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Figure 1: A packing of six cat elements inside a fish-shaped target container. Controllable deformation and repulsion forces allow the elements to
deform, efficiently filling the container and creating a uniform distribution of negative space. We then reduce the remaining negative space by
placing smaller cat heads. The gradient fill was added as a post-process.

ABSTRACT

We present a method to fill a container shape with deformable in-
stances of geometric elements selected from a library, creating a
2D artistic composition called an element packing. Each element
is represented as a mass-spring system, allowing them to deform
to achieve a better fit with their neighbours and the container. We
start with an initial random placement of small elements and grad-
ually transform them using repulsion forces that trade off between
the evenness of the packing and the deformations of the individual
elements. Our method produces compositions in which the negative
space between elements is approximately uniform in width, similar
to real-world examples created by artists. We validate our approach
by performing a quantitative study using spatial statistics.

Keywords: packing, shape deformation, repulsion force.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.m [Computing Method-
ologies]: Computer Graphics—Miscellaneous;

1 INTRODUCTION

A packing is an arrangement of non-overlapping 2D geometric el-
ements within a container region in the plane. Fig. 2 shows an
example of a packing drawn by an artist. Packings are popular in art
and graphic design, particularly in advertising and product packag-
ing. They can effectively convey a relationship between a unified
whole (the container shape) and its many sub-parts (the elements).

Most of the elements in a packing are large real-world shapes
like animals, plants, or man-made objects. We refer to these as
primary elements. An artist distributes primary elements so that they
communicate the shape of the container, while attempting as much as
possible to ensure an even distribution of negative space (sometimes
called complementary space [7]), the subset of the container that
does not belong to any element (Fig. 2, right).
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The evenness of negative space plays an important role in pack-
ings. The separation between neighbouring elements should be
roughly the same everywhere. When the primary elements leave
behind large pockets of negative space, the artist typically fills those
pockets with small secondary elements, often simple abstract shapes
like circles or triangles. In the limit as this element separation goes
to zero, the packing turns into a tessellation: a set of elements that
exactly fill a container with no overlaps. The challenge—and visual
appeal—of packings follows in part from aligning neighbouring
elements along compatible segments of their boundaries, suggesting
that they interlock by design.

Past work on computer-generated packings, notably Jigsaw Image
Mosaics [19] and collages based on the Pyramid of Arclength De-
scriptor [20], might be described as data-driven. These techniques
rely on assembling a large library of elements, so that given an area
to fill in a partial composition, there is likely to be an element in
the library with a compatible shape. The challenge is to design a
shape descriptor that allows this compatible element to be found
efficiently. Elements typically do not fit perfectly with each other or
the container boundary. These techniques suppress imperfections by
deforming elements in a final post-processing step.

In this paper we present RepulsionPak, a deformation-driven
packing technique. We construct a packing using a simple physical
simulation, in which each element is represented by a mass-spring
system called an element mesh. Repulsion forces between neighbour-
ing meshes work to even out the negative space, inducing displace-
ments in mesh springs. These displacements translate, rotate, and
deform the elements as they gradually adapt to the shapes of their
neighbours and the container boundary. To control the amount of
deformation, we use spring forces within a mesh to preserve element
shapes.

We also incorporate an explicit simulation phase for secondary
elements. By building an algorithm with a controllable deformation
model at its core, we achieve a more even distribution of negative
space, even with a small library of element shapes.

In addition to RepulsionPak itself, we also contribute a quantita-
tive model for evaluating packings, based on measuring the evenness
of the negative space. We use spherical contact probability func-
tions to demonstrate the benefit of deformation and to compare
RepulsionPak with previous work.
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Figure 2: A packing created by hand by an artist, depicting autumn-themed
elements (left), together with a visualization of its negative space (right). Small
secondary elements like circles make the distribution of negative space more
even. (Artist: balabolka on Shutterstock)

2 RELATED WORK

Rigid packing: The ever-popular Lloyd’s method is an iterative
process for creating a perceptually even distribution of points, and
has been used in various forms in procedural packing methods.
Hausner [11] used a variant of Lloyd’s method to pack oriented
rectangles into a container region, simulating the appearance of
traditional mosaics. Hiller et al. [12] extended Lloyd’s method to
distribute polygonal elements instead of points, reducing the overlaps
in Hausner’s approach. Dalal et al. [8] used an FFT-based image
correlation to reposition elements iteratively, which could be seen
as making more effective use of negative space, and permitting non-
convex elements to interlock more than they did in earlier methods.

