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Figure 1: Our Euclidean distance transform (EDT) shadow mapping produces real-time filtered hard shadows with less artifacts than
related work. Images were generated for the Fence model using a 10242 shadow map resolution.

ABSTRACT

The high-quality simulation of the penumbra effect in real-time
shadows is a challenging problem in shadow mapping. The exist-
ing shadow map filtering techniques are prone to aliasing and light
leaking artifacts which decrease the shadow visual quality. In this pa-
per, we aim to minimize both problems with the Euclidean distance
transform shadow mapping. To reduce the perspective aliasing arti-
facts generated by shadow mapping, we revectorize the hard shadow
boundaries using the revectorization-based shadow mapping. Then,
an exact normalized Euclidean distance transform is computed in
the user-defined penumbra region to simulate the penumbra effect.
Finally, a mean filter is applied to further suppress skeleton artifacts
generated by the distance transform. The results obtained show that
our technique runs entirely on the GPU, produces less artifacts than
related work, and provides real-time performance.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

1 INTRODUCTION

Shadows are of great importance in computer graphics because
they improve the realism of the 3D virtual scenes [16, 43]. Unfor-
tunately, real-time, accurate shadow computation still remains an
open problem, since the rendering of physically correct shadows
is computationally expensive. To simplify the shadow rendering
problem, the shadow mapping technique [44] uses a texture called
shadow map to discretize the 3D space from the light source view-
point and allow the real-time shadow computation. However, as an
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image-based approach, the shadows generated by such a technique
are prone to aliasing artifacts and temporal incoherence. Moreover,
shadow mapping does not simulate the penumbra effect, generating
unrealistic hard shadows, rarely seen in the real world.

Texture linear filtering is a common alternative to reduce the
aliasing artifacts generated by the texture finite resolution. However,
mip-mapping and anisotropic filtering strategies cannot be applied
in the shadow map, since the shadow mapping uses a non-linear
comparison as shadow test [4]. To solve such a problem, the current
shadow map filtering techniques either realize the filtering after the
shadow test [26, 32], or change the shadow mapping visibility func-
tion to allow shadow map pre-filtering [2, 3, 10, 14, 15, 21, 31, 36].
Such alternatives minimize aliasing artifacts and simulate penumbra
in real-time shadows. However, specific problems arise depending
on the size of the penumbra simulated. For small penumbra sizes,
blurred aliasing artifacts still can be seen in the shadow rendering
(see Fig. 1-(a, b, c)). For large penumbra sizes, fine details of the
shadow may be suppressed by the shadow overblurring. Also, re-
gardless of the penumbra size, the techniques based on shadow map
pre-filtering typically suffer from the light leaking artifacts, where
a shadowed region is incorrectly rendered as a fully illuminated
region.

In this paper, we present the Euclidean distance transform (EDT)
shadow mapping (EDTSM), a new technique which allows efficient
shadow filtering and penumbra simulation. Inspired by the recent
advances in the field of exact EDT computation on the GPU [6]
and efficient shadow anti-aliasing through shadow revectorization
[26], we propose a new technique which takes advantage of the
revectorized hard shadows to simulate the penumbra effect on the
basis of a normalized EDT computation. Then, a mean filter is
applied to reduce the typical skeleton artifacts generated by the EDT
computation. We show that EDTSM offers real-time performance
and does not suffer from light leaking or aliasing artifacts as much
as related work.
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The remainder of this paper is organized as follows: Sec. 2 briefly
describes the most relevant related work in the fields of real-time
hard shadow generation and EDT computation. Sec. 3 introduces
our EDTSM. In Sec. 4, we discuss the experimental results, com-
paring our approach with related work in terms of visual quality and
rendering performance. Finally, Sec. 5 gives the concluding remarks
and key directions for future work.

2 RELATED WORK

In this section, we focus on the review of relevant related work
proposed in the fields of shadow anti-aliasing, shadow map filtering,
and EDT computation. An in-depth review of the existing shadow
rendering algorithms is beyond the scope of this paper. We refer the
reader to the books of Eisemann et al. [11] and Woo et al. [46]. For
a complete review of the existing techniques for EDT, see [12, 19].

