve recognition results beyond that of the state-of-the-art
recognizer.

The general premise of our approach is that state-of-the-art en-
gines can produce excellent results given good writing and the
absence of symbols and programming practices like camelCase.
Our framework, illustrated in Fig. 3, is therefore aimed at ana-
lyzing and post-processing the recognition results produced from
MyScript to utilize its recognition capabilities but correct for
those common errors. This framework can be divided into four
parts: statement classification, statement parsing, token process-
ing, and statement concatenation. The source code for this post-
processing algorithm can be found at http://www.purl.org/
recognizinghandwrittencode/code.

5.1 Statement Classification

As we mentioned before, we process the handwritten source code
data considering each statement as a unit. According to the Python
grammar specification, we can restrict Python source code state-
ments into a limited number of classes, each of which has specified
structure rules®. Here we use the first token in the statement as
the symbol for classification. For example, a ‘def’ statement starts
with ‘def” and its structure is defined as ‘def’ + ‘function name’ +
‘(parameters0, parameters] ...):". We define 14 classes for Python
code statements, including an ‘assignment’ statement, which means
the first word in this statement is not a keyword but rather a variable
name. In Fig. 3, the recognition result is classified as an ‘if” state-
ment. Table 2 presents statistics for the various statement classes in
the three code samples.

5.2 Statement Parsing

After classifying the statement, we need to break it down into inde-
pendent parts according to the grammar rules. Similar to a recursive-
descent parser [43], our system consists of a series of functions, each

3https://docs.python.org/2/reference/grammar.html
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Figure 3: Framework for augmenting MyScript to correct for com-
mon recognition errors in handwritten source code.

of which is responsible for one class of statement. Each function
includes a set of mutually recursive procedures where each such
procedure implements one of the productions of the grammar as a
regular expression. We implement a top-down LL parser to parse
the input from left to right and perform a leftmost derivation [12] of
the statement. As a result, a statement is parsed into a list of single
tokens and/or characters. For example, the statement in Fig. 3 is
parsed into five individual tokens. Specifically, ‘if’ is a keyword
token; ‘Cookie. name’ is a variable token; ‘==’ is a symbol token;
‘naue’ is a variable token; ;’ is the last symbol token.

5.3 Token Processing

The previous stage results in a list of single tokens and/or charac-
ters that make up the statement. We assume all non-keywords are
properly recognized and add them to the lexicon assuming they
are variable names. Then for all non-keywords in each statement
that follows, we first compare the token to all the words in the non-
keyword lexicon. If a ‘similar’ token already exists in the lexicon,
we replace it with the ‘similar’ token in the lexicon. For example,
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Figure 4: Average recognition error rate of MyScript and our augmented MyScript system for three test code samples

t-test score (f14) P-value
WER on sample 1 -9.02 P <0.00001
WER on sample 2 -8.29 P <0.00001
WER on sample 3 -6.57 P < 0.00001
CER on sample 1 -3.88 P <0.001
CER on sample 2 -5.45 P < 0.0001
CER on sample 3 -6.13 P < 0.0001

Table 3: Statistical evidence (T-test and P-value) for WER and CER
on three code samples

in Fig. 3, ‘naue’ is very similar to ‘name’, which is already in the
lexicon, so we just replace the token ‘naue’ with ‘name’. If there is
no ‘similar’ token in the lexicon, we accept this token as it is and
add it to the lexicon. We calculate similarity using the Levenshtein
distance [25] with a threshold of 0.7, determined empirically.

5.4 Statement concatenation

After processing all tokens, we remove all extra spaces in any single
token, then concatenate each token with a single space between them
to reconstruct the final statement. Additionally, we ensure that the
last recognized character of a statement is a *:’. For example, in
Fig. 3, we first remove the space in ‘cookie. name’ and then replace
the last character ‘;” with :’.