Some past work has sought to adapt example-based texture syn-
thesis methods from raster images to vector graphics, producing
rigid distributions of elements that mimic the statistics of an exem-
plar. Barla et al. [2] and Ijiri et al. [15] use a growth model that
copies small neighbourhoods from the exemplar into a larger output
texture. AlMeraj et al. [1] stamp out copies of the exemplar and
discard overlapping elements. Hurtut et al. [14] develop a statisti-
cal sampling method based on multitype point processes. These
techniques are all concerned with replicating the uneven element
distribution in the exemplar, without regard for negative space.

Dense packing and tessellations: Gal et al. [9] used local shape
descriptors on 3D models to fill a 3D container with a “collage” in
the style of Arcimboldo. Huang et al. [13] produced Arcimboldo-
like collages in 2D by layering objects cut out from images on top of
a segmented container. These methods benefit from overlaps, which
join elements into a single large object. Reinert et al. [27] generated
compositions by projecting objects from a high dimensional feature
space down to 2D while also inferring users’ intentions when manu-
ally placing elements. However, their goal was to create meaningful
compositions without an attempt to effectively fill a container.

As stated in the introduction, our work is most similar to Jigsaw
Image Mosaics (JIM) [19] and collages based on the Pyramid of Ar-
clength Descriptor (PAD) [20]. JIM packed nearly-convex elements
tightly by placing one element at a time and backtracking as needed.
PAD developed a sophisticated shape descriptor in order to find new
elements that partially matched existing element boundaries as a
container was being filled. Both methods permitted some elements
to overlap. While they could both correct gaps and overlaps using
deformation, the deformation was applied locally near edges in a
post-processing step after elements were frozen in place.

Text and letter packings: Xu and Kaplan [30] and Zou et al. [32]
constructed calligrams by filling a container with a small number
of deformed letters composing one or two words. Because the
order of the letterforms was defined by the text, their solutions
usually required significant distortion of the individual letters. Their
goal was to balance between filling the container and preserving
readability. Maharik et al. [22] explored Digital Micrography, in
which whole lines of text deform to fit along dense streamlines
in a flow field. Their results more closely resemble textures than
packings.

Packings for fabrication: Related work in fabrication has sought
to cover surfaces with arrangements of deformed ornamental ele-
ments that satisfy manufacturing constraints such as connectivity.
Chen et al. [6] developed a method to synthesize filigree patterns out
of simple elements. In later work, Chen et al. [5] generated modular
surfaces by computing contact point networks of rigid elements.

Zehnder et al. [31] proposed an elegant method to cover 3D sur-
faces with deformed ornamental elastic curves. Our method has
some similarities to theirs in that both start with scaled-down copies
of elements and grow them, but the growth process is quite differ-
ent. Unlike their approach, our elements exert forces on each other
throughout the growth process, allowing them a greater opportunity
to translate, rotate, and deform in search of more even negative space.
Furthermore, the goal of their work (3D fabrication) is quite different
from ours (2D ornamentation) and our results appear qualitatively
different.

Texture atlas packing: Jiang et al. introduced the Simplicial
Complex Augmentation Framework (SCAF) [18], an algorithm to
create bijective maps and pack triangulated charts into a rectangular
texture atlas. A SCAF begins with charts that are highly deformed to
circles, and iteratively undeforms them, producing output charts with
minimal deformation energy. RepulsionPak operates the other way
around. It starts with elements that have zero deformation energy,
and iteratively introduces more deformation in response to repulsion
forces between elements.

Non-rigid packing: Peng et al. [26] computed layouts by pack-
ing and deforming simple polygons and polyominoes. Their method
cannot handle more complicated shapes, making it unsuitable for
our style of packings. FLOWPAK by Saputra et al. [28] placed
ornamental elements to create a visual sense of flow. They used
skeletal strokes to place elements along streamlines defined from
a vector field. However, their elements could not undergo more
general deformations, and their method did not explicitly control for
the evenness of the negative space.

Physics-based NPR: Pedersen and Singh [25] grew curves to
create organic labyrinthine paths. Their algorithm is related to ours
by the use of repulsion forces to maintain even spacing and parallel
segments.