Shadow Anti-Aliasing: Shadow mapping [44] is an image-
based shadow algorithm composed of two passes. In the first pass,
the technique samples the 3D space viewed from the light source and
rasterizes the distance of the light source to the closest surface points
of the scene into a depth texture called shadow map. In the second
pass, each surface point visible in the camera view is projected into
the light source view and its distance is compared to the one stored
in the shadow map to determine whether the surface point is lit
or in shadow (i.e., shadow test). Due to the limited shadow map
resolution, shadow mapping may generate aliasing artifacts along
the shadow silhouette.

One way to reduce shadow aliasing artifacts relies on the
reparametrization of the shadow map generation by the use of warp-
ing strategies. The most common techniques [25, 27, 40, 45] use
the post-perspective space to render the shadow map, improving
the shadow map resolution by focusing the sampling on the parts
of the scene most relevant for the shadow rendering. Indeed, these
techniques minimize the shadow aliasing artifacts, provide real-time
performance, but suffer from shadow flickering artifacts caused by
the camera or light source movement. Also, they improve the shadow
map resolution, but are not able to completely reduce the shadow
aliasing artifacts.

Another approach to minimize shadow aliasing consists in the
partitioning of the view frustum, such that a shadow map is as-
sociated for each partitioned space [49, 50]. Sample distribution
shadow mapping [22], for instance, splits the view frustum along the
z-axis and generates tight shadow maps for each partitioned space.
Rather than partitioning the 3D space, other techniques evaluate the
aliasing error caused by the use of a single low-resolution shadow
map, and change the shadow map configuration adaptively (either
by increasing the shadow map resolution, generating more shadow
maps) in order to minimize the shadow aliasing [13, 17, 24]. The
partitioning strategy is useful to generate high-quality shadows for
large-scale scenarios. On the other hand, the additional cost caused
by the partitioning may be inadequate for small-scale scenarios.

To reduce the aliasing artifacts, several techniques store additional
information of the light blocker geometry into the shadow map
[30, 38] to improve the shadow test, or make use of irregular data
structures to provide a more accurate sampling of the shadow map
[1, 18]. In general, these techniques effectively reduce the shadow
aliasing artifacts, at the cost of more memory consumption and
processing time, although more recent, efficient solutions do exist
[23, 26, 48].

Shadow Map Filtering: Most of the techniques mentioned
so far are able to provide shadow anti-aliasing, but they cannot
reproduce the penumbra effect of the shadow, since they use a binary
visibility function to compute the hard shadows.

Percentage-closer filtering (PCF) [32] minimizes aliasing and
simulates penumbra by taking the average of shadow test results
over a sampled region. PCF is free from light leaking artifacts, but

is not scalable with respect to the filter size, requires several samples
to reduce banding artifacts and does not support pre-filtering.

Variance shadow mapping (VSM) [10] is a statistical approach
which stores depth and squared depth into the shadow map and use
such an information to determine the probability of whether a point
is in shadow or is lit. VSM supports pre-filtering and is scalable, at
the expense of the light leaking artifacts generation.

Convolution shadow mapping (CSM) [2] linearizes the shadow
test by approximating it as an expansion of Fourier series. The
shadow map is converted into several basis textures, which are
filtered and used to perform shadow anti-aliasing. The final shadow
intensity is computed by a weighted sum of the basis functions
stored in the basis textures. CSM supports pre-filtering and does not
suffer from light leaking as much as VSM. However, this technique
demands higher memory footprint and processing time than the
alternative shadow map pre-filtering techniques.

Exponential shadow mapping (ESM) [3, 36] approximates the
shadow test by an exponential function. The depth values stored
in the shadow map are converted into exponent-transformed depth
values, which are used to determine the final shadow intensity. ESM
is an alternative to VSM, but still prone to light leaking.

Exponential variance shadow mapping (EVSM) [21] merges ESM
and VSM theories to produce high-quality anti-aliasing and penum-
bra simulation. In this case, light leaking only occurs at the frag-
ments where such an artifact was present in both ESM and VSM.

Gaussian shadow mapping [14, 15] is another statistical filtering
technique which uses the Gaussian cumulative distribution function
to estimate the shadow intensity. Similarly to EVSM, an alternative,
hybrid visibility function is used with the exponential function to
further reduce light leaking artifacts.

Moment shadow mapping (MSM) [31] stores depth raised from
the first to the fourth power in the shadow map and estimates the
shadow intensity according to the Hamburger or Hausdorff moment
problem. As an improved version of the VSM technique, MSM
greatly reduces the light leaking artifacts obtained in the VSM pre-
filtering approach.

