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ABSTRACT

The decades-old Trail-Making Test has established itself as an
effective and versatile cognitive testing tool. However, its reliance
on a paper-and-pencil method of administration severely limits
its capabilities for quantitative evaluation. We evaluate input data
via sketch recognition algorithms on a digitized version of the
Trail-Making Test, as well as exploring the viability of a novel
touch-based version designed around the basic concepts of the
traditional paper-and-pencil exam. Two quantitative studies helped
evaluate the viability of these digital examinations: the first builds a
normative data set that shows a stable increase in test completion
times with a lower overall skewness, while the second indicates the
new examination’s capability to perform behavioral classification
based on participant nationality by correctly classifying input
behavior with up to 96% accuracy.
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1 INTRODUCTION

1.1 Description of the Trail-Making Test

The Trail-Making test (TMT) is a set of connect-the-dots exercises
completed on paper and pencil. 25 labeled dots are printed onto a
piece of paper and the participant is required to connect the dots
in the correct order without lifting their pen. The correct order
depends on which of the two variants the participant is completing;
in the ”A” variant, the correct order are dots labeled ”1” to ”2”
to ”3” to ”4”, etc., while the B variant has the order alternating
between numbers and letters, ”1” to ”A” to ”2” to ”B”. The tests
are typically administered in pairs, with A immediately followed by
B. Variant B is considered more difficult to complete even among
cognitively healthy participants [31]. Dots are placed to necessitate
searching, as the next dot in the sequence is frequently not in the
immediate vicinity of the previous one. The TMT was designed to
assess attention, speed, and mental flexibility, and has been actively
used in clinical neuropsychology for various decades [29].

1.2 Uses in Clinical Neuropsychology

Neuropsychologists employ a variety of cognitive examinations
through which to observe a patient’s behavior. Some of these in-
volve manipulating physical objects, answering a series of oral ques-
tions, solving exercises that integrate drawing exercises. These tests
typically involve paper and pencil, and the patient is required to
complete an examination by sketching, drawing on objects, crossing
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Figure 1: A participant completing the A variation of the 3D-Trail-

Making Test.

out or circling shapes, and other forms of interaction using pen on
paper.

The TMT was conceived and originally introduced as a testing
tool in the field of clinical neuropsychology to assess general in-
telligence. Shortly thereafter, clinicians found utility in the test’s
ability to aid in the detection of cognitive abnormalities. Clinicians
who administer the Trail-Making test observe the patient’s behavior
according to a predetermined checklist. Among the items include
sitting posture, how well they maintain eye contact, reaction to mis-
takes, and their efforts in remembering the next item in the sequence
among others [29]. Tests produce one quantitative performance met-
ric in the form of the time taken to complete the test, rounded to the
nearest second. A clinician compares the score against established
normative data depending on which age classification the patient be-
longs to. The lengthy diagnosis process combined with the increased
emphasis for early detection due to the climbing proliferation of
Alzheimer’s disease and other types of dementia1 has maintained
the TMT’s relevance in modern diagnoses.

1.3 Uses in Other Fields

One of the landmark traits of the TMT is in its reliable utility as
a general tool to test cognitive function. It has been shown to be
sensitive to a wide variety of differing behaviors. It is used in
sports to assess the extent of effects from mild head injuries [1].
These tests have shown to be an improvement over a subjective
report of mild traumatic brain injury symptoms following injuries in
sports [9]. The TMT has been shown to be sensitive to both age and
education among healthy participants in various populations such as
Japan [15], Brazil [14], and Portgual [4], exemplifying its versatility
across cultures and geographic regions. It is used to gauge the effects
of drug addiction such as cocaine and alcohol on cognitive functions
among participants [12]. It is also sensitive to sleep deprivation such
as when studying sleep apnea/hypopnea [5]. The TMT also is used
in the military, with extensive studies being done to gauge the effect

1Centers for Disease Control and Prevention:
www.cdc.gov/features/alzheimers-disease-deaths/index.html



Figure 2: Completed paper-based Trail-Making tests, both A and B

variations.

of PTSD on combat veterans [19]. In short, the TMT is sensitive to
changes in behavior based on brain injuries, traumatic events, sleep
deprivation, age, education, drug addiction, cultural background,
and geographic location. This has allowed the TMT’s expansion
of utility across a wide range of purposes over the decades of its
existence.

1.4 Challenges of Assessing TMT Participants

The TMT’s sole quantitative measure is the participant’s comple-
tion time, rounded to the nearest second [31]. While this facilitates
analysis of participant performance, it also discards large amounts
of context-sensitive data that may yield insight into the participants’
state of mind. Whether the administrator is attempting to identify
brain injury, mild cognitive impairment, cultural or education dif-
ferences, PTSD or inebriation, much of the assessment is left to
subjective evaluation. The only quantitative comparison that can be
made is to whether their score is within the range of ”normal” scores
according to established normative data. As mentioned above, the
test’s primary use in clinical neuropsychology still relies on external
factors such as sitting posture and reactions to mistakes to gauge a
patient’s cognitive state, resulting in a lengthy testing process.

The TMT also does not test a participant’s perception of objects
in a 3-dimensional space and any cognitive functions related to
3-dimensions such as image recognition of rotated objects, object
permanence, and depth perception. Since the TMT’s introduction in
the 1940s, newer research into human cognition has more recently
identified general perception of 3-D space as an important indicator
in a participant’s cognitive state [30].