3 SYSTEM OVERVIEW

Our system requires three main pieces of input:
1. A library of primary and optional secondary elements (Fig. 3a).

Each element is a collection of open or closed polygonal
paths—any curves must be flattened ahead of time.

2. One or more closed polygonal target containers, such as the
heart in Fig. 3b. Target containers can optionally have internal
holes.

3. The desired element spacing distance dgap > 0.
RepulsionPak starts by preprocessing the elements, adding ad-

ditional space around each to implement the spacing distance, and
fitting a triangle mesh over each element. Small copies of these
primary elements are randomly placed in the containers (Section 4).

It then performs a physics simulation on the meshes, making them
simultaneously grow and repel each other. As a proof-of-concept, we
implement a very simple spring-based simulation; many alternatives
are possible (see Section 12). Forces in the simulation push mesh
vertices away from vertices in other meshes, attempt to keep the
meshes from undergoing excessive deformation, and resolve places
where meshes overlap or vertices move outside container boundaries
(Section 5).

After each iteration of the simulation, meshes grow into adjacent
space if possible, so that they gradually consume the negative space
in the container. At the same time, mesh self-intersections are
resolved (Sections 6 and 7).

The simulation concludes when some number of sequential steps
fail to significantly reduce the negative space (Section 8).

2



Figure 3: The creation of a packing using RepulsionPak. (a) A library of elements, comprising nine primary elements and a single secondary element. (b) A target
container with the initial distribution of scaled-down elements. (c) The simulation in progress, showing the elements growing, translating, rotating, and deforming.
(d) The resulting packing of primary elements. (e) The final result, after adding secondary elements and allowing them to grow. Fig. 4 shows the deformations of
some of the elements.

Figure 4: Some of the elements in the final packing in Fig. 3, showing the
effect of deformation in our simulation.

Figure 5: (a) An element with its boundary offset to create a skin, drawn in
red. (b) A triangle mesh with boundary vertices on the skin.

Finally, an optional second simulation further reduces and evens
out the negative space. It begins by placing small secondary elements
in large pockets of negative space. This simulation is the same as the
first, except that vertices of primary element meshes are not allowed
to move (Section 9).

Final SVG output is created by using barycentric coordinates to
map each element’s paths from the element’s initial mesh into the
deformed mesh produced through simulation.

4 PREPROCESSING

The skin of an element is a simple closed polygon that fully encloses
it, as in the red shape in Figure 5(a). We generate the skin by offset-
ting an element’s boundary outward by dgap/2. The simulation will
aim to produce an approximate tessellation of the target container
by the skins, thereby achieving the desired element spacing and
suppressing overlaps.

We triangulate the element skin to obtain a triangle mesh. To
create the mesh we uniformly sample the skin polygon s, with sam-
ples spaced apart by distance dgap, to obtain a simpler polygon s′
(the outer boundary of the mesh). We then construct a Delaunay
triangulation of s′. The vertices and edges of this mesh will become
unit masses and longitudinal springs in a physical simulation, allow-
ing elements to deform in response to their neighbours. We further
brace the mesh against deformation by augmenting it with “auxiliary
springs” (see Section 5 and Fig. 6b).

Due to discretization, a low mesh resolution does not guarantee
a separation of dgap. Increasing the mesh resolution will produce a
more precise result at the expense of greater running time.

Barycentric coordinates: The simulation operates on meshes,
not element geometry. In the final rendering phase, we will redraw
an element relative to a deformed copy of its mesh. To do so, we

first re-express every vertex of an element path in terms of the mesh
triangles. Every element vertex lies either inside a mesh triangle or
just beyond a border edge. We encode each vertex in barycentric
coordinates relative to its enclosing or nearest triangle.

Initial element placement: We prepare our simulation by ran-
domly placing non-overlapping elements.

1. Generate random points P = {p1, p2, ..., pn} inside the target
container via blue noise sampling [4]. The user controls the
number of points; using more points gives results with smaller
elements. We can automatically estimate n by dividing the
container area by the desired average area of the element skins.

2. Cycle through the primary elements, assigning each element
to a random unused pi with a random orientation, repeating
until every point has an element.

3. Shrink all the elements so that they do not overlap and occupy
only a small fraction of the container’s area; in our imple-
mentation we have found that 5−10% of the area gives good
results. Making them larger would speed up the simulation
but does not allow enough freedom of movement to generate
successful packings. Fig. 3b shows an initial placement.

