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ABSTRACT 
A standard (single-column) bar chart can effectively visualize a 
sorted list of numeric records. However, the chart height limits the 
number of visible records. To show more records, the bars could 
be made thinner (which could hinder identifying records individu-
ally), and scrolling requires interaction to see the overview. 
Treemaps have been used in practice in non-hierarchical settings 
for dense visualization of numeric data. Alternatively, we consider 
wrapped bars, a multi-column bar chart that uses length instead of 
area to encode numeric values. We compare treemaps and 
wrapped bars based on their design characteristics, and graphical 
perception performance for comparison, ranking, and overview 
tasks using crowdsourced experiments. Our analysis found that 
wrapped bars perceptually outperform treemaps in all three tasks 
for dense visualization of non-hierarchical, sorted numeric data. 

Keywords: Visualization; Graphical Perception; Treemaps; Eval-
uation. 

Index Terms:	H.5.2. Information Interfaces: User Interfaces. 

1 INTRODUCTION 
Lists of numeric measurements for specific items—such as coun-
try populations, smartphone prices, or university acceptance 
rates—are ubiquitous. Visualization can amplify people’s ability 
to comprehend data [5], and the standard (single-column, sorted) 
bar chart does so with perceptual effectiveness and simplicity. 
However, it can only show a few dozen records given common 
constrained screen sizes. How can we visualize more records—
such as 150 countries, 75 smartphones, or 300 universities—in a 
single chart while maintaining perceptual accuracy for data com-
prehension? Among potential solutions, (i) larger screen spaces 
for charting may not be available, (ii) interaction, such as scrolling 
or focus+context, are not supported in ubiquitous print and image 
media, and (iii) aggregation of underlying data prevents observing 
records individually. In addition, there currently exists no detailed 
evaluation of alternative visualizations and their graphical percep-
tion performance targeting this data setting and context. 

This paper focuses on treemaps [23] and wrapped bars [15], 
which are both dense data visualizations for sorted numeric data 
that support overviews of all records and comparisons between 
records. (Figure 1). We consider the treemap design because of its 
common use [1], [32], [33] for presenting large numbers of rec-
ords without hierarchical structure, although the technique was 

originally designed for visualizing hierarchical data structures 
[23]. Visualization tools such as Tableau [29] also include 
treemaps as a suggested plot for a numeric attribute [25], which 
leads to its adaptation in various dashboards [8]. We also consider 
wrapped bars, which uses multiple columns for dense visualiza-
tion of larger datasets. It was (as far as we know) first introduced 
by Stephen Few [15]. We contribute a detailed analysis of the two 
techniques, and discuss the use of color and bi-directional axis for 
visualizing negative values and grouped records, as well as show-
ing record labels. 

We report the graphical perception performance of the two 
techniques through crowdsourced human experiments, comparing 
them on three complimentary tasks: comparison, ranking, and 
overview. Our results suggest that wrapped bars outperform 
treemaps in perceptual accuracy for all three tasks. We also dis-
cuss the effects of data density on perception performance. 

 
(a) Treemap 

 
(b) Wrapped Bars 

Figure 1. Two visualization techniques showing 150 records. (Top) 
Treemap, a space-filling design, shows the magnitude by the block 
size, and the sign by block color. (Bottom) Wrapped bars are multi-
column bars, and can organize +/- numbers across two sides. What 
are the design characteristics of treemaps and wrapped bars for flat 
data? Which chart design can improve perception for comparison, 
ranking, and overview under varying data conditions? 
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2 RELATED WORK 
Increasing data density is among Tufte’s visualization guidelines 
[31]. Another goal of effective visualization design is graphical 
perception accuracy, requiring a careful design process, and eval-
uation of alternative designs.  

Fekete et al. [13] demonstrated the use of treemaps to visualize 
up to a million records on large screens. Under such settings, 
many records occupy just a few pixels, and the visualization pri-
marily supports perceiving overviews of record groups, and com-
parison of larger records. In our study, we aim for high legibility 
of every value in the chart, thus avoiding large data scales in a 
limited chart area. Kong et al. [24] compared the perceptual per-
formance of treemaps to single-column bar charts in a hierar-
chical setting with up to 8,000 records at the deepest branches in a 
600x400 pixel chart size. They reported, “As data density increas-
es, treemaps become faster than bar charts while exhibiting equiv-
alent accuracy.” This effect may be due to the tiny size of single-
column bars at dense displays that makes them harder to observe, 
which could be mitigated by using multiple columns. Their study 
did not consider the use of treemaps in a non-hierarchical setting, 
or data overview and ranking tasks. Therefore, our study is differ-
ent than existing studies because of its motivation, data types, and 
inclusion of visual overview and ranking tasks. 