6 EVALUATION

To assess the performance of our system, we measure the Character
Error Rate (CER) and Word Error Rate (WER). WER and CER are
percentages obtained from the Levenshtein distance between the
recognized sequence and the corresponding ground truth. They are
calculated as

D+I+S

L

where D is the number of deleted units, I is the number of inserted
units, S is the number of substituted units, and L is the total number
of units in the ground truth transcriptions. A unit is a word for WER
or a character for CER.

We evaluate our recognition approach by applying our framework
to the 45 code samples in our database. In the following section,
we compare the results of our enhanced recognizer to the results of
using MyScript alone.

x 100%

7 RESULTS

As shown in Fig. 4, our augmented recognition approach results in an
8.6% word error rate and 3.6% character error rate, on average, over
the three code samples, which outperforms the original MyScript
recognizer with 31.31% and 9.24% in word and character error
rate respectively. We also find statistical evidence for an effect of
our augmented recognition approach on both WER and CER (See
Table 3).

System WER(%) CER(%)
Augmented MyScript 8.6 3.6
Kozielski et al. [9] 9.5 2.7
Keysers et al. [21] 10.4 4.3
Zamora et al. [45] 16.1 7.6
Poznanski et al. [34] 6.45 3.44

Table 4: Performance of our system compared to handwritten En-
glish recognition systems on the IAM dataset

Since there is no existing handwriting source code recognizer
for comparison, we compare the recognition rate of our our aug-
mented MyScript recognition system (on source code) to that of four
state-of-the-art general handwritten English recognition systems
(on general text). The IAM handwriting database [28] consists of
9,285 lines of general handwritten text written by approximately 400
writers with no restrictions on style or writing tool. This database
has been widely used to evaluate English handwriting recognition
systems. The four systems in Table 4 were tested based on this [AM
handwriting database. Table 3 shows that the WER and CER of
our augmented source code recognition system are comparable with
other state-of-the-art handwritten English recognition systems on
general handwritten text.

8 DiscussioN

Our approach achieved an 8.6% word error rate and a 3.6% character
error rate on the collected dataset by taking the language grammar
rules into account. Overall, improvement of our recognition pipeline
over the baseline MyScript recognition engine can be attributed
to addressing the three main error types identified in Section 4.3.
After statement concatenation, all unnecessary space errors in a
single token are removed. Ensuring the last character of a statement
eliminates 32% of the symbol errors. Token processing fixes around
78% of the word errors.

Recognition results, however, are still not 100% accurate. Initial
inspection indicates that this is mainly due to the illegible or cur-
sive handwriting of the participants and the incorrect recognition
of symbols. Also, since one of our lexicons is dependent on the
non-keywords already recognized in the code, incorrectly recog-
nized words will also be added to the lexicon, thereby corrupting
the lexicon and preventing it from enhancing the recognition of the
following words. Additionally, it is difficult to identify incorrectly
recognized symbols; for example, if ‘(" appearing in the middle of
the text is recognized as ‘I’, it becomes impossible to rectify it using
our approach. Errors like unmatched ‘(’ and )’ in a statement can
be detected, but not reliably corrected. For example, ‘(name’ can be
recognized as ‘cname’, but we have no evidence to correct ‘cname’
to ‘(name’. Two methods can be employed to resolve remaining
errors such as this. The first is to develop a widget in the handwrit-
ing interface to highlight all errors that are identified but can’t be
corrected and let users correct them manually. Another option is to
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train a language model to identify words that do not exist [45].

Because typing on a virtual keyboard is the standard input method
on touchscreen devices, it is useful to examine how virtual keyboard
typing error rates compare to those of handwritten source code recog-
nition. Almusaly et al. report a 7.81% total error rate (TER) for
typing Java programs on a standard virtual keyboard as measured
from 32 participants [2]. TER, similar to CER, is a measure of
the total number of errors (i.e., omissions, substitutions, and inser-
tions) and corrections that are made in the resulting typed text. Our
handwriting results are comparable.

This approach can also be generalized to other programming
languages with strict grammar rules. For instance, one can define
statement classes for Java according to the first word in the state-
ment and then replace the regular expressions with productions of
Java grammar rules. Algorithms for searching and replacing similar
words can be kept unchanged. Other heuristic steps like concatenat-
ing tokens are also trivial to implement for new languages.