5 FORCES

We design a simulation in which we generate pseudo-physical forces
that transform elements by transforming their meshes. Let xxx be a
vertex of an element mesh. The total force FFF applied to xxx is

FFF = FFFr +FFFe +FFFb +FFFo (1)

where FFFr, FFFe, FFFb, and FFFo are the repulsion force, the edge force, the
boundary force, and the overlap force. These forces combine with
the growth process, described in Section 6, to completely fill the
target container.

Repulsion force: The repulsion force tries to push element
meshes apart when they approach each other, with the goal of caus-
ing them to rotate and align their boundaries (Fig. 6a).

The vertex xxx will experience an inverse square repulsive force,
inspired by Coulomb’s law, from all nearby meshes. We use the
following formula:

FFFr = kr

n

∑
i=1

uuu
‖uuu‖

1
ς+‖uuu‖2 (2)

where
kr is the strength of the repulsion force relative to other forces in

the simulation.
n is the number of nearest neighbouring meshes to xxx.

xxxi is the closest point on the skin of the ith neighbour.
uuu = xxx− xxxi
ς is a soft parameter; it places an upper bound on the magnitude

of FFFr, avoiding explosive instability when ‖uuu‖ is very small.
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(a) (b) (c) (d)

Figure 6: Illustrations of the forces in our simulation. (a) Repulsion force: The closest point on the snake’s mesh repels a vertex xxx in the bird mesh. (b) Edge
force: We generate edge forces using edge springs and auxiliary springs. (c) Overlap force: Centres of triangles ppp111 and ppp222 attract a vertex xxx that lies in the
interior of another mesh. (d) Boundary force: A vertex xxx moves toward pppbbb, the closest point on a container boundary, when it is outside the container.

An imbalance in the repulsion forces across a mesh’s vertices will
naturally induce translation and rotation in meshes, helping their
boundaries discover compatible segments and consume more of the
remaining negative space.

If xxx lies inside of another element’s mesh, then the aggregate
repulsion force from other neighbours can push xxx further inside and
worsen the overlap. If we discover such an overlap, we set FFFr to 0
and use the overlap force FFFo, discussed below, to correct it.

Edge force: A mesh’s edges are treated as longitudinal edge
springs; displacement of these springs allows a mesh to deform in
response to repulsion forces by neighbouring meshes. In addition,
when two mesh triangles share an edge we connect the two vertices
opposite the edge with an auxiliary spring (Fig. 6b), adding extra
bracing to a mesh to prevent it from folding.

An undeformed element mesh provides the rest lengths for all of
its springs; as mesh vertices move relative to each other, the springs
attempt to restore these rest lengths. Let xxxa and xxxb be mesh vertices
connected by a spring. We compute the spring force as follows:

FFFe = ke
uuu
‖uuu‖

s (‖uuu‖− `)2 (3)

where
ke is the strength of the edge force relative to other forces.
uuu = xxxb− xxxa
` is the rest length of the spring.
s is +1 or -1, according to whether (‖uuu‖ − `) is positive or

negative.
We apply FFFe to xxxa and −FFFe to xxxb. The equation is a modification

of Hooke’s law in which the strength of the force increases quadrat-
ically with displacement. This change allows the meshes to resist
severe deformations when subjected to powerful forces.

Overlap force: Occasionally, a vertex xxx from one mesh can be
pushed inside the skin of a neighbouring mesh. In such cases, we
temporarily disable the repulsion force on this vertex by setting it
to 0, and instead apply an overlap force that attempts to eject the
intruding vertex. In particular, every mesh triangle having xxx as a
vertex will pull xxx in the direction of its centroid. The overlap force
is thus given by:

FFFo = ko

n

∑
i=1

(pppi− xxx) (4)

where
ko is the relative strength of the overlap force.
n is the number of mesh triangles that have xxx as a vertex.

pppi is the centroid of the ith triangle incident on xxx.
The overlap force is zero for vertices that are not within another

mesh.

Boundary force: The boundary force causes element meshes
to stay inside the target container and conform to its boundary. It

applies to any vertex xxx that is outside the container, and moves the
vertex towards the closest point on the container’s boundary, by an
amount proportional to the distance to the boundary:

FFFb = kb(pppbbb− xxx) (5)

where
kb is the relative strength of the boundary force.
pppbbb is the closest point on the container boundary to xxx.
The boundary force is zero for any point inside the container.