1.5 Proposed Solution

The advancements of consumer-level computing devices can help
improve the TMT in two ways: (1) analyze the direct input data
using machine learning to produce more quantitative behavioral
recognition, and (2) support the development of novel variations that
allow testing for new cognitive functions not otherwise possible on
the paper-and-pencil format. We explore both potential improve-
ments by digitizing the TMT and developing a new touch-based test
that specifically integrates concepts related to 3-dimensions into the
existing TMT.

The novel test, called 3D-Trail-Making Test (3D-TMT) consists
of a simplified input modality and a high input sampling rate de-
signed to collect large volumes of usage data in the short period of
time typically required to complete this test. This version imple-
ments design decisions specifically aimed to expand on the weak-
nesses inherent to paper-based tests, such as the collection of quanti-
tative data that can be linked to behavioral patterns, and the testing

of a participant’s visuoperceptual capabilities through the test’s re-
quired perception of a dynamic virtual 3-dimensional object. By
collecting rich amounts of usage metrics as participants complete
our examination, we can classify participants based on differences
in behavioral patterns informed by a participant’s nationality. This
shows that like the original TMT, the 3D-TMT appears sensitive
to nationality, suggesting the examination’s flexibility as a behav-
ioral assessment tool with the added benefit of collecting substantial
amounts of usage data for quantitative analysis.

2 RELATED WORK

The field of Human-Computer Interaction maintains an interest in
neuropsychological assessments due to the near-direct mapping of a
participant’s drawings with their cognitive state. In this area of study,
HCI researchers have leveraged recent advancements in consumer-
level technology for two primary purposes: to facilitate analysis
of existing cognitive tests, and to explore the possibilities of novel
assessments.

2.1 Leveraging Technology for Existing Cognitive Tests

Researchers have previously used segmentation and recognition
techniques of drawn shapes for the purposes of assessing cognitive
testing performance. Souillard-Mandar et. al developed machine
learning algorithms to detect behavioral abnormalities on a digital
version of the Clock Drawing Test [28]. Moetesum et. al uses
distorted shape recognition to help automatically grade the widely
used Bender Gestalt Test (BGT), a drawing test similar in style as
the TMT [22, 23], but does not share the TMT’s same versatility or
ubiquity. Nazar et. al advanced the computerized grading process of
the BGT by employing convolutional neural networks [24]. Similar
techniques have been employed for the Rey-Osterrieth Complex
Figure Test, which consists of copying a complex figure consisting
of various simple geometric shapes arranged together. Canham et.
al performed some early work in identifying only some individual
shapes of the larger complex figure [3], while more recent work from
the same author further developed recognition of structures from the
naturally distorted Rey-Osterrieth figure drawn by a human [2].

These works establish the concept of leveraging modern machine
learning techniques to recognize behavior from neuropsychological
exams, but have not worked with the TMT previously. We have pre-
viously been able to perform these sketch recognition technologies
on a digital version of the TMT to correctly classify a participant’s
age based on their digital pen input [20].

2.2 Leveraging Technology for Novel Cognitive Tests

A natural extension of this field of research is in the development of
novel cognitive examinations. For instance, the research of Zham et
al. utilizes variations in pen pressure as a patient draws a spiral as a
way to identify different stages of Parkinson’s disease [35]. Drotár
et al. applies additional handwriting kinematics metrics across large
amounts of samples of a participant’s handwriting [8].

Researchers have also attempted to use data collection methods
in other activities. Jiang et al. utilized virtual reality to analyze the
state of a user’s wayfinding abilities, particularly observing users
with cognitively degenerative conditions [16]. Zavala-Ibarra et al.
proposed an architecture for monitoring older patients through the
use of ambient video games in order to monitor their health [34].
Drew et. al took a more active approach in aiming to improve percep-
tual motor skills in elderly populations through their participation
in arcade-type video games [7]. Jimison et. al tasked participants
with playing 9 different computer games to assess different lev-
els of cognitive function, aiming to improve the identification of
behavioral trends in participants [17]. Gong et al. integrated 3D-
vision glasses to extract behavioral features and demonstrates that
extracted information can be used for cognitive health monitoring by
providing detailed physiological information [13]. These research



Figure 3: A design drawing depicting the test sphere, made of labeled

boxes. Participants tap with their finger on the labeled boxes in

the correct order, revealing more labeled boxes of higher numbers

underneath.

projects distinctively use principles behind human-computer interac-
tion to identify a diagnosed patient’s needs and behavior for assistive
technologies.

Our research focuses on using existing cognitive examinations to
help inform the design of novel tests. The longevity of the TMT is
largely due to its ease of use by participants of all ages, cultures, and
levels of education, so we believe the design of novel tests must fo-
cus on this ease of use and be designed around this ideology. Costly
sensors, VR, and AR hardware may prove prohibitively expensive
to be used widely, whereas conventional mid and low-end touch
tablets and phones continue to rapidly decline in price. Addition-
ally, novel hardware like VR/AR and various sensors may require
significant set-up time for test administration. On these complex
setups, the tasks themselves are likely to be complex as well, intro-
ducing a possible confounder where user performance may decrease
in quality due to unfamiliarity with the hardware rather than due to
behavioral, cognitive, and cultural differences as is desired. These
factors influenced our decision to anchor our design around touch
tablet technology.

