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Figure 1: Overview of our approach. (a) Raw-scanned 3D volume with calibrated images. (b) Our tool enables user to annotate 3D
skeleton structures in the raw-scanned 3D volume. (c) Our skeleton-based segmentation method enables to clean the geometry
issues in the raw-scanned 3D volume. (d) The automatic skinning computation generates the animation-ready 3D skinned mesh.

ABSTRACT

Although RGB-D camera-based scanning has become popular, a
raw-scanned 3D model contains several problems that hinder an-
imation such as fused arms and legs. We propose a system that
allows a user to generate a rigged 3D mesh from a raw-scanned 3D
volume with simple annotations. The user annotates the skeleton
structure on the calibrated images captured at the scanning step, and
our system automatically segments the raw-scanned volume into
parts, generating a skinned 3D mesh based on the user-specified 3D
skeleton. We tested our method with several raw-scanned 3D plush
toy models, and successfully generated plausible animations.
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1 INTRODUCTION

Three-dimensional scanning method is getting popular as one way to
generate 3D models in computer graphics, in addition to polygonal
meshing, 3D sculpting (e.g. Zbrush [24]), and sketch-based model-
ing tool (e.g. Teddy [13]). 3D scanning technologies have originally
used by professional to digitize expensive real-world objects as
3D data using highly expensive devices, such as a laser scanner
(e.g. [20]). However, recent advances in 3D scanning technology
enables a casual user to scan a model using a commodity RGB-D
camera [14, 23]. Now that 3D scanning is no longer a special way,
we can capture objects in daily life, such as a plush toy, to create 3D
character models.

However, a raw-scanned 3D model still has several problems to
use it for animation. Ground plane needs to be removed. Invisible
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areas in scanning sessions generate holes in the scanned model.
Nearby parts become fused together. Consequently, intensive editing
is required to correct these problems. In addition, one needs to set
skeleton and assign bone weights appropriately, which also requires
tedious manual operations.

We propose a semi-automatic method for converting a raw-
scanned 3D model to an animation-ready model with simple an-
notations (Fig. 1). The system requires a raw-scanned 3D volume
and a few calibrated images as input. Next, the user specifies the
predefined skeleton structure and annotates them on the provided
calibrated images. Based on the information above, our system seg-
ments the raw-scanned volume based on the skeleton and generates
a cleaned 3D mesh. Finally, the system automatically computes the
bone weights of each vertex and generates a 3D rigged mesh. By
using this approach, we can simplify the operations in both geometry
cleaning and rigging.

Although there were several methods to clean the geometry and
generate animation ready models, we combine these concepts in
single system to democratize the scanning for 3D animation. With a
small amount of annotation on raw-scanned 3D volume, we clean
the ground and fused parts of the scanned object. Most automatic
rigging methods assume clean 3D models (e.g. [5]), while we deal
with raw-scanned 3D data with dirty geometry.

Our contributions are twofold:

• We present a framework that enables a user to create a rigged
3D character mesh from a raw-scanned 3D model with simple
annotations.

• We describe an algorithm to clean a raw-scanned 3D model
leveraging user-specified skeleton.

2 RELATED WORK

Since the release of the commodity RGB-D camera [34] and techni-
cal advances in scanning methods (e.g. [6, 9, 14, 23]), 3D scanning
becomes a popular way to generate 3D models. However, despite
of its possibility, scanning method is not so widely used in various
context. To democratize this technology, we need to solve common
problems in raw-scanned 3D object.



2.1 Segmentation of Scanned 3D Data
One major problem of scanning technology resides in the object
segmentation. Since there is no semantic process in typical scanning
method [14, 23], target object and surrounding scene are usually not
separated.

There have been several ways to segment an object from the
scene, but most approaches were done in an automatic way. One
representative approach is the plane-based segmentation (e.g. [11]).
In this approach, it estimates the main plane(s) in the view and seg-
ments each object from the plane. This also has several limitations,
so researchers have been started to use deep-learning to segment 3D
point cloud (e.g. PointNet [25]). Compared to automatic approach,
user-assisted 3D data segmentation has not been widely investigated
in a research field. SemanticPaint [32] supported user-assisted seg-
mentation, but it only supported the large-scale object segmentation
from a room-scaled 3D scene.

