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Figure 1: Quilting a star with a vine pattern by starting with randomly distributed points, generating a spanning tree, and adding
non-overlapping decorations. A photo of the quilted pattern is shown to the right.

ABSTRACT

Free-motion quilting patterns are functional and decorative patterns
sewn on pieced quilts using a single-line continuous stitch path
for each region of the quilt. Seven families of quilting patterns
are commonly used by quilters [3]. We present an approach for
computationally generating three of these families. The user can
control the design for each family based on a set of parameters,
including the density and general layout of the pattern as well as the
decorative elements. Our algorithm starts by sampling a point set
in a designated region, generates a skeleton path over that set, then
inserts decorative elements along the skeleton. We provide digital
and quilted examples for each type of pattern.
Keywords: quilting, pattern generation, spanning tree, texture gen-
eration, ornamentation, line drawing, continuous line drawing.

Index Terms: Computing methodologies—Computer graphics—
Rendering—Non-photorealistic rendering;

1 INTRODUCTION

A quilt is a textile composed of three layers of fabric: a cloth top,
batting, and a woven cloth back. Two key components define the
aesthetics of a quilt: the piecing and the quilting. In most quilts, the
top layer of fabric is pieced together from small pieces to create a
pattern. The process of quilting involves sewing together the three
layers of the quilt so that they do not slide with respect to one another,
even when the quilt is washed. Quilters design the quilting pattern
so that it complements the pieced design.

Though quilting has traditionally been done by hand, machine
quilting using long-arm quilting machines has become more com-
mon. Such machines are capable of quilting over an entire quilt
top using manual or, in some cases, computer control. Computer
control requires the quilter to input a 2D digital pattern of stitching
paths. The design of such a pattern has several constraints. First, the
stitch pattern should consist of continuous paths, because starting
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Figure 2: Cameli’s categorization from the book Step-by-Step Free-
Motion Quilting [3] from C&T Publishing. From left to right, top to
bottom: Branching, Nestled (Shape Packing), Wanderer, Back-and-
forth Echoing, Climber, Emerging, Edge-to-edge. In this paper, we
develop algorithms for generating patterns in the Branching, Shape
Packing and Wanderer categories.

and ending each path on a computer-controlled quilting machine
requires work from the quilter. Ideally, the pattern should consist of
a unicursal, or single-line continuous path for at least large regions,
if not the entire quilt. Second, because the stitches must be dense
enough to hold the three layers of the quilt together, the stitch lines
should be distributed roughly uniformly over the quilt and with a
minimum density. Third, the design should respect the aesthetics of
the pieced quilt.

An important category of quilting techniques is free-motion quilt-
ing (FMQ). In FMQ, the quilter can freely move the fabric by hand
under the stitching head to create designs with curves. Quilters have
come up with common FMQ design themes that make use of prim-
itives, a flower for instance, and repeat it over one clearly-defined
region, usually a quilt block. These designs often incorporate ran-
domness to avoid displeasing repetition when adapting the pattern
to a specific region of the quilt. The irregularity of the resulting
pattern is part of the appeal of FMQ. Christina Cameli proposed an
empirical categorization of common FMQ patterns in her book Step-
by-Step Free-Motion Quilting [3]. Cameli proposed seven forms of
FMQ: Nestled (Shape Packing), Branching, Edge-to-Edge, Emerg-
ing, Back-and-Forth Echoes, Wanderers and Climbers (Figure 2).
Each of these categories combine simple shapes using a different set
of rules.

In this paper, we describe a system that generates a stitch path



for pieced quilts from a small number of user-controlled parameters
(Figure 3). We propose a framework that combines a spanning
tree or a TSP tour with decorative elements to generate families of
FMQ designs. Our system supports Shape Packing, Branching and
Wanderer categories with automatic algorithms controlled by the
user via design elements and a set of intuitive parameters, such as
pattern density and design element scale.

This paper provides a starting point for semi-automatically gener-
ating free-motion quilting patterns using algorithms that have been
explored for other applications in the graphics community. Quilting
patterns are a special category of 2D patterns that ideally need to be
traceable in one path, as well as dense enough to hold three layers
of fabric together. The user can control the aesthetics of patterns by
defining the decorative elements and intuitive parameters such as
pattern density and the scale of the decorative elements. Quilters can
benefit from free-motion quilting patterns generated algorithmically
by saving time on designing the pattern, and people less skillful in
quilting will be able to produce interesting quilts with the aid of our
system.