3 DESIGN

Conceptually, our novel 3D-Trail-Making Test is an intelligent cog-
nitive testing computer application designed to leverage modern
mobile capabilities to ultimately facilitate behavioral recognition.
Paper-based examinations are used due to the ease of administration
and quick completion times, but they lack the inherent ability to test
for more complex cognitive functions such as difficulties with depth
perception and 3-dimensional spatial relationship of objects. Mendez
et al. describes the ways in which neuropsychologists test for these
difficulties, which still involves drawing and observing flat images
on a paper to simulate 3-dimensional perception [21]. Other forms
of testing visuospatial capabilities have included complex experi-
ments, such as the work of Prvulovic et al. which involved custom
made foam pads, projectors, frosted screens, and several different
stimuli per participant [26]. The complexity of using custom-built
objects and the fact that experts already test depth perception from
simulating the perception of depth on a flat surface motivated the
design of a touch-based mobile application on a tablet.

After careful consideration of the existing technology applications
for early diagnosis, we identified five key components for a new
examination tool:

• Leverage advantages of existing clinical neuropsychological
diagnosis methods by adapting an existing paper test into a
more modern examination

• Preserve the paper test’s ease of administration and speed of
test completion while testing new aspects of a participant’s
cognitive abilities that a paper test cannot.

• Carefully design the user experience to develop a streamlined,

Figure 4: The participant taps and drags the screen to rotate the test

sphere. The program samples the sphere’s position dozens of times

per second, serving as the movement ”trail” data to be analyzed for

classification.

intuitive interface that captures a user’s behavior rather than
examine their proficiency with consumer electronics

• Capture usage data on a scale appropriate for machine learn-
ing classification

• Provide behavioral usage data that can be used to intelligently

identify differing behaviors among participant groups

3.1 Design Overview

This 3-dimensional test contains both versions of the traditional Trail-
Making test, wherein version A has all the boxes labeled in ascending
numbers, and version B has the boxes alternating between numbers
and letters. Like in traditional 2-dimensional paper-based exams,
the correct sequence is different for both the A and B variations and
participants complete both exams as a pair. This test was created on
the Unity game engine platform and compiled to run on Windows
10.

3.1.1 Input

The classic Trail-Making test serves as the primary basis for this
new examination with some differences to better leverage modern
tablet technology in the diagnosis process. Rather than placing every
labeled dot on a flat 2-dimensional surface with every dot visible to
the participants at once, we have rendered every ”dot” as interactive
3-dimensional boxes. The boxes are arranged in a spherical pattern
and float in an empty virtual space, and with one finger participants
drag anywhere on the screen to rotate the sphere on every axis at
its center point. The rotation was designed specifically to emulate
the rotation gestures of Google Earth 2 due to its familiarity and
simplicity. Rotation speed is calculated by directly measuring how
much the finger moved across the screen (X and Y, measured in
pixels) each frame, multiplied by a constant of 0.5 after testing
different rotation speeds in pilot studies. With the same finger, the
participant taps on the next box in the sequence. If the correct box is
tapped, it disappears with a shrinking animation to clearly indicate
correct input. If the incorrect box is tapped, it changes its color to
red and remains static to indicate a mistake has been made. When
boxes disappear, they reveal more boxes hidden in deeper layers of
the sphere. This design is intentional since our goal is to create a
dynamic examination wherein not every number or letter is visible
at once. This encourages participants to be closely engaged with the
exam at all times, since the dynamic nature of the sphere geometry
will require their constant re-evaluation of the state of the exam.

2Google Earth: google.com/earth/



3.1.2 Ease of Use

The one-finger input modality is intended to mirror the TMT in its
ease of use; participants of all age brackets, cultures, educational
backgrounds and cognitive states are expected to be able to rea-
sonably engage with the test [11]. When designing our test, the
commitment to ergonomic design led us to avoid using Virtual Real-
ity and Augmented Reality despite the more realistic depictions of
depth; these relatively cutting-edge technologies are more expensive
to deploy than a touch tablet, require more complex setups, and
inherently demand a level of comfort with more complex technology.
Our intention is to avoid testing a participant’s acumen in consumer
electronics, and instead to simply produce data directly sensitive to
their cognitive state.

3.2 Visual Design

3.2.1 Depiction of Free Space

We have also made efforts to avoid possible confusion resulting from
an interactive 3-dimensional object projected into a 2-dimensional
screen. We took special consideration in several aesthetic design
choices to ensure a participant of any age can clearly differentiate
between objects of varying depths and angles. During the test,
the sphere is surrounded by a realistic depiction of a sky in the
distance in order to clearly indicate that the sphere is floating in a free,
empty space and that the sphere’s motions will not be interrupted by
collision with other objects.

3.2.2 Depiction of Depth

The background depicting a clear afternoon sky also communicates
to the user to expect daytime lighting, which we have implemented
into the examination with a global illumination system. This height-
ens the depiction of depth as the sphere of boxes is rotated. The
boxes are also capable of casting shadows on each other, with shadow
lengths dynamically changing depending on the sphere’s location
relative to the source of global illumination. This produces very clear
distinctions between boxes that differ in depth, as without shadows
boxes might seem at the same depth relative to the screen. To further
communicate the notion of depth of a 3-dimensional object, each
box is rendered with a slight metallic material so that the box subtly
shines as it is being rotated. We carefully muted this shine effect
so that the reflection does not impede a participant from properly
reading the box’s number or letter. To make rotation as intuitive as
possible, the center box is always the last box of the examination
since it is also the center point of rotation of the entire sphere. This
serves as a visual anchor for the participant so that rotation is not
disorienting even toward the end of the exam when the cluster of
boxes no longer forms a spherical shape.