Simulation details: We use explicit Euler integration to simulate
the motion of the mesh vertices under the forces described above.
Every vertex has a position and a velocity vector; in every iteration,
we update velocities using forces, and update positions using veloc-
ities. These updates are scaled by a time step ∆t, typically chosen
from the range [0.01,0.1]. A smaller time step results in a more
stable simulation at the cost of additional running time. We cap
velocities at 5∆t to dissipate extra energy from the system.

The repulsion and overlap forces rely on nearest-neighbour
queries on the set of all vertices. We accelerate these queries by
storing vertices in a uniform spatial subdivision grid that covers the
container. In our implementation, cell width and height are 6−10%
of the larger dimension of the grid. We define the neighbours of a
vertex xxx as all vertices in a 3×3 window of cells centred on the cell
containing xxx. This approximation ignores the negligible interactions
between distant vertices.

The constants kr, ko, kb and ke control the relative strengths
of the four forces in the simulation. They must also be chosen
relative to the time step ∆t and the overall width and height of the
container. We find that our simulation produces satisfactory results
when kr ≈ ko ≈ kb ≥ ke. For example, if the container’s bounding
box is approximately 1000× 1000, then we have obtained good
results when kr = ko = kb = 80,ke = 40. We also set ς = 1 to avoid
explosive repulsion forces. Increasing ke relative to the other forces
suppresses deformation, yielding a close approximation of packing
with rigid elements.

6 ELEMENT GROWTH

RepulsionPak starts with small initial elements to avoid intersections,
and gradually enlarges them until they tightly fill the target container.
Fig. 3c-d shows elements growing and gradually consuming negative
space. Elements have different intrinsic sizes, which are respected
in the initial placement. Because they all grow at roughly the same
rate, their relative sizes tend to be maintained.

After each iteration of the physics simulation, the element meshes
undergo a growth step. If an element mesh has no vertices that lie in-
side of neighbouring meshes, it is permitted to grow in this iteration.
A mesh with overlaps may still grow in subsequent iterations, if local
changes to the packing open up more negative space. This approach
produces slight variations in skin offsets in the output packing but
the effect is negligible.
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Figure 7: In (a), vertex xxxa on the dog’s ear is approaching xxxb near the nose,
threatening a self-intersection. We move the two points away from each other
in (b), avoiding the intersection.

We implement growth in the context of the physics simulation by
scaling the rest lengths of a mesh’s springs, allowing it to expand
as the simulation progresses. Every mesh M has a counter nM that
records the number of times it has grown. When a mesh is permitted
to grow, we add 1 to the counter. Then, if Li is the rest length
of the ith spring in the original undeformed mesh, we increase its
rest length to (1+nMkg∆t)Li. The constant kg, usually 0.01 in our
system, controls the growth rate.

7 RESOLVING SELF-INTERSECTIONS

The overlap force described in Section 5 prevents overlaps be-
tween neighbouring elements, but it cannot prevent self-intersections.
Fig. 7 shows an example in which an ear of a dog approaches the
nose, threatening to produce a self-intersection. We adapt a relax-
ation method [17] to enforce the constraint that any pair of non-
neighboring vertices in an element’s mesh cannot be closer together
than half of the average edge length for that mesh. In a separate
phase, after the end of every simulation step, we calculate the aver-
age length ¯̀ of all of the edge springs in a given mesh. If the distance
between two mesh vertices is less than ¯̀/2, our algorithm translates
them away from each other until they are separated by a distance of
¯̀/2. Resolving the constraint for a pair of vertices can invalidate it
for others so we cycle through all pairs in a random order and fix all
violations. We find that performing two or three cycles works well
in practice.

8 STOPPING CRITERION

We stop the simulation and growth process when the element meshes
are no longer able to maneuver enough to consume the remaining
negative space. After each iteration, we compute an area fraction A,
defined to be the fraction of the container area taken up by element
meshes. We then compute a measurement of the recent change
in area fraction in a sliding window that covers the w most recent
iterations of the system; we use w = 100. If A0, . . . ,Aw are the area
fractions in the w+1 iterations up to the current one, then we define

RMS =

√
1
w

w

∑
i=1

(Ai−Ai−1)
2 (6)

We stop iterating when RMS < ε, where ε is 0.01 in our system.