2 BACKGROUND

Researchers in the field of computer graphics have explored many
pattern generation systems. Wong et al. [20] described a method
to automatically generate floral ornament designs, many of which
resemble the output of the quilting algorithms presented here, par-
ticularly the vine-like patterns. Although the basic idea of growing
ornaments along a path is similar to the Branching algorithm in this
paper, ornament design does not have the constraint that the gener-
ated paths need to be traceable in a course with few interruptions.
Anderson and Wood [1], Mech and Miller [16], and Lu et al. [15]
presented applications that utilize a user-defined curve to help gen-
erate 2D ornaments that follow the design principles of repetition,
balance, growth, and geometric constraints. Defining such curves
on the scale of a quilt manually would be quite time-consuming.

Kaplan and Bosch [10] presented a technique for constructing
a continuous line drawing based on a user-supplied image by first
generating a point set, then solving the Traveling Salesman Problem
(TSP) over the points to obtain a unicursal path, while Li and Mould
[13] used a similar framework but instead employed a tree-based
technique to obtain the path for the same application. TSP tours
and tree-based paths are different in that the former does not revisit
points, while the latter visits each node exactly twice. Both features
are useful for the Wanderer and Branching algorithms presented
here. Wong et al. [19] used a graph-based technique after image
processing for the same application. Our application lacks an input
image and therefore cannot use the same idea.

Pedersen and Singh [17] described a method to generate
labyrinths and mazes from a meandering path. Kaplan and Co-
hen [11] proposed a method for automating the construction of
Celtic knotwork. Each of these works outputs a unicursal path of
a pattern category and can be directly used in free-motion quilt-
ing. However, patterns commonly used by quilters differ from these
patterns in terms of aesthetics and structure.

The generation of quilting patterns has received little attention.
The commercial software available to quilters (e.g., Art & Stitch
[18], Creative Studio [6], and Electric Quilt [7]) provide drawing,
layout and previewing capabilities, along with the ability to output
the design to a variety of quilting machine file formats, but offer no
generative or algorithmic methods for pattern design. Others have
explored tools that assist with piecing. Igarashi et al. [9] designed
an interactive tool that helps quilters to visualize pieced quilt blocks.

Carlson et al. [4] proposed a method that first generates a point
set, then uses spanning trees to generate single-line filled quilting
patterns. Liu et al. [14] described a method for creating a quilting
pattern from a photograph. This method seeks to depict objects for
a non-pieced whole-cloth quilt, by identifying lines and fill patterns
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Figure 3: Pipeline. Given a region boundary and a decorative element,
the algorithm generates a skeleton path and places the decorative
element following the guidelines of user-defined parameters.

that both represent the photograph and can be traced with a single
stitching path.

Our framework is inspired by the work of Carlson et al. [4], Ka-
plan and Bosch [10], and Li and Mould [13]. Our work incorporates
the idea of converting point sets to spanning trees or TSP tours in
order to obtain a unicursal path. We show how varying point genera-
tion methods and using a TSP tour or spanning tree can generate a
wide variety of common free-motion quilting patterns.

3 METHOD OVERVIEW

Given a quilting region, our method generates a quilting path con-
sisting of a skeleton and decorative elements. Users can define the
aesthetics of the pattern by controlling the density of the quilting
path, the size and (in the case of Branching) the angle of the decora-
tive element with parameters. Our pipeline, illustrated in Figure 3,
consists of two phases: generation of the skeleton path and decora-
tion of the path. The skeleton path dictates the overall layout and
density of the pattern, as well as the stitching order. The decorative
element is a motif designed by the user, such as a leaf or a heart, that
can be inserted along the skeleton path.

To design a pattern, the user inputs a region boundary, usually
representing the area of one or several quilt blocks, specifies a
point distribution method and a decorative element. The decorative
element will be added to the skeleton path with one of a few different
methods. At each step, the user specifies parameters to control the
final design.