In this work, we assume small scanning volume which contains a
single object on a flat surface. We only consider removing the flat
surface from the raw-scanned volume. We do not claim a contribu-
tion on this point. However, it is a reasonable assumption because
additional objects usually bother the scanning process (i.e. par-
tial scanning by unseen areas), and it also enforces to decrease the
scanning resolution in each object, consequently.

2.2 Skeleton-based 3D Modeling and Refinement
Another important factor for democratization of scanning method
is shape refinement. There are several issues in a raw-scanned 3D
shape, but many users still rely on conventional 3D modeling tool
which is mainly designed for modeling-from-scratch. Skeleton is a
common structure to segment and refine a raw-scanned 3D data. We
refer a recent survey [30] for more comprehensive introduction on
this approach.

In a skeleton-based shape processing, the way to generate skeleton
has an issue. Most previous methods (e.g. [12, 26]) depend on
automatic skeleton extraction, but it is difficult to achieve completely
automatic approach, so they usually provide user-defined parameters.
Morfit system [33] supports generalized cylinder fitting [3, 8] on
point cloud data to complement imperfect 3D scanning. The concept
of using the skeleton for geometry improvement of raw-scanned data
is quite similar to ours. However, we mainly work on separation of
existing shape by removing volume.

3D skeleton with thickness is also used in the context of 3D
modeling. B-Mesh system [17] utilizes a user-specified 3D skeleton
with key-balls. They generate an initial mesh by sweeping and
stitching the balls in skeleton and subdivide it to obtain a higher
resolution mesh. Sphere-Meshes [31] has the similar concept of
sphere-based 3D skeleton, but it adopts simplices among spheres
to create a final shape. By this approach, they can represent a
complex shape with a small amount of primitive shapes. These
works, however, mainly aim at simplification of well-defined 3D
meshes and do not care for raw-scanned 3D data.

In this work, we focus on separating fused parts in the raw-
scanned 3D volume. We use user-specified 3D skeleton, which is
originally used for rigging the 3D model, to separate fused parts in a
raw-scanned 3D volume. To the best of our knowledge, there is no
previous work to jointly solve problems both separating fused parts
and rigging the limbs in a raw-scanned 3D model.

2.3 Rigging for Mesh Animation
Mesh skinning is a common approach for 3D animation, but the
essential cost on the manual rigging prevents a non-skilled user
from using it. Due to this, the support of the mesh rigging has
been an important research issue for decades. The most direct and
representative way is a fully automatic approach, like Pinocchio
system [1]. Recently, Dionne and de Lasa [5] applied voxel-based
discretization to overcome the manifoldness in the automatic rigging

process. However, this approach is basically limited to the clean 3D
model that has clearly separated limbs with a rest pose (i.e. T- or
A-pose).

Recent work is rather to support the manual deformation with
a novel optimization technique. Jacobson and colleagues [15, 16]
introduced methods that allow to deform 2D or 3D mesh with sev-
eral user-specified control points by minimizing the energy. It al-
lows an intuitive mesh deformation for novices, but it also need an
optimization-based deformation framework, which is not widely
supported in an off-the-shelf graphics engine. In addition, those
methods need an additional discretization such as tetrahedral mesh-
ing [29] that supposes a cleaned 3D surface mesh as an input. By
these reasons, we keep using bone-based skinning for mesh deforma-
tion, while trying to solve the shape issues in an original raw-scanned
3D voxels.

To reduce such an effort in mesh skinning, there is an alternative
method that generates a rigged mesh from scratch. Borosan et al. [2]
proposed the RigMesh system, that enables user to create the skinned
mesh. This system was also based on the generalized cylinder as a
primitive [3,8]. Recently, Jin et al. proposed AniMesh [18] enabling
users to animate 3D models from the RigMesh system [2] by human
motion. These approaches, however, have the same shape limitations
inherited from the geometric primitives. Our work is inspired by
them, but we endeavor to keep using raw-scanned 3D data.