Revectorization-based PCF (RPCF) [26] first generates anti-
aliased hard shadows by the revectorization of the jagged shadow
silhouette, then applies the PCF over the revectorized hard shadows
to fake the penumbra. Indeed, RPCF improves the accuracy of PCF,
requires just a few samples to reduce banding artifacts, and works
well for low-resolution shadow maps, generating fake penumbra free
from aliasing artifacts. Unfortunately, RPCF is slower than PCF for
the same kernel sizes.

Shadow map filtering techniques are an efficient alternative to
reduce aliasing artifacts and fake penumbra for the hard shadows
produced by shadow mapping. Pre-filtering techniques are scalable
in terms of filter size, but suffer from light leaking. On the other
hand, PCF and RPCF are not prone to light leaking, but are not
as well scalable. Most of these techniques produce blurred jagged
shadows for small penumbra sizes when used with shadow maps
of low resolution. For large penumbra sizes, they may suffer from
banding artifacts if an insufficient kernel size is used. Also, details
of the shadow silhouette may be lost due to the shadow blurring.
In this paper, we want to solve these problems by computing the
penumbra intensities as a normalized EDT over the penumbra region
of the shadow, as we will detail in Sec. 3.

Euclidean Distance Transform: EDT is used in several ap-
plications, such as image processing, computer vision, computer
graphics, and scientific visualization. In our context, the distance
transform is defined as an operation that receives as input a binary
image and returns as output a gray-level image, in which the inten-
sity of each pixel is computed as the distance from the pixel to the
closest foreground pixel (termed site) in the binary image.

Vector propagation [8] is one of the most common techniques
used to compute fast, approximate EDTs. In this method, vector
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Figure 2: An overview of the EDT shadow mapping. Given the aliased hard shadows obtained with the traditional shadow mapping (a),
revectorization-based shadow mapping is applied to generate anti-aliased hard shadows (b). Then, penumbra intensities are computed on the
basis of a normalized EDT over the penumbra region (c). Finally, a mean filter (d) is applied over the normalized EDT to reduce skeleton artifacts
generated by the EDT computation. Images were generated for the Teapot model using a 10242 shadow map resolution.

templates are propagated and swept through the image to compute
accurate EDT. However, the original technique is inadequate for our
purposes since it is CPU-based and does not run in real time. In fact,
even the fastest CPU-based solution [42] proposed to compute EDT
achieves only interactive performance for high-resolution images.

Jump flooding algorithm (JFA) [33] adapts the vector propagation
method to the GPU by performing it in several rounds, with different
step sizes, each pixel realizing its own processing in parallel. This
technique is faster than the original vector propagation method,
but produces approximate EDT, susceptible to errors. The fast
hierarchical algorithm proposed by Cuntz and Kolb [7] downsamples
and upsamples the original image to speed up the JFA, at the cost of
a low-accurate EDT generation.

The approach proposed by Schneider et al. [37] modifies the
vector templates proposed in [8], such that the vector propagation
can be efficiently implemented on the GPU. This approach is, in
general, slower than JFA, but produces EDT close to the exact
solution.

Different from the vector propagation, these techniques run on
the GPU, but provide interactive performance and do not produce
accurate EDT, being unsuitable to be used in a real-time hard shadow
technique.

Parallel banding algorithm (PBA) [6] is the first technique to
compute exact EDT in GPU in real time. The main idea of PBA
is to divide the EDT processing into bands, which are processed
in parallel by the GPU. In the first pass of the technique, each row
of the image is divided into bands, in which a two-pass horizontal
sweeping is performed, resulting in the 1D EDT computation. Next,
each column of the image is divided into bands, in which a vertical
sweeping is performed. Finally, each pixel of the image can localize
its closest site and compute the EDT. PBA is faster and more accurate
than related work.

In this sense, due to the recent advances in the field of EDT, like
the proposition of the PBA, we propose a new technique which
simulates the penumbra effect using a normalized EDT.