3.3 Replay of Completed Tests

The fine granularity of recorded input data allows us recreate the
entirety of participant’s exam by reading the file in sequence and
advancing the position of the sphere and tapped-box actions with the
proper timing and speed. As a result, we have created an additional
”Replay” functionality so that a participant or researcher can view
the completed test as many times as desired. This functionality also
displays a translucent trail of the participant’s finger drag across
the screen to directly see their input. This ”Replay” enhances the
observer’s ability to produce qualitative analysis, although it is not
used for the quantitative evaluation we present in the following
section.

3.4 Effects in Cognitive Load

The 3D-TMT deliberately introduces two cognitive tasks not found
in the original paper TMT: performing mental rotation tasks, and ma-
nipulating a test that dynamically introduces and removes elements.
The former is tested by box labels rotating naturally as the participant
rotates the test sphere (resulting in boxes that may be skewed, angled,

Figure 5: The interface of the Test Replay feature in the 3D-Trail-

Making Test application. It provides a real-time playback of a partic-

ipant’s movements. Additional UI features include a running clock,

participant information on the top left, and a real-time trail of captured

finger movements synchronized with the sphere rotations and finger

tap actions.

or upside down), while the latter is tested through the mechanic of
disappearing cubes that reveal more cubes underneath. These two
tasks have been explored in clinical neuropsychology previously,
and frequently involve the introduction of new tests [6, 30, 33]. In
leveraging the computing power of modern tablet technology, our
interest is in carefully designing tests that intuitively combine tasks
already known to be explored in the field of clinical neuropsychol-
ogy. Traditional paper tests requires only one or two of these tasks
being tested at one time [32]. As a result, the 3D-TMT is observed
to have a higher cognitive load. We recognized this would likely
mean a higher average time to test completion than the traditional
TMT, a prediction supported by our evaluation results.

4 SYSTEM EVALUATION

Cognitive examinations, specifically the TMT, have been previously
administered to overseas populations and compared to existing nor-
mative data, such as the work of Kim et al. [18], Seo et al. [27], and
Cavaco et al. [4]. Our first of the two quantitative studies presented
in this paper compares differences between the performance base-
line of this examination with that of the traditional paper-and-pencil
version. The second quantitative study explores the recognition
capabilities of the 3D-TMT, aiming to differentiate between two
populations in a way that would be impossible to do with a typical
paper-and-pencil examination. All participants in this study are
cognitively healthy.

4.1 Normative Studies

4.1.1 Experiment Design

In order to establish a performance baseline for the 3D-TMT, we
conducted normative studies with cognitively healthy individuals
with a methodology that mirrors that of the existing paper-and-
pencil TMT. The 3D-TMT’s performance score in this normative
study mirrors that of the method of scoring the examination of the
traditional TMT, which is ”expressed in terms of the time in seconds
required for completion of each of the two parts of the test” [29].
For instance, a test with a score of 26 indicates that a participant
completed the test in 26 seconds. Existing normative data for the
TMT includes dividing the test population into different age groups,



Table 1: Summary of the normative data collected for test variations A and B across paper, digital, and the new 3D examination. Tombaugh’s

normative data is the first row for reference.

Trail-Making Test A - Completion Time (seconds)

Mean Std. Dev Median Min-Max Skewness Kurtosis

Tombaugh Normative Data 22.93 6.87 21.70 12-57 1.64 4.46
Paper-based TMT 22.57 5.69 21 15-42 1.36 3.24
Digital TMT 23.97 6.61 23 16-46 1.93 4.63
3D-TMT 53.5 15.24 50.5 35-79 0.45 -1.32

Trail-Making Test B - Completion Time (seconds)

Mean Std. Dev Median Min-Max Skewness Kurtosis

Tombaugh Normative Data 48.97 12.69 47.0 29-95 0.91 0.92
Paper-based TMT 42.93 13.80 42.5 27-102 2.73 11.26
Digital TMT 50.86 15.97 47.5 30-99 2.01 4.24
3D-TMT 58.83 15.08 56.5 38-92 0.57 -0.61

one of which is the age group of participants between the ages of
18-24. Normative data can be established with the data of around
30 participants. Following established protocols, our quantitative
study involves 30 cognitively healthy participants between the ages
of 18-24.

In order to explore the level of consistency between the paper-
and-pencil TMT and the 3D-TMT, we conducted a within-subjects
study in which each participant in our user study was tasked with
completing three sets of Trail-Making tests. The first was a regular
paper-based examination administered using the protocol as outlined
in Compendium of Neuropsychological Tests. The second set of tests
tasks the participant with completing a digital version of the same
connect-the-dots exercise by drawing on a Microsoft Surface Pro 4
with a Surface Pen. This simulated the paper-based examination in
every way, but with a different layout and positioning of the dots so
as to avoid data skew through a Learning Effect. This second test also
serves as an anchor point linking the traditional TMT and the touch-
based 3D-TMT; establishing consistency in performance between
using a paper-based exam and one with a touch-enabled tablet eases
concerns about introducing a confounding effect by having to use a
tablet for the completion of the 3D-TMT. The third set of tests is the
3D-Trail-Making test completed on the same Microsoft Surface Pro
4 with the participant using his or her finger as input. For each of
these three tests, the participants completed both the A variation of
the test (order 1, 2, 3, 4) as well as the B variation (order 1, A, 2, B).