Among the techniques for dense information visualization, 
horizon charts  [14] display time-series 
data in a compact chart height using a refined filled line chart. 
They divide the numeric data axis into equal sized bands, and 
collapse the bands while adjusting the color darkness per band. 
The chart height is reduced in the order of the number of bands, 
keeping the overall trend visible. Heer et al. [20] studied percep-
tion of horizon charts and identified the effect of banding and 
chart height on estimation accuracy and speed. Javed et al. [22] 
discussed alternatives to visualizing multiple time series in a lim-
ited area, including braided charts , and assessed 
perceptual performance with  lab experiments. Fuchs et al. [16] 
evaluated alternative glyph designs for time series data in small 
multiple settings, where each glyph represents dense temporal 
data. 

Evaluating the graphical perception of visualization design has 
a long history in the field of statistical graphics. The comparison 
task used by Cleveland and McGill in 1984 [6] has become an 
established method to assess graphical perception. Talbot et al. 
[30] extended their results on bar chart perception to better under-
stand the reasons for performance differences across aligned and 
nonaligned bars, and the effects of separation and distracting bars. 
Perceptual studies have been extended to a crowdsourced meth-
odology by Heer et al. [19]. Their results were aligned with results 
in lab settings, albeit with more variance. They found that uncon-
trollable display size and viewing distance across crowdsourced 
participants can be balanced by recruiting more participants from 
a wide online population than traditional lab settings with few 
participants. Crowdsourcing has been used to evaluate graphical 

perception experiments in other studies as well [3], [28]. 

3 DENSE VISUALIZATION DESIGN FOR SORTED NUMBERS 
We consider the following objectives in the visualization design 
space for sorted numeric data:  

O1: Each record is perceptually distinguishable. All records 
must fit within the chart, and must be presented with their own 
visual glyph. This ensures that all records can be observed and 
compared visually. 

O2: An overview of all records is visible without interaction. 
This objective fits the use of visualization in static media, such as 
in print and in social media image previews. While interaction can 
be used to reveal multiple perspectives and views over time, it is 
beyond the scope of graphical perception studies. The direct per-
ceptual response to a visualization is critical, as any interaction is 
likely to slow down perception. 

O3: The records are visually sorted by value. This improves the 
visual structure, and simplifies assessing min/max, variance, and 
rankings. Without such order, the visual representation of data 
would be weaker in revealing data distribution characteristics. 

O4: The records do not overlap visually. We expect that avoid-
ing overlaps will reduce clutter, increase the ability to identify 
patterns, and reduce amount of hidden and lost information [11].   

Table 1 presents a summary treemaps and wrapped bars, which 
both meet these design objectives. Treemaps are a commonly used 
chart type that uses a space-filling technique, making use of all the 
chart pixels to encode the data by area. Wrapped bars increase the 
number of visible records by utilizing a multiple column chart. 
The two chart designs target similar chart sizes and aspect ratios. 
These techniques can handle more than a standard bar chart even 
though the chart area still bounds the number of perceptually dis-
tinguishable records.  

To motivate our objectives and their implications, let us also 
consider alternative techniques that do not meet the objectives. (i) 
Aggregated visualizations [12], such as histograms, violate O1 as 
they do not show each record individually. (ii) Standard bar charts 
can be extended beyond the visible area with scrolling. This fails 
to show a complete overview (O2), and requires interaction to 
observe different sections of data. (iii) Standard bar charts can 
show more data using shorter bars, however this makes individual 
records harder to observe (O1). (iv) A space-filling design could 
encode numeric data by color on fixed block size, instead of by 
area. However, the number of colors that can be effectively com-
pared is fairly limited [26]. (v) Circular encodings, such as packed 
bubble charts, are not strong for perceptual comparison, and use 
screen space ineffectively. 