To the best of our knowledge, the stylized shadows method [9]
is the only existing technique which uses a distance transform for
shadow computation. In this technique, a signed distance function
is computed from an accurate hard shadow and is used to guide
the shadow blur, which allows the generation of non-photorealistic
shadows. Four parameters are used to control the shadow render-
ing: inflation, to control the shadow size; brightness, to control
the shadow intensity; softness, to control the penumbra size; and
abstraction, to control the shadow accuracy. The distance transform
is used for both inflation and softness parameters, helping in the

control of both shadow and penumbra sizes.
Similar to our approach, the stylized shadows method uses the

world-space distance metric to compute the EDT, making the ap-
proach viewpoint invariant. Different from our approach, such a
technique uses a blur filter to modify the shadow’s shape, does
not run in real time for dynamic scenes, and was developed for
non-photorealistic shadow rendering, to help artists with the task
of shadow modelling. Although we also do not compute physically
correct shadows, we intend to solve the problems currently found
in the field of filtered hard shadow generation, providing real-time
performance, competitive against related work. Also, we use a blur
filter aiming to suppress skeleton artifacts generated by the distance
transform computation.

In this paper, we show that our method, which operates on the
screen space, similarly to other existing techniques (e.g., [5, 29])
reduces perspective, light leaking and banding artifacts even for
small penumbra sizes, achieving high-quality anti-aliasing with real-
time performance.

3 EUCLIDEAN DISTANCE TRANSFORM SHADOW MAPPING

In this section, we introduce the EDTSM. An overview can be seen
in Fig. 2 and is described in more details in the next subsections.

3.1 Shadow Map Rendering

The first step of the EDTSM consists in the generation of the shadow
map texture, as seen from the light source view. The shadow map
texture allows us to compute hard shadows, as proposed in the
shadow mapping technique [44].

3.2 Shadow Revectorization

Shadow mapping produces shadows with aliasing artifacts along the
shadow silhouette (Fig. 2-(a)), mainly for shadow maps with low
resolution. To reduce such an artifact and produce high-quality hard
shadows at little additional cost, we use the single-pass shadow map
silhouette revectorization [26] to compute the hard shadows using
the shadow map computed in the previous step (Fig. 2-(b)).

In this technique, jagged shadow silhouettes are detected in the
light space according to the difference between shadow test results
of neighbour shadow map texels. Then, for each fragment inside
the shadow silhouette, a traversal is performed in the light space to
determine the size of the shadow silhouette and the relative position
of the fragment inside it. In the camera space, such a relative position
is used in a linear comparison which determines the revectorized
shadow silhouette.

173
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Figure 3: Filtered hard shadows produced by different techniques. Green closeups show how the techniques handle aliasing artifacts and light
leaking on contact regions. Red closeups show an additional view with respect to the shadow aliasing artifacts. Blue closeups show whether the
techniques suffer from shadow overestimation. Images were generated for the Armadillo model using a 5122 shadow map resolution.

To restrict shadow and shading computation to the fragments
visible to the camera, as suggested by the deferred rendering pipeline,
we render the G-Buffer [35] of the scene viewed from the camera
and use it in the next steps of the algorithm.

3.3 EDT Shadowing
Once we have generated the revectorized hard shadows, we can
compute the penumbra intensities according to a normalized EDT
(Fig. 2-(c)). In this step, our main goal is to compute, for each
penumbra fragment, its Euclidean distance to the closest shadow
silhouette fragment in the camera view, to normalize such a distance
to the closed interval [0,1], where 0 is the value associated with an
umbra fragment, and 1 is the value associated with a lit fragment.

Let us define as sites the fragments located at the shadow sil-
houette. To locate the sites in the screen space, we apply a 3× 3
non-separable rectangular filter kernel over the revectorized shadows
and label a fragment as a site if there is a difference between the
visibility condition of the current fragment and one of its neighbours
in the filter kernel. Then, for each non-site fragment, we compute
the EDT, which returns the Euclidean distance (D) of the fragment
to the closest site.

Let us denote P a user-defined parameter which determines the
desired penumbra size. Half of the penumbra size ( P

2 ) belongs to
the interior (shadowed) side of the shadow edge, and the other half
belongs to the exterior (lit) side of the shadow edge. Then, for every
fragment inside the penumbra region (i.e., D ≤ P

2 ), we can compute
its penumbra intensity (I) as

I =

{
1
2 −

D
P if the fragment is in shadow,

1
2 +

D
P otherwise.

(1)

From Equation 1, shadowed and lit fragments whose distance
to the shadow silhouette is P

2 have the new intensities 0 and 1,
respectively. Each fragment whose distance to the shadow silhouette
is lower than P

2 has a new penumbra intensity which lies between 0
and 1.