9 SECONDARY ELEMENTS

The iteration process described above can leave behind isolated
pockets of empty space, which will be visible in the final composi-
tion. We imitate the approach taken by human artists by filling these
pockets will small, usually simple secondary elements.

We seed the container with secondary elements by finding points
that are far from any existing element mesh. Specifically, we com-
pute a discrete approximation of the distance transform of the neg-
ative space. We then create an initial candidate list of all points
whose distance value is above a threshold dmin, sorted by decreasing
distance. We consider each of these candidates in turn, adding it
to a final list of seed locations provided that no previously chosen
seed is within distance dsep of the candidate. In our implementation,

Table 1: Data and statistics for the results in the paper. The table shows the
numbers of primary and secondary elements (np, ns), the number of vertices
(v), the running times of the primary and the secondary simulations (tp, ts) in
seconds, and the number of iterations (i).

Packing np ns v tp ts i
Cats (Fig. 1) 41 69 3598 185 62 8531
Animals (Fig. 3) 25 14 2412 133 65 16670
Birds (Fig. 8) 43 43 2309 102 54 11571
Bats (Fig. 8) 47 22 3048 165 56 13120
Butterflies (Fig. 8) 123 135 11916 696 616 14379
Collage B (Fig. 11b) 51 0 1730 121 0 14062
Collage C (Fig. 11d) 60 0 2048 341 0 31348
Autumn (Fig. 12) 82 31 4380 233 30 16890

if the distance transform is computed on a 1000×1000 grid fit to
the container’s bounds, then we typically set 5 ≤ dmin ≤ 10 and
dsep = 10.

Next, we assign random secondary elements to these chosen seed
points, scaled down as before to avoid overlaps. We then run the
simulation and growth process again, but freeze the primary ele-
ments: they exert repulsion forces on secondary elements and can
induce overlaps, but primary mesh vertices cannot move. The sec-
ondary elements gradually grow to consume some of the remaining
negative space until the packing satisfies the same stopping criterion
described above.

Packings with secondary elements are shown throughout the pa-
per; see Figures 1, 3d, and 8.

10 IMPLEMENTATION AND RESULTS

Our software was written in C++, and reads in text files describing
elements and containers; we prepared these files using Adobe Il-
lustrator. We ran our software on a computer with a 2.4 GHz Intel
i7-4700HQ processor and 16 GB of RAM. As a post-process, we
optionally read packings back into Illustrator, fit smooth curves to
polygonal paths, and applied colours and other visual effects. Table 1
shows statistics for the results in the paper. All results in this paper
use ∆t = 0.1.

The supplemental materials include movies that visualize the
simulation process. These movies make it clear that elements can
jostle each other around, inducing translation, rotation, and deforma-
tion throughout the simulation. Qualitatively, the resulting packings
interlock and leave behind an even distribution of negative space.

The packing in Fig. 1 uses six cat-shaped primary elements and
one secondary cat head. RepulsionPak naturally bends legs and tails
to fill the container more evenly.

The animal packing in Fig. 3 has several elements with limbs (the
bear, fox, chick, and penguin), extensions (the dog and bunny ears),
and long shapes (the snake). Fig. 4 highlights the deformations for
some of these elements; they are noticeably more deformed than
nearly-convex elements like the cat and mouse.

The butterfly packing in Fig. 8 is an attempt to reproduce the
visual style of a dense packing (or tessellation), similar to Jigsaw
Image Mosaics [19] or the “Butterflies in Butterfly” example from
the Pyramid of Arclength Descriptor paper [20, Fig. 21]. The target
container is made from two regions, one with internal holes. The
resulting packing is tight but overlap-free.

The packing on the left in Fig. 8 exhibits significant deformation
in the wings and the tails of the birds. In particular, the thin tails of
the swallows have some unaesthetic sharp bends. We would like to
investigate ways to ensure these bends are smoother.

11 EVALUATION

Subjectively, we believe that our results meet the aesthetic goals
we defined for this style of packing. But we are also particularly
interested in investigating quantitative measurements of packing
quality that can be used to evaluate our results and subsequent work.
We are particularly interested in statistical measurements of the
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Figure 8: Three packings created using RepulsionPak: Birds, Bats, and Butterflies.

evenness of negative space, which allows us to compare our results
against those of related techniques.