4 SKELETON PATH GENERATION

The first step in our algorithm generates a skeleton path inside the
region boundary provided by the user. We expose parameters to
the user that control the density of the path, as well as the degree
of randomness. To generate the skeleton path, the algorithm first
distributes points inside the region boundary using a user-selected
point distribution method. A path conversion method then converts
points into a unicursal path.

4.1 Point Distribution
We incorporated two point generation methods: tessellation and
random point sampling (Figure 4). The resulting skeleton paths
vary in regularity and each can be useful depending on the desired
aesthetics and the nature of the decoration that will be applied.

The tessellation methods supported by our system include three
regular tessellations: triangle, grid, hexagonal, and one semi-regular
tessellation: 3.3.4.3.4 tessellation [8], which tessellates regular tri-
angles and squares such that five regular polygons meet at every



Figure 4: Each column shows a point set generated using a distribu-
tion method (top) its corresponding spanning tree (middle) and TSP
tour (bottom). Point set from left to right: 3.3.4.3.4 tessellation, hexag-
onal tessellation, grid tessellation, triangle tessellation, Poisson-Disk
sampling.

Figure 5: Children (green) of a tree node (red) are visited in CCW
order, starting from the parent node (blue).

vertex: two regular triangles, followed by a square, an equilateral tri-
angle and a square. Our system supports one random point sampling
method: Poisson-Disk sampling. Poisson-Disk sampling guarantees
a minimum spacing between points to allow the insertion of deco-
rative elements. These algorithms for point distribution provided
adequate variety for the patterns we generated but other methods
would be easy to add.

The user specifies a point distribution distance d that determines
the density of the points. For tessellations, d defines the distance
between each point and its nearest neighbor. In the case of Poisson-
Disk sampling, d is the minimum distance between two points.

4.2 Path Conversion
This step converts the generated point set to a stitching order for
the quilting region. There are two options for path conversion: a
spanning tree-based method and a TSP-based method. The former
generates a path that potentially branches out at a point, while the
latter generates a tour over the point set (Figure 4). Both methods
generate a skeleton path that starts and ends at the same point. A
post-processing step is then applied to render the skeleton path .

Spanning Tree Method The spanning tree-based method is in-
spired by the work of Carlson et al. [4] and the idea is also used
by Li and Mould [13]. To convert the generated points into a mini-
mum spanning tree, points should be connected to their neighbors
without creating crossings. These constraints can be met by solving
an Euclidean Minimum Spanning Tree problem. Our system first
constructs a complete graph on all n points. The weight of each
edge is the Euclidean distance between its two endpoints. Our sys-
tem implements Kruskal’s algorithm [12] to generate a minimum
spanning tree on the graph. The spanning tree is then traversed in a
depth-first order, where the children of each tree node are visited in
counterclockwise order (Figure 5 ).

Travelling Salesman Problem Method The TSP-based method
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Figure 6: Parameterization of three quilting pattern families. s con-
trols element scale. d controls point distribution distance. Patterns
are illustrated by Christina Cameli [3]. Top left: Branching pattern
parameters. l controls the spacing between decorative elements. a
controls the angle between the decorative element and branch at the
insertion point. Top right: Wanderer pattern parameters. l controls the
length of the tangent of the two legs of the primitive. Bottom: Shape
packing parameters. rseed controls maximum pebble size.

Figure 7: The skeleton path (left) of a Branching pattern is generated
from a spanning tree traversal with Catmull-Rom interpolation. The
algorithm then attempts to place decorative elements at the tip of each
branch (middle). Branches are then traversed to place decorative
elements along branches.

is inspired by the work of Kaplan and Bosch [10]. The generated
points are passed to the Concorde TSP solver [2], which generates a
simple tour over the point set without any crossings.

4.3 Skeleton Path Post-Processing
This step is needed for branching patterns. After the stitching order
for points is determined, the skeleton path is rendered using Catmull-
Rom splines [5] to interpolate between each pair of points. This
process generates a vine-like path that can later be combined with
decorative elements such as leaves and flowers to produce the final
quilting pattern.

5 QUILTING PATTERN GENERATION

Our framework provides algorithms for generating three families
of free-motion quilting patterns described by Cameli: Branching,
Wanderer and Shape-Packing [3]. Branching places decorative
elements along a spanning tree-based skeleton path to mimic the
look of plant branches. Shape-Packing places decorative elements
on the branching nodes of a spanning tree-based skeleton and grows
each node until the elements are tightly packed. Wanderer places
decorative elements along a TSP-based skeleton path.