Since we perform this step in the screen space, we lose informa-
tion about edge location (i.e., boundaries between objects) and we
may generate different penumbra sizes according to the distance
of the viewer to the scene. To solve the first problem, we take
into consideration the depth buffer of the scene as seen from the
camera, which was previously stored in the G-Buffer, to detect the
edges of the objects. In this sense, a fragment is only considered
to be in penumbra if the depth difference between the fragment
and its closest site is below a user-defined threshold. To produce
a viewpoint-invariant screen-space penumbra size estimation, we
compute the Euclidean distance values with respect to the world
space, rather than using only the screen-space information.

3.4 EDT Filtering

After the EDT shadow computation, skeleton artifacts (Fig. 2-(c))
arise along the singularities (i.e., gradient discontinuities) in the
distance transform [47]. To minimize such artifacts, we apply a
screen-space separable rectangular mean filter kernel over the shad-
ows previously computed (Fig. 2-(d)). We have chosen the mean fil-
tering for this step because it is simple to implement, fast, separable
and effectively minimizes the skeleton artifacts even for low-order
kernel sizes. Gaussian filtering could be used as an alternative in
this case, but we have found that the mean filtering is sufficient for
our purposes. Furthermore, since we do not need to keep sharp
boundaries in the filtered hard shadow, we have opted to not use the
bilateral filtering [41].

Similarly to the EDT shadowing algorithm (Sect. 3.3), the EDT
filtering needs to be edge aware and viewpoint invariant. We solve
the first problem using the same solution shown in Sect. 3.3, taking
into account depth difference when applying the blur filter. Inspired
by the screen-space soft shadow algorithms, we solve the second
problem by estimating the variable mean filter size wscreen

f ilter for each
fragment [29]

wscreen
f ilter =

w f ilterzscreen

zeye
, (2)
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(a) PCF (b) VSM (c) MSM (d) RPCF (e) EDTSM

Figure 4: Filtered hard shadows produced by different techniques. Green closeups show whether the techniques handle aliasing artifacts. Red
closeups show how the techniques perform under fine details. Blue closeups show whether the techniques suffer from light leaking artifacts.
Images were generated for the YeahRight model using a 10242 shadow map resolution.

Figure 5: EDTSM supports shadow rendering on a non-planar re-
ceiver. Image was generated for the Door (light blocker) and Bunny
(shadow receiver) models using a 10242 shadow map resolution.

zscreen =
1

2tan f ov
2

, (3)

where f ov specifies the field of view angle, zeye is the distance of
the fragment to the camera and w f ilter is the user-defined mean filter
size. By computing wscreen

f ilter , which varies according to the distance
of the camera to the scene, we improve the temporal coherency of
the EDT filtering.

4 RESULTS AND DISCUSSION

In this section, we evaluate the hard shadow filtering techniques in
terms of visual quality and performance. All the tests were executed
on an Intel CoreTM i7-3770K CPU (3.50 GHz), 8GB RAM, and
an NVIDIA GeForce GTX Titan X graphics card. EDTSM was
implemented using OpenGL [39] and GLSL [34] languages. To
compute the EDT, we have used the original implementation of
the PBA [6], because, to the best of our knowledge, it is the only
one which computes exact EDT in real time on the GPU. Since the
PBA is implemented in CUDA [20], we used the CUDA/OpenGL
interoperability to optimize resource management.

We have used a kernel of size 15×15 to suppress skeleton and
banding artifacts for the filtering techniques. Specifically for RPCF,
we have used a kernel of size 7×7 since this algorithm requires less
samples to reduce the banding artifacts [26]. In the accompanying
video, we show additional results of the EDTSM, including temporal
coherency.

4.1 Visual Quality

We compared the filtered hard shadows computed using our approach
with two of the most traditional shadow map filtering techniques
(PCF and VSM) and two of the most recent ones (MSM and RPCF),
as shown in Fig. 3 and Fig. 4.

The non-revectorization-based filtering techniques (PCF, VSM
and MSM) have aliasing artifacts along the fake penumbra for
shadow maps of low resolution (as shown in Fig. 3 and the green
closeups in Fig. 4-(a, b, c)). RPCF is not able to handle the fine
details if an insufficient shadow map resolution is used (as pointed
by the red arrow in Fig. 4-(d)). Pre-filtering techniques, such as
VSM, are prone to several light leaking artifacts, as shown in the
green closeup of Fig. 3-(b) and the blue closeup of Fig. 4-(b). In this
case, MSM reduces significantly the light leaking artifacts, as seen
in the blue closeup of Fig. 4-(c). Our EDTSM does not suffer from
aliasing artifacts (green and red closeups in Fig. 3-(e) and the green
closeup in Fig. 4-(e)), shadow holes as much as RPCF (red closeup
in Fig. 4-(e)) and light leaking artifacts (green closeup in Fig. 3-(e),
and blue closeup in Fig. 4-(e)). However, details of the shadow
silhouette may be lost due to the artifact of shadow overestimation.