To evaluate the evenness of a packing’s negative space, we use
the spherical contact probability (SCP), denoted as Qs(r), which
is the probability that a ball (in two dimensions, a disc) of radius r,
chosen uniformly at random within the container region, lies entirely
within the packing’s negative space. In spatial statistics, the SCP is
closely related to spherical contact distribution function [7]:

Hs(r) = 1− Qs(r)
Qs(0)

(7)

Note that Qs(0) is the probability that a random point lies in negative
space, and must therefore be equal to 1−A, where A is the packing’s
area fraction.

In order to interpret the SCP correctly, it is helpful first to examine
a “packing” with perfectly even negative space (Fig. 9a). Consider a
pattern of infinite horizontal stripes of width ds, separated from each
other by dgap. For this pattern, Qs(0) = dgap/(dgap +ds); it is also
clear that Qs(dgap/2) = 0, because no disc of diameter greater than
dgap can fit in the negative space (our dgap is twice the radius of the
ball). Furthermore, Qs(r) will decrease linearly between these two
points, and remain at zero thereafter; its graph will consist of a tilted
line segment connected to a horizontal ray.

No real-world packing exhibits this SCP. Even in a perfect ar-
rangement of squares (Fig. 9b), the intersections of horizontal and
vertical channels produce pockets of negative space that can accom-
modate balls of radius dgap

√
2/2. These pockets tend to raise the

SCP slightly everywhere, and cause it to bend into a small tail that
approaches zero gradually. For a given set of elements in a container,
the best packings will have an SCP that stays close to the idealized
stripe function most of the way down, has a low value at r = dgap/2,
and then bends towards horizontal near that value. In less effective
packings (Fig. 9c,d), the negative space will be narrower in some
places and wider in others, recognizable as a shallower SCP with a
longer tail.

In this paper we compute a discrete approximation of Qs(r).
First, we compute the distance transform of the negative space in a
1000×1000 grid around the container. Then, for a given r, Qs(r) is
the proportion of grid points whose distance value is at least r.

Comparison to rigid packings: In order to evaluate the effect
of deformation on negative space, we measure the SCP under in-
creasing values of ke, the spring strength. Increasing ke allows the
element meshes to resist deformation, ultimately approximating a

rigid packing algorithm. We created 30 packings, 10 for each of
three values of ke (10, 250, and 1000). Each packing used 23–27
elements chosen at random from a library of 56, with no secondary
elements. As shown in Fig. 10, a low value of ke led to greater
deformation and a steeper SCP, suggesting that the negative space is
more even. We believe the difference is qualitatively visible in the
packings themselves.

Comparison to PAD: Fig. 11 compares RepulsionPak and
PAD [20] using the SCP. Packing (a) is a result from the PAD
paper; Packing (b) was created with RepulsionPak using the same
set of elements and with the gap width dgap estimated from (a). (In
our packing some man-made objects, such as the wrench, jet, rocket,
ambulance, and ship, were not permitted to deform, in order to
enhance recognizability.) Note that the PAD packing has several
overlapping elements (for example, the tooth and the horse), but
white haloes around elements artfully conceal overlaps with little
degradation in visual quality. Our packing avoids overlaps by design.
The SCP plot in (c) shows that our packing has a lower value at
dgap/2, indicating more even negative space, and approaches zero
more quickly, indicating fewer large empty areas. The additional
RepulsionPak result in (d) uses a larger set of elements from the
PAD paper and a smaller value of dgap, demonstrating even negative
space in a tighter packing. Unlike PAD, we do not limit orientations
for placed elements, leading to some elements that are placed in
unnatural or difficult-to-recognize orientations.

Comparison to an artist-made packing: Fig. 12 shows
RepulsionPak’s results packing the elements from the artist-made
Fig. 2. The elements are nearly convex, and were set to have limited
deformation. The graph compares the SCP of our result with that
of the artist’s, showing that our negative space is more even. Our
result also has fewer large empty gaps, as indicated by the inclusion
of fewer secondary elements. The result shows the effectiveness of
the repulsion forces in successfully discovering compatibilities in
the element boundaries and filling the space effectively.

12 CONCLUSIONS AND FUTURE WORK

We presented RepulsionPak, a method to create packings with de-
formable elements. The combination of repulsion forces and con-
trolled deformation allows RepulsionPak to discover shape compati-
bilities that eliminate the need for a large element library and fill the
target container effectively. Our compositions have negative space
between elements that is approximately uniform in width, and we
validate our approach using spherical contact probability.