9 CONCLUSION AND FUTURE WORK

The keyboard is not an ideal input mechanism for every person
and situation. Alternatives to typing, such as speech, have been
considered in the past [7, 15]. However, speech is not always an ap-
propriate option given social conventions and privacy issues. Given
advances in pen-based technology that provides an opportunity for
users to engage with devices in a potentially more ‘natural’ way
than that supported by a virtual keyboard, handwriting input is a
viable alternative to virtual keyboard input. In this paper, we have
explored handwriting recognition specifically for source code with
the ultimate goal of supporting handwriting as a means for program-
ming. We collect and present a small database of publicly available
handwritten source code samples and we propose an approach to
recognize handwritten source code by leveraging a commercial hand-
writing recognition system. Experiments on the data collected from
15 participants show our framework has an average 8.6% word error
rate and 3.6% character error rate which outperforms the baseline
recognition system and produces rates comparable to the recognition
of general handwritten English text. We are encouraged by these
initial results but believe there are several avenues of future work.

From the view-point of human-computer interaction, usability
and user satisfaction is critical. For handwriting text input, users
expect recognition technology with a low error rate and responsive
recognition speed. LalL.omia et al. [24] reported that users are willing
to accept a recognition error rate of only 3% (a 97% recognition
rate), although Frankish et al. [13] concluded that users will accept
higher error rates depending on the text-editing task. It would not be
surprising, therefore, if higher error rates were acceptable for source
code entry and editing which is inherently difficult due primarily
to the use of symbols. Input speed is another concern with respect
to handwriting. Modest touch typing speeds on a virtual keyboard
in the range of 20 to 40 words per minute (wpm) are achievable.
Handwriting speeds are commonly in the 15 to 25 wpm range [6,
8,10]. We suspect that this decrease in speed, however, will be
acceptable to the particular groups for whom handwriting is the most
viable input option. Additionally, in professional programming, most
of the code that developers write involves reuse of existing example
code and libraries [5]. This ‘reuse’ typically amounts to editing
existing code to suit a new context or problem and generally provides
benefits to developers in terms of time and error reduction [22]. For
these reasons, we envision our system as being particularly useful
in the code editing domain as opposed to writing extensive source
code from scratch. Studying how the algorithms perform in editing
tasks is left as future work.

While databases exist for research in general handwritten text
recognition [17,28], there is no such dataset for handwritten source
code. This paper represents the first such contribution of a hand-
written source code dataset consisting of 555 lines of Python code

written by 15 participants. While we recognize that using the same
three code samples for all users and employing a “copy task” may
lessen the generality of the dataset, we sought to eliminate all ef-
fects of cognitive complexity (e.g. actually solving programming
problems) to focus solely on the handwritten source code quality.
Collecting data for other programming languages and for actual
programming tasks is left as future work.

The next most obvious area of future work is to develop a hand-
written source code recognition system from scratch instead of aug-
menting the results produced by an existing system. We suspect this
approach would lead to comparable and most likely improved recog-
nition rates. Building a universal handwritten source code reading
system could employ deep learning techniques such as Concur-
rent Neural Networks [34] or neural network language models [45]
trained purely on the source code.

Additionally, there are several opportunities to explore the inte-
gration of handwriting recognition into source code IDEs [14]. For
example, how do we now integrate source code completion into
a handwriting-based interaction? Can we integrate elements such
as syntax insertion and highlighting? Exploring the affordances of
handwriting in the context of an IDE is an exciting area of future
work that is enabled by these initial findings.

Multimodal methods present another area of future work. Perhaps
the combination of handwriting and speech input or handwriting
and occasional keyboard input [30] begin to produce interaction
experiences that rival those of typed source code input.

Finally, we will never reach a perfect recognition rate for hand-
written text (general or source code). How do we effectively support
efficient editing of the recognized text so that users can quickly
correct mistakes? Natural and effective text entry and editing is an
interesting topic for future studies.
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