5.1 Branching
Branching mimics the natural look of plants, where the decora-
tive elements, such as leaves or flowers, are placed on alternating
sides of the stitching path. We use a skeleton path generated from
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Figure 8: Left: When the control points P1,P2 fall in the same half
space defined by the endpoints P0 and P3, the curve has one hump
(top row). Otherwise the curve has two humps (bottom). Curves with
longer tangents at the endpoints (left) have larger curvature. Right:
The direction of the tangents ��!P0P1 and ��!P3P2 of the connecting curve
(red) comes from the legs of the decorative element. The length of
each tangent is l · ||P0P3||.

Poisson-Disk point distribution and Catmull-Rom interpolation for
this design. We choose Poisson-Disk for point generation in or-
der to achieve varied length in tree branches. We interpolate the
branches to mimic plant stems. While the skeleton path generated
from Poisson-Disk sampling fits well with natural decorative ele-
ments, such as leaves, skeleton paths generated from tessellations
fits better with more geometric decorative elements.

We require the user to input an approximate collision geometry
such as the convex hull for the decorative element. The user specifies
four parameters (Figure 6) to customize the look of the pattern:
1. Point distribution distance d: controls the initial point distribution

distance for the Poisson-Disk sampling, which affects the length
of the branches in the generated minimum spanning tree.

2. Decorative element size s
3. Gap length l: controls the spacing between decorative elements.
4. Angle a: controls the direction of each decorative element rela-

tive to the direction of the skeleton path.
The algorithm for Branching (Figure 7) is presented below:

Step 1: Build convex hull for collision geometry. Scale decorative
element and convex hull with input size s.
Step 2: Subdivide skeleton path with gap length l.
Step 3: Place decorative elements at the tip of each branch in the
tangent direction in a depth-first traversal order. A collision detection
and resolution procedure (described below) is run simultaneously.
This operation is motivated by the look of real world plants.
Step 4: Traverse the tree starting from the root in depth-first order.
Place decorative elements along branch segments at alternating sides,
and angle the element at the user-specified initial angle a . The
collision detection and resolution procedure is run simultaneously.
Collision Detection and Resolution: When attempting to place a
decorative element, the convex hull of the collision geometry is
tested against the convex hull of already placed elements and the
region boundary, as well as the skeleton path. If collision occurs,
the algorithm attempts to resolve the collision by changing the size,
orientation and (optionally) placement side of the element. The
element is deleted if all attempts fail to fit in the element at that
location, and the algorithm moves forward to the next segment.
In our implementation, an element can be scaled down to at most
0.5s, and rotated towards the branch tip up until a = 60�. Our
implementation accelerates collision detection by first using axis-
aligned bounding boxes, then the full collision geometry.

5.2 Wanderer
In Wanderer, a primitive is repeated and joined by another instance
through wavy lines while the skeleton path wanders through an
open space. The primitives are evenly scattered in the space. These
properties can be met using a TSP-based skeleton path while placing

decorative elements at the center of each distributed point.
The user specifies three parameters (Figure 6): point distribution

distance d, decorative element size s and tangent length l. The
function of point density and decorative element size is similar to
that in Branching. Tangent length controls the “smoothness” of the
connecting curve. We also require the input primitive to include two
legs, which are used by the algorithm to direct the direction of the
connecting curves. The user should supply primitives with varying
angles between the two legs.

To generate the wavy connecting lines, the algorithm connects
primitives using a cubic Bézier curve. We observe that for a cubic
Bézier curve defined by P0,P1,P2,P3, when the two control points
P1,P2 lie in the different half spaces define by the line P0P3, the
connecting curve has two humps in opposite directions (Figure 8).
When they lie in the same half space, the connecting curve has one
hump. Further, the length of the tangents at P0 and P3 controls the
smoothness of the hump. These two properties allow the system to
vary the look of connecting curves.