In EDTSM, shadow overestimation may be caused by two factors.
The first is the mean filtering, whose blurring enlarges the entire
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Figure 6: A comparison of different implementations of the EDTSM for different penumbra sizes. Images were generated for the Teapot model
using a 10242 shadow map resolution.

Figure 7: EDTSM works well for more complex scenarios with multiple objects. The image contains different viewpoints of the San Miguel model,
rendered using a 10242 shadow map resolution.

shadow region. This is a special problem for lit regions which are
surrounded by shadow, since they will be incorrectly put in the
fake penumbra. Also, as shown in the blue closeup of Fig. 3-(e), if
distinct parts of the same object do not have much depth difference
between them, our edge-aware filtering approach assumes that they
belong the same region and performs the blurring erroneously. The
second factor which may cause shadow overestimation is the hard
shadow revectorization, which puts small closed lit regions entirely
in shadow, as shown in the blue closeup in Fig. 4-(e). While such
an artifact may generate fake penumbra different from related work,
we show in the accompanying video that our approach is temporally
coherent. Therefore, the shadow is overestimated, but does not cause
flickering artifacts during animation.

Without any modification of the algorithm shown in Sec. 3,
EDTSM is able to fake penumbra for shadows cast on planar re-
ceivers (as shown in most of the figures contained in this paper), as
well as non-planar receivers (Fig. 5).

In Fig. 6, we present a comparison between two distinct imple-
mentations of the EDTSM approach: one which uses the screen-
space distance metric to estimate the penumbra size, compute and
filter the EDT (Fig. 6-top), and the one proposed in this paper, which
uses the world-space distance metric to compute the fake penum-
bra (Fig. 6-bottom). While both of them perform well for a small
penumbra size (Fig. 6-(a)), artifacts may arise for medium and large
penumbra sizes when using the screen-space distance metric (Fig. 6-

(b, c)). In this sense, the use of the world-space metric allows not
only the viewpoint-invariant rendering of the fake penumbra, but
also minimizes the incidence of potential artifacts located at the
shadow silhouette.

As shown in Fig. 7, EDTSM supports the shadow rendering for
game-like scenarios, with several light blocker and shadow receiver
objects. Unfortunately, as can be seen along the thin legs of some
chairs in Fig. 7, light leaking artifacts may arise in the final rendering
due to the small depth difference between different objects, which
affects the EDT computation.

4.2 Rendering Time
In Table 1, Table 2 and Table 3, we compare the performance ob-
tained by our approach and related work. Only the scenarios shown
in Fig. 1, Fig. 3 and Fig. 4 were evaluated, because they are the only
ones where we compare our approach with related work in terms of
visual quality. Also, we have presented the performance of VSM
and MSM into a single row in the tables, because we have obtained
similar performance for them.

RPCF provides one of the best visual quality results, but is the
slowest technique, independent of the scene configuration used.
EDTSM is slightly slower than PCF, VSM and MSM, mainly when
comparing both techniques for the same kernel size and high output
resolutions. Nevertheless, it is worthy to note that, by using the
concept of separable filtering, EDTSM is faster than PCF for high
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Shadow Map Resolution
Scene Method 5122 10242 20482 40962

Fig. 1

PF 4.1 ms 4.3 ms 4.5 ms 5.5 ms
PCF 5.0 ms 5.1 ms 5.2 ms 5.6 ms

EDTSM 6.3 ms 6.4 ms 6.5 ms 7.4 ms
RPCF 22.2 ms 22.7 ms 23.2 ms 27.7 ms

Fig. 3

PF 4.7 ms 4.8 ms 5.1 ms 6.3 ms
PCF 5.3 ms 5.4 ms 5.6 ms 6.4 ms

EDTSM 6.4 ms 6.5 ms 6.7 ms 7.5 ms
RPCF 12.9 ms 13.6 ms 15.2 ms 17.8 ms

Fig. 4

PF 10.5 ms 10.6 ms 10.8 ms 12.0 ms
PCF 11.3 ms 11.4 ms 11.4 ms 11.7 ms

EDTSM 12.8 ms 12.9 ms 13.0 ms 13.7 ms
RPCF 26.2 ms 27.3 ms 27.8 ms 30.0 ms

Table 1: Processing time for several hard shadow filtering techniques
and different scenes rendered at an output HD resolution. Measure-
ments include varying shadow map resolution. PF - Pre-filtering
techniques (namely VSM and MSM).