Alternative contexts, such as systems for visual analytics or in-
teractive reporting, may have different objectives that would ben-
efit from the use of interaction, such as scrolling or focus+context 
views [17]. In such cases, visualization designs that do not meet 
all of our stated objectives may be preferable. 

 Treemaps Wrapped Bars 

Visual Encoding Space-filling rectangular area Length 
Baseline and Grid- Not available One baseline per column. Supports gridlines 

Block order by value ↓ & → (Not guaranteed) Columns first ↓ , then Rows → 
Filled pixels All Partial - Depends on the distribution and variance of data 

Adding columns Not available Shrinks bar width ↔ 
(-) Negative Values Another visual variable (color) is required. Bi-directional length encoding can visualize negative values. 
Grouping Records Color-coding blocks per group Color-coding bars per group 

Label Display Must be within blocks  Can be within or next to blocks (using more ↔ space)  
Other properties Reveals and emphasizes part-of relations. Columns can be separated by additional gaps. 

Table 1. Summary of treemaps and wrapped bars visualization techniques that satisfy the design objectives of this paper. 
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3.1 Treemap Technique 
Treemaps are a space-filling visualization technique where each 
data record is visualized using a rectangular block, and the rectan-
gular area encodes the data value. Treemaps were originally de-
signed to visualize hierarchical data groupings [23] using a nested 
block layout. Treemaps are also commonly used in practice to 
display non-hierarchical data in order to scale to more records 
than possible with a standard bar chart. 

An advantage of the space-filling design of treemaps is that all 
pixels are used to visualize data. Treemap algorithms commonly 
aim to generate a layout with the largest block in the top-left cor-
ner, the smallest on the bottom-right corner, and blocks ordered 
along one direction in decreasing size first. Yet, the optimized 
layout does not guarantee a sorted order, thus relaxing the objec-
tive O3. The area encoding used by treemaps has been shown to 
be perceptually less effective for comparison task compared to 
linear encodings of length and position on a shared baseline [6], 
[19]. Other perception experiments report that rectangles with 
lower aspect ratios improve perceptual accuracy and extreme 
aspect ratios should be avoided [19], [24]. Thus, a squarified 
treemap layout [4], which aims to avoid elongated rectangles, is 
commonly preferred, and is used as the layout in this study. 

3.2 Wrapped Bars Technique 
Wrapped bars [15] use multiple columns of aligned bars, which 
can effectively show more records than a single-column bar chart. 
Where new bars would extend vertically beyond the chart area, 
they are wrapped to start a new column, similar to the two-column 
text layout of this paper. The bars are comparable across the col-
umns since the length encoding has the same unit scale in all col-
umns. The column width decreases as the size of the records in 
the column decreases. The columns may be separated with a hori-
zontal ↔ gap to emphasize separation, thus improving readability. 

Given a fixed chart area and bar height, adding more records 
may result in additional columns. To make space for new col-
umns, existing bars must shrink horizontally ⇆, in turn decreasing 
data resolution and perceptual accuracy. Increasing bar height ↕ 
for a fixed record count may have the same effect, i.e. as bars get 
taller, they get narrower (Figure 2). Thus, the column layout in-
fluences the aspect ratio of bars. 

3.3 Grouping, Negative Values, Bi-directional Axis 
Grouping data is an important design consideration. Figure 2 
shows sample data that represents two groups. Treemaps can 
group multiple records spatially to represent the distribution of 
group totals, while both design approaches can use color to show 
the group association of each record, and emphasize the overall 
distribution of values. 

Next, we consider how to represent negative values (Figure 1). 
In treemaps, block area is implicitly positive and cannot be used 
to encode negative values. The sign of the values is therefore en-
coded by color. In wrapped bars, the baseline can be moved to-
wards the middle of the chart, and the bars can then be extended 
in both directions (←,→) to encode the sign. Using color can 
emphasize the column of the sign flip. In summary, treemaps can 
show sign preferably using color encoding, while wrapped bars 
can group +/- values along two sides of the baseline. 

When the records are sorted by non-numeric criteria (such as 
alphabetically), there are various impacts on the visualizations. In 
treemaps, the layout algorithm can be based on alternative met-
rics, and the chart space would still be used efficiently. Wrapped 
bars, on the other hand, have a problem in that the columns would 
not get narrower since the small records are not grouped, and thus 
horizontal space would not be used effectively. 