The point stitching order is first generated using the TSP-based
method via the Concorde TSP Solver [2]. The algorithm then re-
places each point C with a primitive. The primitive’s center is
translated to C, and the bisector between two legs is rotated to the
direction of ����!CCprev +

����!CCnext , where Cprev and Cnext is the previ-
ous and next point in the skeleton path respectively. The primitive is
selected from user inputs such that after rotation, the angle between
each tangent and P0P3 is closest to 60�. This rotation procedure
makes sure that the connecting curve has a sufficient amount of
curvature. After rotation, the starting points of the two legs are used
as endpoints P0 and P3. The ending points of the two legs P1,P2 are
scaled such that tangent length ||P0P1|| and ||P2P3|| is l · ||P0P3||.

5.3 Shape Packing
Shape packing attempts to pack the decorative elements as close as
possible so that each element touches some of its neighbors. This
packing is a popular pattern for filling the background of a quilt with
packed circles, with pebbling being the simplest version. In our ex-
amples, we choose to use a tessellation method for point generation
because we want the tree nodes to be uniformly distributed. We then
place decorative elements at each tree node, and grow them until
they touch each other.

A general form of shape packing with decorative elements can be
reduced to solving pebbling first, then replacing each circle with a
decorative element by using each circle as the element’s minimum
bounding circle. This solution only packs the bounding circle of each
decorative element, not the elements themselves. Further discussion
on this issue is in Section 7.

5.3.1 Pebbling

There are two goals for pebbling. First, circles should be as tightly
packed as possible. Second, we want a variety of pebble sizes to
give the pattern a random appearance. We employ a skeleton path
produced from tessellated points for this design, and render each
tree node of the resulting minimum spanning tree as one pebble. The
pebbling pattern can then be traversed by using any tree traversal
algorithm with one pebble being drawn as each tree node is reached.

Users specify two parameters (Figure 6): point distribution dis-
tance and seed size. Point distribution distance d is used for the
tessellation point generation. In pebbling, this distance also becomes
the upper limit on the size of each pebble, because the distance be-
tween the center of each tree node and its child is d. The initial
size of the pebble on the root node can be controlled with a scale
parameter rseed , whose value should be limited to 0.5  rseed  1.
On a skeleton path where the branches of the generated spanning
tree are of equal length, for example the ones generated by tessel-
lation methods, rseed = 0.5 will pack pebbles of equal size before



Figure 9: An example of the pattern after each step of phase 1. From
left to right: underlying tree skeleton, initial placement of pebbles after
step 2, short line segments replaced with small pebbles after step 3.

size optimization, whereas rseed = 0.7 will pack pebbles with alter-
native sizes of 0.3d and 0.7d before size optimization. By limiting
rseed � 0.5, rseedd is the maximum radius a pebble can reach before
the size optimization phase, during which the pebble can grow larger
than this limit in order to be packed.

The algorithm has three phases: size determination, size opti-
mization and rendering. The size determination phase sets an initial
size for each pebble by examining its parent and avoiding collisions
with nearby pebbles (Figure 9). The size optimization phase grows
pebbles by allowing them to move in their neighborhood until they
are tangent to at least three other pebbles (Figure 10). The rendering
phase renders each pebble into a stitch path.

Let Ci = (pi,ri) define the pebble of tree node Ti centered at point
pi with radius ri. Let S be the set of pebbles of tree nodes that have
been visited. Note that pi is already determined by point distribution.
Our algorithm attempts to maximize each ri without collision with
other pebbles:
Size determination: (Figure 9)
Step 1: Set C0 = (p0,rseedd) pebble of tree root T0. Visit C0.
Step 2: When visiting Ci = (pi,ri), add Ci to visited set S.
For each child T 0 of Ti, whose pebble is C0 = (p0,r0), set r0 =
min(p,r)2S dist(p, p0)� r. Visit C0.
Step 3: If a collision with pebbles in S ever occurs, meaning
r0 < dist(pi, p0)� r, there will be a gap between the child C0 and its
parent Ci. Our algorithm tries to fill in the gap by constructing a new
pebble C0 = ( pi+p0

2 , d�ri�r0
2 ) and inserting it between C0 and Ci.