3 MOTIVATION

Before introducing our system, we illustrate the problematic areas
in a raw-scanned 3D model captured with a commodity RGB-D
camera (Fig. 2). We address the three types of problems in this work:
ground plane, internal artifacts, and fused parts.

Ground plane We assume that the target object is placed on
a flat ground plane (Fig. 2a). Such a ground plane is included in
the raw-scanned volume, so it is necessary to remove before dealing
with it as a 3D object.

Internal artifacts Voxel-based scanning methods such as
KinectFusion [14, 23] integrate each depth frame into a 3D regular
grid and construct a truncated signed distance field. It effectively
cancels the depth noise in the measurement, but the integration
usually causes the artifacts inside of the 3D model (Fig. 2b).

Fused parts Different limb parts, such as an arm and leg, are
fused together in the volumetric scan when they touch each other
(Fig. 2c). Therefore, it is necessary to separate them.

(a)

(b)

(c)

Figure 2: Problematic shapes in a raw-scanned 3D model. (a) Ground
plane (b) Internal artifact (c) Fused parts.

These are quite common problems in a raw-scanned 3D model,
but there is no general solution yet. Conventional 3D sculpting
software, such as Zbrush [24], is used to address these issues in
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Figure 3: Annotation tool for the skeleton specification. (top) User
can put the 2D projected points of 3D node in each reference view.
(bottom) Based on 2D points in multiple views, the system computes
initial 3D nodes. User can check and adjust the position and size of
3D nodes.

practice, but this kind of tool and operation are difficult and time-
consuming for novice users. Instead, we fix these problems by
asking the user to give simple annotations.

4 USER INTERFACE

4.1 Workflow
Our system consists of three parts: RGB-D based scanning, user-
annotation, and geometry processing (Fig. 1). We built our scanning
platform with an Intel® RealSense™ SR300 near-range depth cam-
era and the KinectFusion algorithm [14, 23] for depth integration.
Although KinectFusion supports camera tracking by using the recon-
structed 3D volume, our current implementation uses more stable
and accurate marker-based camera pose estimation [27]. Our scan-
ning platform also captures the color views specified by the user.

Once the scanned 3D volume with color images are acquired,
the user switches to the annotation tool. The captured color images
are associated with their corresponding camera poses. Because a
novice user has a difficulty in 3D rotation [8], we do not include
such an operation in our system. Instead, we provide registered
multi-view images and let user do the 2D-based operations to handle
the annotations. The number of images and its distribution are not
limited, but we suppose less than 20 side views for the user interface.

With the registered multi-view references on the raw-scanned
volume, the user first annotates the ground plane points. This step
seems unnecessary because we are using fiducial marker in our cur-
rent implementation. However, it is a tentative feature for prototype,
and we cannot expect that information in a casual scanning situa-
tion. Hence, we do not rely on the marker information as possible.
Removing the ground is done, then the user annotates the skeleton
structure in raw-scanned volume. After setting the skeleton, the
system runs an automatic geometry processing algorithm to generate
a skinned mesh from the raw-scanned 3D volume.

4.2 Annotation Tool
We implemented a simple annotation tool for the user to provide the
essential information to clean and rig the raw-scanned 3D volume.
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Figure 4: Removal of ground plane and internal artifacts. (a) We
remove the ground plane from user-specified points. (b) From the
visibility test in five directions, we acquire the inside (blue) and exte-
rior (red) voxels. Based on this information provided by the ground
equation, we fill the hole at the bottom (green).

The process is largely divided into two parts: ground plane specifi-
cation and skeleton structure annotation. The first part allows the
user to specify the points on the ground plane. Clicked points are
projected into a 3D domain and used for ground plane estimation.