Lastly, we also consider displaying record labels (Figure 4) As 
the visual layout of treemaps strictly follow the data distribution, 
labels must be placed within the blocks, and smaller values offer 
smaller label space. Wrapped bars are more flexible. Labels can 
be placed within or next to bars. They may also be shown for all 
columns or for a selected column [15]. Alternatively, record labels 
can be displayed as tooltips on mouse-over to individual records 
in interactive applications of the both techniques. 

 

 

 

Figure 2. Electoral vote results for the 50 states in the U.S. 2012 
presidential elections. Each state has a number of electoral votes 
(block size) and a winning party (grouped as Democrat or Republi-
can). (Top) In treemaps, records can be grouped by winning party 
(from [27]). The distribution across two parties is emphasized. (Mid-
dle & Bottom) Wrapped bars can order states by electoral vote and 
show groups by color. Among the states with higher votes (leftmost 
column), Democrats are more frequent. The bottom chart has thicker 
and shorter bars, and more columns compared to the middle chart. 
Notice that these features interact with each other. 
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4 GRAPHICAL PERCEPTION EXPERIMENTS SETUP 
To evaluate the graphical perception performance of the two visu-
alization techniques, we designed online crowdsourced experi-
ments for three task types under varying data densities. We first 
describe the three tasks and the shared settings and procedures in 
conducting these experiments. We follow with the detailed de-
scription and results for each task. 

4.1 Tasks 
To cover a wide range of perceptual characteristics of the alterna-
tive designs, we chose three graphical perception tasks (Figure 3) 
such that the answer would be (i) data-driven (i.e. changing data 
would predictably influence the answer), (ii) can be given within a 
few seconds following a quick impression in a casual use, (iii) 
based on a single chart. The tasks were designed to apply fairly to 
all chart designs. We present a summary of the three tasks below.  

Comparison of two records: Two records are highlighted. The 
participant determines which is larger and by how much. Compar-
ison is the basis of visualization. However, this task focuses on 
two marks, and does not require reading the whole chart. This task 
is thus insufficient for assessing the perception of data distribu-
tion. 

Ranking of a record: The participant determines the rank of a 
highlighted record among all records. Ranking is a common task, 
such as finding the rank of a country or a university within an 
ordered list. This task requires observing the complete data distri-
bution in relation to the focal record. While the rank of each rec-
ord can be displayed by default (increasing chart ink) or on inter-
action (with a tooltip), graphical perception allows a quick as-
sessment of the record ranks. When the data is visually sorted, the 
position of the record among all records suggests its rank. Thus, 
sorted visualizations avoid tedious size comparison across all 
records for ranking, and ranking becomes independent of the dis-
tribution characteristics. 

Overview of all records: The participant is asked to assess 
whether a given statement on data distribution matches the dis-
played data. This task is solely based on interpretation of the 
overview of data. No individual records are highlighted, and the 
data is generated with specific targeted distribution characteristics. 
Our rationale is that understanding the overall distribution of data, 
without anchoring to a set of selected marks, is also an integral 
part of visual data comprehension. 

Among other overview tasks, finding min/max is trivial in sort-
ed data. While mechanical computation of average and variance 
is easy, such numeric characteristics are not naturally perceptible 
given many (50+) records, and can be easily annotated on the 
chart if necessary. We also avoided tasks that would require inter-
action within the chart to answer, such as clicking on a block that 
may best present the mean or the median. The measurements 
could include selection (motor-skill) errors that may negatively 
influence the measurements. As we aimed to assess how well the 
visualization by itself can communicate the data, we did not use 
the line-up protocol [21], which presents multiple charts with a 
presumable outlier for hypothesis testing. Charts are commonly 
shown in isolation to illustrate a single set of measurements, ra-
ther than with multiple alternatives that may serve as anchors to 
understand distribution differences. Overview tasks can also re-
quire comparing characteristics across data groups within a single 
chart, such as the moving average over time series [7], or differing 
glyphs per category in scatterplots [18]. We avoided such tasks 
since they require a design change, either using color or bi-
directional multi-columns, which are not applicable consistenly 
across all chart types in a similar fashion. 