Size optimization: (Figure 10)
Step 1: Find each leaf node with pebble C = (p,r) that only touches
its parent T 0 with pebble C0 = (p0,r0); grow the pebble by shifting
its center in the direction of

�!
p0p and expand its radius until it touches

another pebble in the neighborhood or boundary. To generate a
pattern that fully packs the region boundary, the algorithm overgrows
the pebbles at the border by disabling collision detection with the
boundary, then trimming any path segments outside of the boundary.
Figure 11 shows an example of generated pebbling patterns using
both options.
Step 2: For all pebbles C = (p,r) that only touch two other pebbles
C1 = (p1,r1) and C2 = (p2,r2), grow C by shifting its center in the
direction of 1

2 (
��!p1 p
|p1 p| +

��!p2 p
|p2 p| ) while simultaneously expanding it until

it touches another pebble or boundary. Collision detection at the
border is disabled as in the previous step. This step ensures that all
pebbles will touch at least three pebbles.
Rendering: (Figure 11) Our system renders pebbles starting at the
root tree node. The algorithm starts by drawing a portion of the circle
in a counterclockwise direction, and branches out to draw children in
depth-first order. Figure 11 shows an example of rendering pebbles
and the final pebbling pattern.

5.3.2 Shape Packing
Shape packing is a generalization of pebbling. Instead of packing
circles, primitives of arbitrary shape are now packed. Our approach

Figure 10: An example of pebbling after each step in phase 2. Left
and right show pebbling after step 1 and step 2 respectively. At each
stage, the pebbling from previous stage is overlaid in red.

Figure 11: Left: Example of visiting order of a pebble’s children. Mid-
dle: A final pebbling pattern where collision detection at the boundary
is disabled in order to overgrow the pebbles. Path segments outside of
the boundary are then trimmed and connected. Right: a final pebbling
pattern where collision detection at the boundary is strictly enforced.
The global traversal order for both patterns is colored.

generates an underlying pebbling pattern first, then replaces each
pebble with a primitive, where the pebble is the minimum bounding
circle of the primitive. In Figure 12, each pebble is replaced with a
heart. The starting point of a heart is aligned with the ending point
of its parent.

6 RESULTS

We used Java to implement our algorithms. In our implementa-
tion, each path is represented as a list of three types of SVG path
commands: “line to” and “move to”, with a 2D point parameter
representing the destinations, and “curve to” with two extra points
representing the control points of a cubic Bézier curve. The path is
then output in a .PAT file format, which is supported by our computer-
controlled quilting machine.

Digital patterns. We provide a selection of digital patterns gener-
ated using our system. Figures 13 - 18 show how varying parameters
changes the look of the patterns for each category. Figure 13 shows
Pebbling patterns generated by using 3.3.4.3.4 tessellation with in-
creasing rseed values. Figure 14 shows two sets of four zoomed-in
views of Branching patterns using a fixed skeleton path, two decora-
tive element sizes and different initial angles. Figure 15 shows three
examples of Wanderer patterns with increasing tangent length l. Fig-
ure 16 shows Shape Packing patterns using different primitives for
each column. The top and bottom rows show patterns generated with
a fixed point distribution and different rseed values. Figure 17 and
Figure 18 show various Branching and Wanderer patterns generated
using our algorithm. A comparison between Cameli’s [3] designs

Figure 12: Packing a heart shape inside of circles by first generating
a pebbling pattern, then replacing each pebble with a heart.



Figure 13: Three examples of pebbling generated with a fixed point
distribution distance and rseed=0.5,0.7,0.8 respectively.

Figure 14: Two sets of four Branching patterns generated using the
same skeleton path and decorative element. The left set uses a
smaller decorative element size than the right set. In each set, the
initial angle is increased from left to right and the gap size is increased
from top to bottom.

Figure 15: Three zoomed-in views of Wanderer generated with tan-
gent length l = 0.0,0.2,0.5 respectively. Note the increased curvature
of the connecting curve between each pair of primitives.

and patterns generated using our algorithm is shown in Figure 19.
Fabricated quilts. The final quilting path was sewn on an Innova

brand 30” long-arm quilting machine, with “Autopilot” computer
control software. The stitch density was set to 15 stitches per inch.

Because piecing is a painstaking manual process, we simulated
the look of a pieced quilt by designing a block pattern using Pho-
toshop and printing the design on lightweight cotton twill through
Spoonflower. The center layer uses low-loft needle-punched cotton
batting. The bottom layer uses plain cotton muslin.