6



Figure 9: Spherical contact probabilities for reference packings. A “perfect packing” of infinite stripes is shown in (a), followed by a square packing with the same
area fraction and dgap in (b). The square packing is then perturbed with random rotations in (c) and translations in (d). The corresponding Qs(r) functions are
plotted in (e).

Figure 10: A demonstration of the effect of deformation on the evenness of negative space using spherical contact probability. The packings in (a), (b) and (c) are
representative results using three values of the edge force strength ke, from rigid (1000) to moderate (250) to deformable (10). We construct 10 random packings
for each value of ke, and plot their Qs(r) functions. The weakest edge force strength in (c) permits a more even distribution of negative space, as evidenced by the
SCP plots.

Figure 11: Packing (a) was generated by Pyramid Arclength Descriptor (PAD). Packings (b) and (d) were generated by RepulsionPak. Packing (b) has
approximately the same gap width and uses the identical set of elements as packing (a). The graph (c) of Qs(r) shows that packing (b) has more even negative
space with fewer large empty areas. Packing (d) is an additional RepulsionPak result with more elements and a smaller gap width.

Figure 12: A packing created by RepulsionPak using the elements from Fig. 2.
Our SCP is lower than the artist’s result and uses fewer secondary elements.
The elements are nearly convex and were set to have limited deformation; this
shows the effectiveness of repulsion forces in finding compatible boundaries.

We see many possibilities for further improvements to Repulsion-
Pak and future research on element packings.
• Because our main goal was to demonstrate the validity of a

deformation-driven approach, and not to contribute a new phys-
ical simulation method, we deliberately chose a simple, open-
ended simulation model based on springs and forward Euler
integration. Contemporary research has yielded many more so-
phisticated physical simulation methods, such as Position Based
Dynamics [24], Projective Dynamics [3], and the Finite Element
Method. No one method is obviously best suited to this problem,
and we intend to experiment with several to investigate if any
offers a suitable trade-off between performance and quality.
• Shape matching techniques like PAD can produce an attractive

rigid packing by finding compatibilities between neighbouring
elements. It would be interesting to generate an initial element
placement based on shape matching, instead of assigning ele-
ments to sample positions at random, and to investigate whether
the resulting packings make even more effective use of negative
space. At the very least, contour matching would allow us to
place secondary elements in geometrically compatible pockets

of negative space.
• We would like to develop human-in-the-loop interactions, in

which the user and the computer work together to create a desired
composition. Examples of recent work in this style include
research by Zehnder et al. [31] and Gieseke et al. [10], which
let the user directly manipulate elements while a composition is
being created.
• As discussed in Section 11, RepulsionPak does not control for

the orientations of elements, which can be problematic for shapes
that become less recognizable when rotated. We would like to
give the artist a way to limit element rotation. It should be
possible to augment the simulation with a torsional force that
attempts to restore some elements to their initial orientations.
• It would be interesting to explore the use of RepulsionPak in a

fabrication context. For example, our boundary compatibilities
might be used to locate good contact points to create a connected
object. Alternatively, it would be interesting to 3D print the
negative space, which is already connected, leaving holes that
surround the element shapes. Another potential application is to
use our algorithm in the context of CNC machining to reduce
the amount of waste material.
• We would like to experiment with triangulating the negative

space for collision handling [18; 23]. Preventing these triangles
from inverting could help to detect and resolve self-intersections
and overlaps.
• Our barycentric warping method can introduce undesirable arti-

facts in highly deformed elements, as in the swallow tails in the
left result of Fig. 8. We would like to explore other methods for
warping an element’s geometry based on the correspondences be-
tween the triangles of its original mesh and the deformed meshes
in the final packing. To solve this distortion problem, we would
like to experiment with more recent methods by Jacobson et
al. [16] and Liu et al. [21].
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• We would like to augment SCP with other metrics to measure
how well an ornamental design fulfills other design principles.
A measure of element deformation in a composition would per-
mit a comparison against future deformation-driven techniques.
At a higher level, Saputra et al. [28] argue that visual flow and
“uniformity amidst variety” are important to attractive packings.
In another study, Wong et al. [29] describe basic design princi-
ples for decorative arts: repetition, balance, and conformation
to geometric constraints. The rigorous expression of aesthetic
principles is a fascinating area for future research.
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