 
 

4.2 Experimental Design and Chart Parameters 
Each participant answered multiple questions (trials) for a fixed 
graphical perception task on a fixed chart type with variations in 
chart density (record count): 75, 150 or 300 records. All charts 
had 800×450px size (16×9 aspect ratio), a comfortable size for 
medium to large personal display devices. Figure 4 shows 300 
records within the selected chart size, which create a dense setting 
for casual visualizations; doubling the scale would decrease the 

  
(Top) Comparison Task  

   
(Middle) Ranking Task  

 
(Bottom) OverviewTask  

Figure 3. The graphical perception tasks of our experiments. 
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readability of individual records. Treemaps were generated using 
the squarified layout of d3.js [2] with default parameters (v3.5.5) 
and 2px border between blocks. For wrapped bars, gridlines were 
hidden except the baselines (to maintain consistency with 
treemaps which do not have guidelines). Bar heights were fixed to 
16px, resulting in 25 bars per column. The number of columns 
was therefore dependent on the record count (3, 6 and 12 columns 
respectively for 75, 150 and 300 records). The experiments used a 
2-pixel ↕ gap between rows, and a 5-pixel ↔ gap, in order to suf-
ficiently separate the bars visually, similar to the gaps and borders 
used in treemaps. Charts did not include textual record labels. 

4.3 Participants 
In our experiments, each chart type and task combination (2×3) 
was answered by 20 participants, resulting in 120 crowdsourced 
participants across the 3 tasks. We ensured that a participant could 
not participate in multiple experiments, and thus a participant 
responded to only a single chart type and a single task type.  

We recruited participants using Amazon Mechanical Turk. Our 
experiments were composed of quick, casual tasks that did not 
require significant training and could be completed remotely by 
participants. The qualification requirements were set to historical 
performance of at least 90% approval rate and at least 1,000 HITs 
completed to make sure that workers demonstrated good perfor-
mance in crowdsourced tasks before. We geographically limited 
participation to the U.S. We rejected participation from mobile 
devices and screen sizes with less than 1280×800 pixel resolution 
to ensure their screens could display the tasks fully. We did not 
collect demographics, since that would increase the burden on 
participants without substantial analysis benefits. Our results are 
based on the diversified Amazon Turk worker pool across gender, 
age and education levels [27]. Thus, across experiment conditions, 
participant demographics are not controlled, and are expected to 
be randomized. We awarded the participants with a targeted 
$8/hour rate, based on expected task durations. 

4.4 Training and Other Procedures 
Our experiments included multiple approaches to train the partici-
pants and to collect high quality data. All experiments included 
training trials using simpler versions of the task to ensure that the 
participants were able to understand the task. The participants 
could only proceed when they answered the training trial ques-
tions correctly. They were allowed to 
repeat trials until they answered correctly. 
In experiment trials, participants were not 
allowed to change their answers. To help 
participants stay focused while repeatedly 
answering the same task under different 
density conditions, we presented a train-
ing trial after ⅓ and ⅔ of experiment 
trials. As with the initial training, partici-
pants needed to answer these trials cor-
rectly to proceed, and they could repeat 
their attempts until finding the correct 
answer. 

We also prepared animated training se-
quences to explain the chart designs by 
animated transitions from standard (sin-
gle-column) bar charts. In this sequence, 
the participant first saw 75 records in a 
single-column overflowing chart, with an 
animated scroll showing all the records. 
Then, on a button click, the single-
column chart was transitioned to the chart 
type of the experiment with animation. 
The participant observed three data dis-

tributions and transitions, and could replay the sequences. The 
animated sequences were shown as the first step into the study. 

When the participant selected an answer, the answer and re-
sponse time were recorded, and the study progressed with a new 
trial. The marked block(s), if the task required, were visible until 
the task was answered. We displayed a time ticker next to the 
task. At 10 seconds, the ticker changed to display 10! (note the 
exclamation point) to alert the participants of the passing time.  

After running the experiments, we confirmed that the analyzed 
data correctly represented the experimental settings, with the cor-
rect number of trials and variations per participant, and the num-
ber of participants per trial group.  