The second part is skeleton structure annotation (Fig. 3). This
part has several steps. First, user chooses the skeleton structure. We
currently provide humanoid and quadruped types (Fig. 5), which are
compatible with a common motion database such as [4]. Next, our
system moves to the 2D annotation step (Fig. 3a). Our system cur-
rently requests the user to specify skeletons on two views to get 3D
skeleton. After the annotations at two-views are done, we compute
the 3D position of each node with epipolar geometry [10]. Once the
initial 3D points are computed, our system then moves to the adjust-
ment step (Fig. 3b). The user can check and adjust the position and
size of each 3D node with simple drag-and-drop operations. More
advanced technology such as inferring 3D skeleton from multi-view
2D skeletons [19] is also available, but our raw-scanned 3D volume
may have fused parts which make skeleton extraction difficult. We
believe that editing the predefined 3D skeleton with about 20 bones
is not so tedious for a user, so we completely rely on the 3D skeleton
specified by user.

5 ALGORITHM

Based on the user-specified skeleton given in the annotation tool, our
system generates a cleaned mesh from the 3D volume and computes
its skinning. Our geometry processing is mainly inspired by Dionne
and de Lasa [5]. In their method, they first voxelize the character’s
3D mesh before computing the vertex to bone distances. Our scanned
3D data is also contained in 3D voxel space, so we adopt their main
workflow. However, the dirty geometry in a raw-scanned 3D data
prevent us from using this method directly. We therefore added
extra steps to clean the dirty geometry in raw-scanned 3D volume.
Our geometry processing consists of three parts: removal of ground
plane and internal artifacts from the volume, separation of fused
parts, and mesh skinning.

5.1 Removal of Ground Plane and Internal Artifacts
We first separate the ground plane from the user-specified 3D points.
Due to the lack of semantics, the ground plane is mixed with the
object in the raw-scanned volume. Using the 3D ground plane points
identified by users, we compute the equation of the ground plane.
We then remove all the voxel under (Fig. 4a).

Next, we remove the internal artifacts in the raw-scanned volume
by modifying the visibility checking approach in Dionne and de
Lasa [5]. Fig. 4 illustrates our filtering process. We check the
visibility of each voxel from five orthogonal view directions (we
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Figure 5: Predefined skeleton set in our prototype. (a) Humanoid and
(b) Quadruped model.

do not consider bottom-to-up direction because there is a hole).
The internal and exterior voxels can be determined based on these
visibilities. After we conclude that the visible voxels are exterior
and invisible voxels are interiors, we can then remove all the internal
voxels.

Finally, we fill the hole at the bottom of the object caused by the
removal of the ground plane (Fig. 4b). We check the right above
layers on the rejected volume, which is specified by the ground
plane equation. If it is internal, then we attach the exterior under
this voxel. Using this approach, we can acquire the water-tight 3D
volume without the internal artifacts.

5.2 Separation of Fused Parts
To leverage the user-specified skeleton to separate fused parts (e.g.
Fig. 2c), we first compute the distance fields from each skeleton
bone to each internal voxels, like [5]. We then associate each voxel
with the nearest bone. For each pair of adjacent voxels, we check
the precomputed graph geodesic in the skeleton (Fig. 5) between the
associated bones. To compute this geodesic, we consider each bone
as a graph vertex and each node (bone connection) as a graph edge.
If the graph geodesic is smaller than the threshold (we used 3), then
we keep them connected. If the geodesic is larger, then we separate
(disconnect) the two voxels. Since the raw-scanned volume contain
truncated signed distances, the result mesh keeps the water-tightness
whether voxels are separated or not. Finally, we obtain the surface
mesh by applying the iso-surface extraction method [7, 21]. The
associated bone is visualized with color on this extracted mesh, so
the user can easily modify the skeleton (Fig. 6).

In a computation of distance fields, we apply the fast marching
method [28] (FMM) instead of the Dijkstra algorithm [5]. The main
reason is the difference in voxel resolution. We directly employ
the raw-scanned 3D volume in the voxelization, so our resolution
is coarser than Dionne and de Lasa’s. In this situation, the dis-
tance field calculated with the Dijkstra method suffers from artifacts
by Manhattan distance in the parts separation and mesh skinning
(Fig. 7). By substituting the metric computation with FMM, we
could simply solve this issue.