For each pattern category, we quilted four designs on simple quilt
blocks of 8in ⇥ 8in. We also created three quilts of 29in ⇥ 29in
using patterns generated by our system. Figure 20 shows two quilted
Pebbling patterns (top) and two Shape Packing patterns (bottom).
Figure 21 and 22 show four quilted Branching and Wanderer pat-
terns respectively. Notice the variety that is achieved even within
one pattern family, especially when combined with contrasting or
matching thread color. In our full quilts, Figures 23 - 25, we took
advantage of the randomized nature of our system, making separate,
but similar, patterns for similar blocks.

Figure 16: Three sets of shape packing using a heart, a rabbit and
”Porthole” by Cameli respectively using the same point set with 63
points. The top and bottom row show results with rseed=0.5 and
rseed=0.6 respectively.

Figure 17: Six examples of Branching patterns generated using our
system with a variety of parameters. All examples are generated from
Poisson-disk point sampling. Gap length l is set to 0.1 to obtain a
packed look. Point set size is around 80.

7 DISCUSSION

In this section we describe additional patterns that we are able to
generate, as well as the limitations and performance of our system.

7.1 Additional Pattern Generation
Our framework can easily be extended to generate additional popular
free-motion quilting patterns. Stippling, also referred to as meander-
ing, is one of the most popular forms of free-motion quilting patterns
that is not included in Cameli’s [3] categorization. Stippling can
be generated using our algorithm by defining one extra skeleton
path post-processing method, fixed-width fill, in addition to Catmull-
Rom [5] interpolation. It can be produced by first generating a
fixed-width fill pattern where the branch’s width is equal to 1

3 of the
point distribution distance, and then interpolating the generated path.
Fixed-width fill takes in one parameter, the width of each branch
w, and adds an offset equal to w

2 perpendicular to the direction of
the branches, while traversing up and down a tree branch. Figure 26
shows two quilted fixed-width fill patterns (left) and two stippling
patterns (right).

Edge-to-edge quilting and all-over quilting (Figure 27) are two
popular techniques that involve repeatedly quilting a “tile.” Such
tiles are carefully designed so that the quilting path will automati-



Figure 18: Six examples of Wanderer patterns generated using our
system with a variety of parameters. Tangent length l is set to 0.5 to
obtain smooth connections between decorative elements. Point set
size is around 60.

Figure 19: A comparison between Cameli’s designs (top) and imitating
patterns generated using our framework (bottom) using one decorative
element traced from the sketches (bottom). From left to right, the
designs are ”Dainty” (Branching), ”Dizzy” (Wanderer) and ”Porthole”
(Shape packing), designed by Cameli [3] from C&T Publishing. The
”Dainty” imitation uses Poisson-Disk sampling and initial angle 0. The
”Dizzy” imitation uses 3.3.4.3.4 tessellation and tangent length l = 0.5.
The ”Porthole” imitation uses 3.3.4.3.4 tessellation and rseed = 0.5.

cally connect when placing two tiles side-by-side, sometimes also
vertically. When the tiles only connect horizontally, they can be
quilted on edges, given the name “edge-to-edge”. When the tiles
connect both horizontally and vertically, they can be quilted on a
whole quilt, given the name “all-over”. Our algorithm for Branching
can generate such tiles by distributing two special vertically-mirrored
points during point distribution, using the tree node containing the
start point as the root of the generated spanning tree and modifying
the traversal algorithm such that the skeleton path terminates at the
end point. Collision tests can be modified such that leaves will not
touch each other when tiles are placed side by side.

The quilted patterns are close to their digital representation, al-
though stretching of the fabrics and inaccuracies in the path follow-

Figure 20: Each of the four quilt blocks use Shape Packing patterns
with points generated from 3.3.4.3.4 tessellation with rseed=0.7. The
top two quilt blocks use a Pebbling pattern. The bottom two quilt
blocks use Shape Packing with a heart (left) and a dewdrop (right)
respectively. The moon quilt block has a larger point distribution
distance d than the others.

Figure 21: Four quilt blocks using a Branching pattern with initial
angles set to 0.