4.1.2 Results

Table 1 shows the summary of the collected data from 30 cognitively
healthy individuals between the ages of 18-24. For comparison,
the established normative data Tombaugh’s normative data that is
stratified by age [31]. Skewness and kurtosis are two statistical
measures typically reported in normative data studies. Skewness is
the measure of symmetry where the data distribution is symmetric
if it looks the same to the left and right of the center point, while
kurtosis is a measure of how heavy the distribution tails are, where
high kurtosis values indicate higher presence of outliers3. The
general performance across the digital version falls in line with that
of the paper version, although performance baselines change for
the 3D-TMT. The 3D-TMT test A’s mean and standard deviations
are considerably higher than the either of the two 2-dimensional
examinations (paper or digital), and while test B showed a noticeable
increase as well in completion time, its increase is considerably less
pronounced. Also of note is the fact that the performance across
both tests A and B are remarkably close to each other, indicating that
across all cognitively healthy participants, expected time to complete
the test is more uniform for both tests A and B.

3Measures of Skewness and Kurtosis:
itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

4.1.3 Discussion

Time to test completion has appreciably changed for both tests A and
B for the 3D-TMT. Specifically, test A’s completion time has nearly
doubled in time. Despite the time increase, we do not consider this
detrimental since the average completion time is still under a minute
and within the normal range for neuropsychological examinations.
Observing a difference in average time to completion alone is not a
measure of test efficacy; every neuropsychological test has its own
normative time to completion. A more accurate measure of efficacy
is consistency among participants of the same classification.

Overall, observed participant behavior remained consistent in
nature across all forms of the examination for tests A and B. The
changes in test completion time can be attributed to the changes
inherent to the different format and increased cognitive load of the
examination. It is important to note that sknewness for the 3D-TMT
is lower than even that of the skewness presented in Tombaugh’s
established paper-based normative data, suggesting that test comple-
tion times are more consistent between healthy participants. This
results in observably consistent behavior among healthy participants,
which provides us with strong results as our first set of normative
data for the 3D-TMT.

4.2 Classification Capabilities of the 3D-TMT

4.2.1 Experiment Design

The 3-D Trail-Making Test was designed to produce rich volumes
of data in order to facilitate machine learning classification. The
simplified input modality results in two possible labeled actions:
”tap” and ”drag”. Each of these actions is logged into the usage
metrics data along with a time-stamp of when these occurred, the
cartesian coordinates of the center box of the sphere, and the x-y
coordinates of where the participant’s finger was touching the screen.
New actions are logged as ”Drag” any time the finger is placed
and a change in finger position is detected. ”Tap” actions get two
additional labeled points: which box the participant tapped, and
whether it was the next correct one in the sequence. New ”Tap” or
”Drag” data samples are created only as the participant completes
said action. That is, there are no ”no action” or ”blank” action
logs to conserve space, and participant pauses are still preserved
by finding the difference between the samples’ time-stamps. In
total, participants log actions at an average magnitude of several
dozen actions per second, typically resulting between 1,000 to 2,000
actions per test. Each usage metric log is saved into a text file along
with a participant’s anonymized ID number, age, which variant of
the exam this log belongs to (A or B), and the date and time that this
exam was taken.

This quantitative study is based in concept on the previously men-
tioned Trail-Making Test studies that analyze populations across
different geographic regions [4, 14, 15, 18, 27]. A total of 52 partic-



Table 2: Total list of features used in this classification experiment.

”[1-25]” indicates each feature was split into an additional 25, one per

the data captured in between each of the boxes. ”[X,Y,Z] indicates

each feature was further split into 3, one per the direction in which the

movement is cumulatively captured.

Behavioral Features

TotalMistakes
TotalTestTime
TimeStartDelay
BoxTimes [1-25]
TimeDragPositive [X,Y,Z] [1-25]
TimeDragNegative [X,Y,Z] [1-25]
DeltaDragPositive [X,Y,Z] [1-25]
DeltaDragNegative [X,Y,Z] [1-25]
AverageTimeDragPositive [X,Y,Z]
AverageTimeDragNegative [X,Y,Z]
AverageDeltaDragPositive [X,Y,Z]
VelocitySamples [X,Y,Z] [1-25]
Magnitudes [1-25]

ipants completed both variations of test A and B. Of these 52, 32
of them live in the US and identify as having American nationality,
and 20 were native citizens of Japan currently residing there. All
members of both groups were cognitively healthy and both had an
age range of 18-45 years of age.

4.2.2 Feature Calculation

Data features were calculated with the intention to capture partici-
pant’s behavioral patterns. This is motivated largely due to multiple
qualitative observations that we made during the user studies. For in-
stance, members of the Japanese population would more frequently
rotate in only one direction as they searched for the next box in the
sequence, and they tended to rotate the sphere at a higher speed than
that of the American participants. For this reason, our calculated
features focused on speed and direction of movement in each of the
sphere’s three axes. Time to completion was included as well due to
the test’s relation to the paper-based TMT, as well as timing data in
finer granularity. Along those same lines, time spent moving in each
direction was also included as a feature. Every feature calculated is
shown in Table 2.