Compared to standard human models, our target models (plush
toys) have characteristic shapes (e.g. large head). For this reason, the
naı̈ve distance computation does not work well without considering
the bone volume (Fig. 10 and 11). To overcome this issue, we allow
the user to specify node size in the annotation tool. Bone shape
is also considered as a capsule-like 3D volume. Specifically, this
volume is a convex hull of two spheres those are possibly having
different radii. We describe how to compute this in Appendix A.
After determining the voxels which are included in the node, we
place these voxels as the initial seeds which have 0-distance, and
then run the FMM to compute the distance field. The computation
of the entire distance fields consumes a lot of time, so we only
update the distance fields of modified bones in the recomputation
step. We also interactively visualize the intermediate results after
each computation for a distance field.

(a) (b) (c)

Figure 6: Our separation method for fused parts. Colors are asso-
ciated to bone. (a) Mesh from raw-scanned volume. Near parts are
wrongly fused together. (b) We identify the wrong connection in the
voxel domain (white dots denote the voxel points). (c) Mesh after the
separation.

(a) (b)

Figure 7: The impact of metric differences. (a) Dijkstra-based metric
causes the discrete artifacts in the final shape due to the Manhattan
distance. (b) Our FMM-based metric generates relatively smoother
result, in spite of the coarse voxel resolution.

5.3 Mesh Skinning
For the last step, we compute the skinning weights for the 3D mesh.
We apply the automatic skinning computation by Dionne and de
Lasa [5] for vertex weights. Since we already acquired the cleaned
3D mesh and distance fields associated with the bones, we can reuse
them in our computation as much as possible. However, distance

Figure 8: Illustration of the inconsistent distance values. Although
we disposed the voxels in fused parts (white-toned), the wrongly
propagated distances still remain (red arrows). To avoid recomputation
of distance fields, we only bind the associated and adjacent bones to
the vertex (yellow arrows).



fields may have incorrect distances (Fig. 8) because the voxel sep-
aration is determined after computing the distance fields. Naı̈ve
approach to solve this issue is recomputing the distance except for
disconnected voxels, but it is a time-consuming process that is not
desirable for the interactive system. To avoid this without recompu-
tation, we only bind the associated and its adjacent bones in each
vertex.

6 RESULTS

6.1 Quality and Performance
We tested our method with 10 plush toy models. All of them were
scanned in 1283 voxel resolution, and each length of axis is 25
[cm]. Eight of them were human-like biped model, though the
proportions were quite different. The remaining two were horse-like
quadruped models. Fig. 10 and 11 shows our skeleton annotation,
parts separation and skinning results.

We measured the performance of our current implementation: a
desktop computer consisting of an Intel® Core™ i7-7700K CPU
with 16GB RAM. Table 1 shows our experiment results. Most
computation time was spent on the distance fields computation,
because they needed to compute a 3D distance field per bone. Note
that the total time refers the worst-case situation, which computes
all distance fields. In a casual usage, 2-5 bones were recomputed,
so the wait time usually took 10-20 seconds, except of the initial
computation.

6.2 Comparison
We compared our animation result with the Pinocchio system [1].
However, since Pinocchio had no mesh cleaning process, simply
applying the raw-scanned 3D model could not generate a meaningful
result. For this reason, we fed the cleaned mesh from our separation
method and switched the mesh skinning to Pinocchio.

Fig. 9 shows a screenshot of the mesh animation generated by
Pinocchio and us. In case of Pinocchio, it initially assumed the A-
or T-pose, so the skinned results were not correct. In our method,
however, there is no such an issue because we can support non-
standard initial pose from the user specified skeleton. In other words,
it implies that our system can cover a wider range of 3D character
models than Pinocchio.

Figure 9: The screenshot of animation by Pinocchio [1] and ours. Be-
cause Pinocchio assumes A- or T-pose at the initial status, it occurred
false rigging (left). In contrast, we can support the arbitrary initial pose
from the user-specified skeleton (right).