5 TASK 1: COMPARISON 
For the comparison task, the participant observed a chart with two 
highlighted blocks, and estimated what percentage the smaller 
block is of the larger block. We highlighted the selected records 
with colored marks ( , ) placed in the middle of the record 
blocks. We first asked, “The larger block is A or B?” with random 
A-B order, where A and B represent the visual marks. After se-
lecting an answer (e.g., B), we then asked, “The size of A is ap-
proximately [__] % of the size of B.” with A/B order based on the 
previous answer. The answer options were multiples of 5%, or-
dered from 95% to 5% under the question. Our design aimed to 
assist participants in focusing on their judgment at commonly 
expressed perception granularity (5x%) as reported in previous 
studies [24], [30]. Each participant answered 30 trials in random-
ized order on a single chart type with 10 conditions on percentage 
difference, and 3 conditions on chart density (record count). 

Sixty uniformly distributed random data configurations were 
generated, as a combination of 10 true percentages with 3 record 
counts for each setting (75, 150, 300). We selected 10 true per-
centages at non-regular points in relation to 5% intervals (8%, 
17%, 23%, 38%, 47%, 53%, 62%, 77%, 83%, 92%), such that the 
accuracy of an answer could be measured within 1%. The larger 
value was picked randomly among the top 25% of the sorted data. 
The smaller value was computed using the true percentage, and it 
replaced the smallest value. The same data configurations were 
used across the chart types. We used five training trials with 75 
records and (10%, 30%, 50%, 70%, 90%) for true-percentages 
and answer options.  

 

 
Treemap, 75 records 

 

 
Treemap, 300 records 

 
Wrapped bars, 75 records, 3C 

 

 
Wrapped bars, 300 records 

Figure 4. Sample charts from the comparison task. 
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Results and Discussion 
To analyze the perceptual performance in comparison, we meas-
ured the error as the absolute difference between the response 
percentage and the true percentage difference of marked blocks. 
Figure 5 shows the resulting error measurements, grouped by 
chart type and data density. To analyze the effect of data density 
using 75, 150 and 300 records, we use the bootstrapped group 
error mean with 95% confidence intervals [10]. Bootstrapping 
produces statistical estimates based on resampling the observa-
tions with replacement. It has been advanced in psychology [9] to 
address the shortcomings of significance testing and p-values, and 
we adopt it here for similar reasons. 

Our participants estimated relative sizes of records more accu-
rately using wrapped bars compared to treemaps, both for overall 
and for different densities. Increasing data density did not have a 
substantial effect on treemap accuracy. However, at the highest 
density level (300 records), wrapped bars performed marginally 
worse, and its performance gap from treemaps is narrower. Over-
all, smaller blocks in denser charts are expected to decrease accu-
racy performance. The response times was similar, with treemaps 
performing marginally slower (Figure 6). 

We also applied standard parametric statistical tests to respons-
es in data density setting with mixed linear two-way, factorial 
model with interaction using the subject as random effect. Results 
confirm the significant effect of chart type on error (F(1, 1156) = 
6.19, p = 0.013). 

6 TASK 2: RANKING 
For the ranking task, the participants observed a chart with a block 
marked with  placed in the middle of visible portion of the 
block. We asked, “The marked block  is ranked closest to num-
ber [__] out of N blocks”, where N is the number of blocks. The 

marked blocks were generated using 10 percent-based rankings 
(8%, 17%, 23%, 38%, 47%, 53%, 62%, 77%, 83%, 92%), round-
ed to an integer. For example, a 23% ranked record across 150 
records has rank 35. We presented 14 options, evenly spaced 
across all records and in absolute ranks since it is a natural form 
of interpreting ranks given a variety of scale. Each participant 
answered 30 trials in randomized order on a single chart type. 
Across two trial groups, 40 participants answered 1,200 rankings. 
The data was generated using random normal distribution with 
μ:2 and σ:0.8, with absolute values. We showed index labels for 
the first and last ranked records on the chart corners to help read-
ing the chart structure. We used seven training trials with 75 rec-
ords and (5, 15, 25, 35, 45, 55, 65) options for true-ranks and 
answers. 

6.1 Results and Discussions 
We measured the accuracy of a ranking response as a percent 
difference from true absolute rank normalized by the number of 
blocks (max rank). Figure 5 shows the resulting error measure-
ments, grouped by chart type and density.  To analyze the effect 
of data density using 75, 150 and 300 records, we used bootstrap-
ping for group mean to generate 95% confidence intervals. 