”TotalMistakes” is the total amount of mistakes that the
participant made over the course of the test. ”TimeStartDelay” is the
amount of time that a participant took between starting the test and
beginning to control the sphere to find the first box. ”BoxTimes”
is the time taken to correctly tap the next box in the sequence
(e.g., the time taken between Box 1 and 2, box 2 and 3, etc.).
”TimeDragPositive” is the amount of time that a participant spent
rotating the test sphere in the direction that increased the coordinate
value (X, Y, and Z were calculated separately). ”TimeDragNegative”
is, similarly, the amount of time a participant spent rotating in
the opposite direction. ”DeltaDragPositive” is the distance that
the test sphere traveled while the participant rotated the sphere in
the positive direction. This was calculated as a separate feature
since at different speeds a participant may cover different distances.
”DeltaDragNegative” similarly captures distance traveled in the
negative direction. The averages of each of these described features
across the entire tests were also calculated and included as features.
Finally, the velocity vector of the X, Y and Z coordinates is captured
in order to track the speed of the participant’s movements. The
velocity vector is calculated with the formula:

v =
[xt � xt�1,yt � yt�1,zt � zt�1]

timeDi f f
(1)

”Magnitudes” are the calculated magnitudes of the velocity vector

Table 3: Features yielding the best classification results for the A and

B versions of the 3D-Trail-Making Test

Test A Test B

DeltaDragPositiveY 23 BoxTimes 1
DeltaDragPositiveZ 12 BoxTimes 25
DeltaDragPositiveZ 18 TimeDragPositiveZ 2
DeltaDragNegativeX 6 TimeDragPositiveZ 21
DeltaDragNegativeX 10 TimeDragNegativeX 24
DeltaDragNegativeX 16 DeltaDragPositiveY 6
DeltaDragNegativeX 17 DeltaDragPositiveZ 4
DeltaDragNegativeX 25 DeltaDragPositiveZ 11
DeltaDragNegativeY 12 VelocitySamplesZ 7
DeltaDragNegativeZ 13 VelocitySamplesZ 8
DeltaDragNegativeZ 14 VelocitySamplesZ 25
DeltaDragNegativeZ 21 Magnitudes 8
VelocitySamplesZ 5
VelocitySamplesZ 9
VelocitySamplesZ 15
VelocitySamplesZ 16

using the formula:

vm =
q

v[x]2 + v[y]2 + v[z]2 (2)

Some features were further segmented into each box, indicated by
”[1-25]” in Table 2. For example, ”TimeDragPositiveX” was divided
further into 25 segments, one per box, to indicate the time that the
participant spent moving the test sphere in the positive X direction
between box 1 and 2, 2 and 3, etc. This would allow us to analyze the
participant’s behavior on a per-box basis rather than just across the
entirety of the test, since we anticipated that patterns might emerge
between specific boxes.

This resulted in a total of 440 features, the vast majority of which
we anticipated would be culled during feature analysis as we intro-
duced this data into our classifier. We used the standard Naive Bayes
classifier, as it is optimal for the Binary classification that we in-
tended to perform between a Japanese and an American population.
Classification was supported by 10-fold cross validation.

4.2.3 Results

Classification was performed with the Weka data mining software
[10]. Table 4 shows the subset of features across both variations A
and B of the 3D-TMT that yielded the highest accuracy in classify-
ing examinations as belonging to either an American or Japanese
participant. These features support our earlier intuition that differen-
tiation may be more effective if we focused on tracking the specific
direction of motion. For test A, moving the test sphere in the neg-
ative X direction across greater distances significantly contributed
to the country of origin of the participant. A total of four features
related to velocity support the observation that Japanese participants
moved the sphere at greater speeds. For test B, a similar result is
observed with respect to emphasis of movement velocity, albeit with
fewer features needed for classification and the inclusion of timing
data for two boxes.

Table 5 shows the detailed accuracy statistics separated by class
for both the A and B variation of the 3D-TMT. Specifically, for the
A variation, the test was correctly classified as belonging to either
an American or Japanese participant with an accuracy of 96.154%
and an F-Measure of 0.962. For the B variation, the classification
had an accuracy of 88.235% and F-Measure of 0.883.

4.2.4 Discussion

As previously mentioned, ”DeltaDrag” refers to the total distance
that the participant moved in any particular direction between boxes,
split into either a positive or negative direction, and further split



Table 4: A small set of user test data (10 samples) as it is recorded on the text file. The format for each line is: Action Type, X, Y, Z coordinates of

the center ”anchor” box, X, Y coordinates of the finger touch for replay purposes, Cube ID of tapped box (only if Action Type is ”Tap”), whether the

tapped box was correct (only if Action Type is ”Tap”), and the timestamp of the sample.

Line Action Position X Position Y Position Z Touch X Touch Y Time Stamp Cube ID Correct?

...

739 DRAG 325.7233 348.9596 205.2525 600 108 00:00:22.8033820
740 DRAG 325.2326 348.8935 205.369 600 107 00:00:22.8196285
741 DRAG 325.2326 349.3935 205.369 599 107 00:00:22.8699777
742 DRAG 327.6911 349.1943 204.8247 779 328 00:00:22.1362298
743 TAP 327.6912 349.1943 204.8247 779 328 00:00:23.1549178 Cube (15) False
744 TAP 327.6912 349.1943 204.8247 788 366 00:00:23.8225771 Cube (7) True
745 DRAG 322.2953 344.9468 206.1261 713 682 00:00:24.7858919
746 DRAG 311.2677 335.8484 210.6286 725 659 00:00:24.8056675
747 DRAG 305.8622 329.5708 214.8152 731 647 00:00:24.8196023
...