Figure 22: Four quilt blocks using a Wanderer pattern.

ing of the machine can cause misalignment during quilting. The
approximation to the path caused by the finite stitch size may smooth
out sharp features of the decorative element when a sharp turn falls
in between two stitch points. This problem can be mitigated by care-
fully designing the stitch path of the decorative elements, although
the automatically generated paths cannot be fixed in this way.

7.2 Performance
In practice, our framework is efficient for generating patterns used
for quilting, although further optimizations can be implemented.
Generation time for a few example instances is shown in Table 1,
measured on a MacBook Pro Early 2015 laptop. When generating
the spanning tree, our system first constructs a complete graph on all
n points, which has n(n�1)

2 edges and takes O(n2) time to construct.



Figure 23: A 29in ⇥ 29in quilt using a combination of pebbling, shape
packing with a heart and a dewdrop, branching with a leaf and a
spiral, and stippling generated from hexagonal and grid tessellations
designed using our system.

Figure 24: A 29in ⇥ 29in quilt using a combination of shape packing
with a heart, branching with a leaf and a spiral, and stippling with
hexagonal, grid and 3.3.4.3.4 tessellation designed using our system.

We could use Delaunay triangulation instead of a complete graph,
which will give O(n) edges and take O(n logn) time to construct,
where n is the number of points distributed. Running the Kruskal’s
algorithm [12] over the graph with n vertices takes O(n2 logn) time.
When constructing the spanning tree, we can also accelerate collision
testing in Branching by using a hierarchical acceleration structure
such as a bounding volume hierarchy.

7.3 Limitations
Our system currently supports three regular, one semi-regular and
one random tessellations. Other point distributions could be explored
to generate skeleton paths with different aesthetics.

Our algorithm only ensures the bounding circle of each decorative

Figure 25: The front side (top) and back side (bottom) of a 29in ⇥
29in quilt using a combination of wanderer with loops, branching with
a leaf and stippling with grid tessellation designed using our system.

element is packed, not the elements themselves, which leaves gaps
between elements and requires the algorithm to connect elements
with a short line segment in order to traverse them. We explored a
potential solution by building a spanning tree that conforms to the
geometry of the element. During point distribution, the decorative
element’s minimum bounding circle is calculated, and the direction
of all points touching the bounding circle is computed. Points are
then propagated in these directions. Figure 28 shows a pattern
generated using this algorithm. However, this algorithm relies on the
geometry of the decorative element. When the decorative element
only has two points touching the minimum bounding circle, for
example, this algorithm will not be able to distribute points uniformly
in the region. An optimization-based solution can be explored to
pack elements tightly, although this might significantly increase the
run time of the program. It is also non-trivial to come up with a
traversal order for the packed elements.

Our current system only supports scaling and rotation for deco-



Figure 26: The two quilt blocks on the left each uses a fixed-width fill
pattern with w = 1

5 d. The rendered skeleton path of the star is also
combined with a decorative element (circle) by placing the element
at the tip of each tree branch. The two quilt blocks on the right use
a stippling pattern. From upper-left corner in clockwise order, the
pattern is generated using hexagonal tessellation, grid tessellation,
triangle tessellation and grid tessellation.

Figure 27: A hand-drawn edge-to-edge design (left) and an all-over
quilting design (right). Both designs are complementary horizontally,
while all-over design is also complementary vertically.

Figure 28: An example of shape packing of hearts, where the under-
lying spanning tree structure is built using points propagated in the
directions of the element that touches its minimum bounding circle.

rative elements. These two operations are sufficient to generate the
pattern families shown in this paper, although it is not clear how
Emerging, Echoing, and Climber patterns (shown in Figure 2) can
be generated using only these two operations.

Our implementation requires only one template for the decorative
element. We could ask the user to input a library of decorative
elements with slight variations and randomly place them in the
pattern in order to achieve more interesting results.

8 FUTURE WORK

In Cameli’s categorization of FMQ patterns [3], Emerging, Echo-
ing, and Climber patterns (shown in Figure 2) allow more free-form
transformations and will require a more advanced underlying repre-
sentation of the decorative elements as well as collision and packing
algorithms.

A user interface for user sketching, real-time preview and inte-
grated spline manipulation tools that allow path segment editing on
the output will allow quilters to iteratively improve designs.
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