Output Resolution
Scene Method SD HD Full-HD

Fig. 1

PF 3.2 ms 4.3 ms 4.8 ms
PCF 3.2 ms 5.1 ms 5.3 ms

EDTSM 4.1 ms 6.4 ms 8.0 ms
RPCF 10.6 ms 22.7 ms 25.0 ms

Fig. 3

PF 3.2 ms 4.7 ms 5.7 ms
PCF 3.2 ms 5.4 ms 5.8 ms

EDTSM 4.3 ms 6.4 ms 8.1 ms
RPCF 7.1 ms 12.9 ms 16.6 ms

Fig. 4

PF 9.9 ms 10.6 ms 11.3 ms
PCF 9.8 ms 11.4 ms 11.9 ms

EDTSM 10.7 ms 12.9 ms 14.7 ms
RPCF 16.4 ms 27.3 ms 30.3 ms

Table 2: Processing time for several hard shadow filtering techniques.
Fig. 1, Fig. 3, and Fig. 4 were rendered using 10242, 5122 and 10242

shadow map resolutions, respectively. Measurements include varying
viewport resolution. PF - Pre-filtering techniques (namely VSM and
MSM).

Kernel Size
Scene Method 7×7 15×15 23×23 31×31

Fig. 1

PF 3.9 ms 4.3 ms 4.5 ms 4.7 ms
PCF 3.4 ms 5.1 ms 7.4 ms 10.2 ms

EDTSM 5.9 ms 6.4 ms 6.8 ms 7.2 ms
RPCF 22.2 ms 76.9 ms 142.8 ms 200.0 ms

Fig. 3

PF 4.5 ms 4.7 ms 5.1 ms 5.3 ms
PCF 3.5 ms 5.4 ms 7.5 ms 10.5 ms

EDTSM 6.2 ms 6.4 ms 6.7 ms 7.0 ms
RPCF 12.9 ms 39.6 ms 89.2 ms 142.8 ms

Fig. 4

PF 9.8 ms 10.6 ms 10.7 ms 11.1 ms
PCF 9.8 ms 11.4 ms 13.5 ms 17.0 ms

EDTSM 12.3 ms 12.9 ms 13.5 ms 14.2 ms
RPCF 26.2 ms 77.5 ms 166.6 ms 285.7 ms

Table 3: Processing time for several hard shadow filtering techniques
rendered at an output HD resolution. Fig. 1, Fig. 3, and Fig. 4 were ren-
dered using 10242, 5122 and 10242 shadow map resolutions, respec-
tively. Measurements include varying kernel size. PF - Pre-filtering
techniques (namely VSM and MSM).

order filter sizes (Table 3).

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the Euclidean distance transform
shadow mapping, a technique which uses the notions of distance

transform and shadow revectorization to produce fake penumbra
for real-time shadows. From an analysis of the results, EDTSM
outperforms related work in terms of visual quality, mainly for low-
resolution shadow maps. Also, EDTSM is faster than RPCF and
more scalable than PCF for high order filter sizes. Hence, EDTSM
becomes an alternative to be used in games and other applications
where the visual quality or processing time could be improved with
our algorithm.

Unfortunately, EDTSM is prone to shadow overestimation caused
by the EDT filtering and the shadow revectorization. The use of
an alternative filtering algorithm which effectively minimizes the
skeleton artifacts without causing overblurring would be useful in
this case. Likewise, the replacement of the shadow revectorization
by another technique which computes real-time anti-aliased hard
shadows without shadow overestimation would minimize such an
artifact.

In terms of performance, EDTSM is slightly slower than related
work for the same scene configuration. Since the EDT computa-
tion is the step which consumes most of the processing time in our
approach, the proposition of a more efficient GPU-based EDT al-
gorithm which computes exact, or even approximate EDT, would
speed up our approach. For future work, we also intend to extend
the concept of EDTSM for visually plausible or even accurate soft
shadow computation.
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