Table 5: Summary of accuracy statistics for both tests A and B of the

3D-Trail-Making Test. TP/FP Rates, Precision, Recall, and F-Measure

shown are the weighted averages between the two classification

labels.
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Test A 50 of 52 (96%) 0.96 0.04 0.96 0.96 0.96
Test B 45 of 51 (88%) 0.88 0.11 0.89 0.88 0.88

between X, Y, or Z direction of movement. For test A, this usage
metric became important features in classifying the nationality of
these participants. For test B, time played a slightly larger role,
with the first and last time taken to tap on the correct box being an
important feature while the total time taken in dragging in the X and
Z directions being significant features also at the beginning and end
of the examination.

Behavioral Observations. Observations on the participants
while they were completing these tasks have yielded some inter-
esting insights, which are supported by the most significant features
chosen for classification. The Japanese participants visibly focused
on completing the test as fast as possible. Although this did result
in the participants moving the test sphere more rapidly, this did not
result in faster time to completion, which is evidenced by the fact
that total test completion time was not a significant feature for clas-
sification. However, this did result in a difference in behavior, which
is evident in the classification features since velocity and the magni-
tude for the velocity vector were among the most significant features
for classification. This may be attributed to a cultural difference due
to the higher proliferation of mobile devices in Japan, and much
higher rates of gaming mobile devices among the population [25].
Japanese participants tended to interpret this examination as a game,
with the implicit objective being the fastest completion of time. This
subtle cultural behavior was evident in the most important features,
which in turn resulted in a feature set that yielded high accuracy and
F-measure.

Test Accuracy Differences. A point of consideration are differ-
ences in classification features and accuracy between the tests A and
B. We had already anticipated that the features for both tests would
be considerably different, since the correct box order across both
tests are entirely different like on the paper-based TMT. The con-
siderable decrease in accuracy for test variation B can be explained
by its increased difficulty, since participants across all forms of this
test, paper or otherwise, frequently take a few moments between
each number or letter to think which is the next correct box or dot
in the sequence. We can observe this as most participants think
aloud, repeating numbers and letters in sequence to themselves to
remember. On this 3D-TMT version of test B we noticed that as

they were thinking they would frequently move the sphere, often
times in random directions as they would not yet know what box
they were looking for. This has a cumulative effect of a considerably
larger number of ”random” movements in unpredictable directions
in total when considering all 25 boxes, making participants slightly
more difficult to classify based on movement patterns.

Establishing Behavioral Recognition. Overall, the classifica-
tion accuracy across both tests A and B is high, strongly supporting
the notion that this new 3D-TMT test, much like its paper-based
counterpart, is sensitive to behavioral patterns. In this case, we can
observe that the 3D-TMT is noticeably sensitive to a participant’s
geographic location and nationality. This classification task would
be impossible with the traditional paper-based TMT, since a com-
pleted, fully connected set of dots would yield no insight as to the
country of origin of its participant, and the paper’s existing metric
of noting completion time would also provide limited information
into country of origin.

Limitations. The two quantitative studies and their respective
results also highlighted areas of improvement. Although both the
paper-based TMT and the novel 3D-TMT appear reasonably sensi-
tive to geographic location and nationality, utility in broad behavioral
recognition should firmly be established by conducting additional
tests with patients with cognitive impairments. Additionally, we rec-
ognize the need for expanding the evaluation to determine whether
the type of data gathered for this experiment may extend to general
classification that also includes cognitive impairment.

5 FUTURE WORK

We are interested in continuing to explore the sensitivity of the 3D-
TMT, testing for behavioral patterns such as those mentioned in
Section 1.3. We seek to determine whether the test is sensitive in
similar ways to the traditional TMT, such as age, level of education,
sleepiness, inebriation, concussions, and Mild Cognitive Impairment
among others. We also plan on integrating touch data into the
classification features, including finger movement speed, location,
acceleration, curvature, and motions indicating among others. This
will introduce a new dimension of collected data which should
even further increase the rich volumes of behavioral data that this
examination can capture.

6 CONCLUSION

The 3-dimensional Trail-Making test is an examination heavily based
on the principles of the established paper-based Trail-Making test
with an added focus on collecting large volumes of behavioral data.
We observe the participant’s manipulation of the sphere object as
a function of time with a high enough sample rate as to produce
upwards of 2,000 data samples per test, which usually lasts less than
one minute. The result is an ample set of features, 440 in total, and
a rich set of data sensitive to subtle changes in behavior. To demon-
strate this, we were able to classify completed tests as belonging to



either Japanese or American participants with an accuracy of up to
96.154%. We have also begun building our own normative data set
for this new examination, with an improved skewness than that of
established paper-based examinations. Future integration of touch
data into the classification algorithm can provide an even higher
volume of data likely to be more sensitive to behavioral patterns.
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[4] S. Cavaco, A. Gonçalves, C. Pinto, E. Almeida, F. Gomes, I. Moreira,
J. Fernandes, and A. Teixeira-Pinto. Trail making test: Regression-
based norms for the portuguese population. Archives of Clinical Neu-
ropsychology, 28(2):189–198, 2013.

[5] K. Cheshire, H. Engleman, I. Deary, C. Shapiro, and N. J. Dou-
glas. Factors impairing daytime performance in patients with sleep
apnea/hypopnea syndrome. Archives of internal medicine, 152(3):538–
541, 1992.