Our participants estimated the rank of highlighted records more 
accurately using wrapped bars compared to treemaps, both overall 
and per different chart densities. Similar to the comparison task, 
accuracy of treemaps did not significantly change in different data 
densities, while the performance of wrapped bars showed a de-
crease in highest density setting, closing the performance gap 
between charts marginally. Although treemaps showed lower 
accuracy performance, the response time with treemaps were 
significantly faster than with wrapped bars (Figure 6). We believe 
that participants spent more time reading the column structure of 
wrapped bars to have higher accuracy in the ranking task. There-
fore, the responses can be explained as a tradeoff across time and 
accuracy across the two techniques. 

We also applied standard parametric statistical tests to respons-
es in data density setting with mixed linear two-way, factorial 
model with interaction using the subject as random effect. The 
results show significant effect of chart type (F(1, 1156) = 19,  
p < 0.0001). 

7 TASK 3: DISTRIBUTION OVERVIEW  
For the overview task, the participant stated their agreement to a 
data distribution statement given a chart, on a 7-point Likert scale 
as shown in Figure 3. The chart and the question of a trial were 
selected among three distribution characteristics, resulting in nine 
permutations. Each trial group was based on three conditions on 
chart density, and each participant answered 27 experiment trials 
in randomized order. We generated 10 groups of random data 

 

Figure 5. Results on accuracy (% error) in comparison and ranking tasks across chart types and data densities. Top two rows show the per-
centiles of observed errors of all densities in 10% increments. ▌shows the median. ▲ shows the mean of values within 10-90 percentile. The 
six rows below show bootstrapped error means per chart type and record count. ! shows the bootstrapped mean. The bars show 95% confi-
dence intervals. Each row includes 20 participants. Top two rows have 600 responses each, and rows below have 200 responses each. 

Treemap 

Wrapped Bars 

Time to compare     
Treemap 

Wrapped Bars 

Time to rank 
       

Treemap 

Wrapped Bars 

Time to overview     

Figure 6. Response time overviews. The charts show the percen-
tiles of observed errors of all densities in 10% increments. ▌shows 
the median. ▲ shows the mean of values within 10-90 percentile. 
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distributions for 27 trials. Each data group was answered by two 
participants, totaling to 20 participants answering 540 trials. 

The three data distribution characteristics of this experiment 
(with explanations presented on “ Explanation” mouse-over) 
were: (i) Uniform distribution, i.e. “There are blocks of all possi-
ble sizes”. (ii) Skewed distribution, i.e. “There are a few blocks 
that are substantially larger than all the rest”. (iii) Normal distribu-
tion, i.e. “There are more medium-sized blocks than small and 
large blocks.” In the animated training sequence, we presented 
one sequence for each data distribution with a description of the 
data distribution characteristic. After the sequence, three training 
trials were shown with “agree/disagree” options. The experiment 
advanced when the response matched the data distribution. 

7.1 Results and Discussions 
We identified each response as true, false, or no decision based on 
agreement with the correct response to the data distribution state-
ment, and converted the scale from agreement to response cor-
rectness. For example, a "strongly agree" response to a uniform 
statement for a uniform data distribution is "strongly true", and 
"somewhat disagree" response to a normal statement for a skewed 
distribution is "somewhat false". Table 1 presents an aggregated 
visual summary of the responses across correctness, confidence, 
and different chart types under various chart densities. 

Treemaps had a higher percentage of false answers compared to 
wrapped bars. Specifically, treemaps had 46% false responses, 
while wrapped bars had 30%, with 540 responses in total for each. 
Regarding the confidence level of the responses, wrapped bars 
had higher ratio of “strongly” confident (false or true) responses 
in most settings. Analysis of the response time for the overview 
task (Figure 6) shows that treemaps were also slower than 
wrapped bars. 

We also performed a standard statistical analysis based on a 
generalized linear mixed model for the binary outcome (with no-
decision responses considered false). We detected significant 
effect of the chart type (F(1, 38) = 16.71, p = 0.0002), using Tuk-
ey HSD post-hoc analysis. 

The accuracy effect across chart type vs. distribution character-
istic is shown in Table 2. The charts show similar performance 

under normal distribution, however treemaps performed signifi-
cantly worse for skewed distribution (46% vs. 74% of true re-
sponses), and marginally worse for uniform distribution.  

8 SUMMARY OF EXPERIMENT RESULTS AND IMPLICATIONS 
Overall, our results and analysis show that wrapped bars yield 
higher perceptual performance compared to treemaps in a non-
hierarchical setting. Its performance is likely due to its clean, easy 
to interpret, non-overlapping design, inherited from standard bar 
charts and extended with a natural reading order across different 
columns. Its design can be further extended by using color and bi-
directional encoding, and its flexibility to show labels in various 
forms. Therefore, we believe that wrapped bars should be consid-
ered over treemaps as an effective and flexible design to present 
dense, sorted, non-hierarchical numeric data. 

Treemaps performed worse or equal to wrapped bars in all our 
task types. Their lower performance for comparison is predictable 
since treemaps rely on area assessment instead of length assess-
ment. Its lower performance for ranking reflects its relaxed order-
ing/layout strategy. Results from the overview task show that 
treemaps do not outperform wrapped bars there either. Overall, 
our results suggest that treemaps are not a preferable design when 
records do not have an explicit hierarchy. The use of treemaps 
outside the context it was designed for, i.e. presenting hierarchical 
data through grouping records, does not lead to highly accurate 
graphical data perception, even though it can utilize all pixels in a 
given chart area. 

9 LIMITATIONS AND FUTURE WORK 
Our experiments focused on basic chart designs without labels, 
legends, or axis. Displaying labels may impact chart readability. 
We did not evaluate designs with color or bi-directional axes, or 
display axis labels or gridlines in wrapped bars, to maintain com-
parability with treemaps. Including guidelines is likely to improve 
accuracy for wrapped bars, further strengthening its advantages. 

We reported perception results from data densities of up to 300 
records in an 800×450 pixel chart area, with randomly generated 
uniform, normal, and skewed distributions, while targeting a cas-
ual use by general audiences. If these settings are adjusted and 
experienced data analysts are considered, the data density may be 
increased further in future studies. Our findings may not extrapo-
late to higher data densities, smaller (mobile) or larger displays. 
Increasing data densities on highly skewed data may amplify the 
strength of treemaps with its non-overlapping, space-filling de-
sign, and emphasis of part-of-whole relations. In addition, the 
wrapped bars of our experiments had all their columns and rows 
full. In practice, it is likely that the final column has fewer 
bars/records than supported, such as the right-most columns in 
Figure 2. The perceptual influence of such an imbalance in 
wrapped bars for novices can be further studied, especially for 
ranking and overview. The previous study by Talbot et. al [30] on 
the effects of bar separation and alignment for comparison task 
can inform implications of our study, and future studies can focus 
on more specific variations, such as whitespace, for wrapped bars. 

Lastly, our analysis is based on crowdsourced experiments that 
have limited training opportunities and cannot control for multiple 
experimental characteristics. Our participants may not have been 
familiar with either chart design, and had limited experience per-
forming the tasks similar to our study. They also probably had 
varying experimental conditions including differences in screen 
size and quality and physical layouts. Future studies may extend 
our results and analysis with variations in data density (record 
count), data distributions, experiment setup, and participant back-
grounds. 

 

Table 1. Response accuracy of the overview task. Accuracy values 
are shown in percentage and color-coded, with darker color showing 
larger value (True: green. False: red. No-decision: yellow). For ex-
ample, of the 540 responses given for treemaps, 46% were false, 
while only 30% were false of the responses to the wrapped bars.  

 

Table 2. Accuracy (ratio of true responses) across data distribution 
and chart types, based on the data density setting. Values are color 
coded from red to green, with the white midpoint at 61%, the accu-
racy considering all 1620 responses. 

47



 

 

10 CONCLUSION 
In this paper, we discussed and evaluated two alternative chart 
designs for dense visualizations of numeric data. Specifically, we 
compared wrapped bars with non-hierarchical treemaps. We ana-
lyzed the design characteristics of the techniques under various 
use cases and settings. We evaluated perceptual characteristics of 
the two charts using crowdsourced graphical perception experi-
ments based on comparison, ranking, and overview tasks. Our 
results suggest that treemaps perform less accurately for visual 
comparison, ranking and overview tasks, when compared to 
wrapped bars technique for non-hierarchical numeric datasets.  
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