[6] J. Davidoff and E. K. Warrington. The bare bones of object recog-
nition: Implications from a case of object recognition impairment.
Neuropsychologia, 37(3):279–292, 1999.

[7] B. Drew and J. Waters. Video games: Utilization of a novel strategy
to improve perceptual motor skills and cognitive functioning in the
non-institutionalized elderly. Cognitive Rehabilitation, 1986.

[8] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, and
M. Faundez-Zanuy. Evaluation of handwriting kinematics and pressure
for differential diagnosis of parkinson’s disease. Artificial intelligence
in Medicine, 67:39–46, 2016.

[9] R. J. Echemendia, M. Putukian, R. S. Mackin, L. Julian, and N. Shoss.
Neuropsychological test performance prior to and following sports-
related mild traumatic brain injury. Clinical Journal of Sport Medicine,
11(1):23–31, 2001.

[10] E. Frank, M. A. Hall, and I. H. Witten. The WEKA Workbench. Online
Appendix for Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, fourth ed., 2016.

[11] M. Goebel. Ergonomic design of computerized devices for elderly
persons-the challenge of matching antagonistic requirements. Univer-
sal Acess in Human Computer Interaction. Coping with Diversity, pp.
894–903, 2007.

[12] R. Z. Goldstein, A. C. Leskovjan, A. L. Hoff, R. Hitzemann, F. Bashan,
S. S. Khalsa, G.-J. Wang, J. S. Fowler, and N. D. Volkow. Severity
of neuropsychological impairment in cocaine and alcohol addiction:
association with metabolism in the prefrontal cortex. Neuropsychologia,
42(11):1447–1458, 2004.

[13] F. Gong, W. Xu, J.-Y. Lee, L. He, and M. Sarrafzadeh. Neuroglasses:
A neural sensing healthcare system for 3-d vision technology. IEEE
Transactions on Information Technology in Biomedicine, 16(2):198–
204, 2012.

[14] A. C. Hamdan and E. M. L. Hamdan. Effects of age and education
level on the trail making test in a healthy brazilian sample. Psychology
& Neuroscience, 2(2):199–203, 2009.

[15] R. Hashimoto, K. Meguro, E. Lee, M. Kasai, H. Ishii, and S. Ya-
maguchi. Effect of age and education on the trail making test and
determination of normative data for japanese elderly people: the tajiri
project. Psychiatry and Clinical Neurosciences, 60(4):422–428, 2006.

[16] C.-F. Jiang and Y.-S. Li. Development and verification of a vr platform
to evaluate wayfinding abilities. In Engineering in Medicine and
Biology Society, 2009. EMBC 2009. Annual International Conference
of the IEEE, pp. 2396–2399. IEEE, 2009.

[17] H. B. Jimison, M. Pavel, K. Wild, P. Bissell, J. McKanna, D. Blaker,
and D. Williams. A neural informatics approach to cognitive assess-
ment and monitoring. In Neural Engineering, 2007. CNE’07. 3rd
International IEEE/EMBS Conference on, pp. 696–699. IEEE, 2007.

[18] S.-W. Kim, J.-M. Kim, R. Stewart, K.-L. Bae, S.-J. Yang, I.-S. Shin, H.-
Y. Shin, and J.-S. Yoon. Correlates of caregiver burden for korean elders
according to cognitive and functional status. International journal of
geriatric psychiatry, 21(9):853–861, 2006.

[19] M. Koso and S. Hansen. Executive function and memory in post-
traumatic stress disorder: a study of bosnian war veterans. European
Psychiatry, 21(3):167–173, 2006.

[20] R. Lara-Garduno, N. Leslie, and T. Hammond. Smartstrokes: digitizing
paper-based neuropsychological tests. In Revolutionizing Education
with Digital Ink, pp. 163–175. Springer, 2016.

[21] M. F. Mendez, R. L. Tomsak, and B. Remler. Disorders of the vi-
sual system in alzheimer’s disease. Journal of Neuro-Ophthalmology,
10(1):62–69, 1990.

[22] M. Moetesum, I. Siddiqi, U. Masroor, and C. Djeddi. Automated
scoring of bender gestalt test using image analysis techniques. In
Document Analysis and Recognition (ICDAR), 2015 13th International
Conference on, pp. 666–670. IEEE, 2015.

[23] M. Moetesum, I. Siddiqi, U. Masroor, N. Vincent, and F. Cloppet. Seg-
mentation and classification of offline hand drawn images for the bgt
neuropsychological screening test. In Eighth International Conference
on Digital Image Processing (ICDIP 2016), vol. 10033, p. 100334N.
International Society for Optics and Photonics, 2016.

[24] H. B. Nazar, M. Moetesum, S. Ehsan, I. Siddiqi, K. Khurshid, N. Vin-
cent, and K. D. McDonald-Maier. Classification of graphomotor im-
pressions using convolutional neural networks: An application to auto-
mated neuro-psychological screening tests. In Document Analysis and
Recognition (ICDAR), 2017 14th IAPR International Conference on,
vol. 1, pp. 432–437. IEEE, 2017.

[25] S. Okazaki, R. Skapa, and I. Grande. Global youth and mobile games:
applying the extended technology acceptance model in the usa, japan,
spain, and the czech republic. In Cross-Cultural Buyer Behavior, pp.
253–270. Emerald Group Publishing Limited, 2007.

[26] D. Prvulovic, D. Hubl, A. Sack, L. Melillo, K. Maurer, L. Frölich,
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