6.3 Pilot Study
We conducted a pilot user study to evaluate our annotation sys-
tem with the separation algorithm. We scanned 3D models shown
in Fig. 10 in advance and captured equally-distributed side views
(e.g. Fig. 1a) per 3D model. After the scanning session, we invited
five users who had a knowledge on 3D computer graphics. One of
them was an expert and remaining four had an intermediate knowl-
edge on 3D computer graphics. The session took 10-15 minutes per

Figure 10: The results of humanoid shape. (left) Frontal image (mid-
dle) User-specified skeleton (right) Mesh and removed voxels.



Table 1: Our experiment result. Timing is seconds.

Model Model Artifacts Distance Voxel Mesh Total #valid voxels #vertices
name type (#nodes) removal comp. segment. skinning time in the raw-scan in the final mesh
Bear blue Humanoid(18) 2.371 24.375 5.254 3.876 31.371 86,508 20,513
Bear brown Humanoid(18) 2.361 35.075 5.687 9.856 52.498 154,306 33,297
Bear white1 Humanoid(18) 2.386 32.405 5.690 8.312 48.459 138,517 30,434
Bear white2 Humanoid(18) 2.427 53.363 6.364 17.841 78.962 264,961 47,778
Bear beige Humanoid(18) 2.358 28.347 5.602 6.209 41.823 112,096 26,197
Bear orange Humanoid(18) 2.358 45.340 6.261 14.672 67.817 220,157 43,274
Bear green Humanoid(18) 2.350 25.986 5.465 4.784 38.226 98,052 22,943
Frog Humanoid(18) 2.373 21.838 5.165 3.353 32.226 69,425 19,603
Skunk Quadruped(20) 2.409 31.219 5.457 5.439 43.932 106,620 46,366
Cat Quadruped(20) 2.372 21.434 5.340 2.260 31.257 52,443 15,182

Figure 11: The results of quadruped shape. We provide two different
views for each model. Columns are consistent with Fig. 10.

model. All participants succeeded in generating similar positioning
of skeleton to that of Fig. 10. However, the size of nodes varied to
the participant, so partitioning results also varied.

In the post study interviews, they mentioned that they did not
have difficulty understanding the concept or the manual operations
of our annotation system. Two participants mentioned on the unique
experience of our 2D-based interface and wanted to use a 3D-based
interface, but they also adapted to using our system in a short time.
However, all participants mentioned that it is difficult to anticipate
the actual impact of the size of nodes in the final mesh. Because of
this, they needed to adjust the node size to recompute the distance
fields several times. We thought that the wait time after each opera-
tion might cause frustrations, but no participants complained about

it owing to our interactive visualization. However, they also implied
that it will be obtrusive if they need to work on the task for a long
period. Additionally, two of them said that they would like to know
the impact of their operations on animated 3D mesh, which is not
included in our current implementation.

7 DISCUSSION

Our method successfully cleaned and created a skinned 3D mesh
from the raw-scanned 3D volume with simple manual annotations.
However, we still have several issues to be solved. The most pressing
problem is the shape completion at the invisible parts. For instance,
we simply created the flat surface on the ground where is invisible
at the scanning session. It made generating the water-tight 3D shape
possible. However, the generated shape was not so natural. Similarly,
we also have a shape problem in the separated parts described in
Sect. 5.2. Although our voxel resolution is adequate so there is no
critical issue yet, the shape in the originally fused parts was not so
natural, neither. However, we clearly identify disconnected voxels in
our framework, so it will be also possible to improve these areas. The
possible solution to this problem is to utilize the skeleton’s shape.
Based on the size of the bones, we can create a plausible 3D shape at
the invisible parts. Generalized cylinder based modeling and fitting
method [3, 8] might be helpful for this process. Additionally, mesh
subdivision or remeshing at those area is also helpful for smoother
results.

Another significant drawback is the mesh quality in the animation.
In our animation results, we can still find visual artifacts not only
the cleaned parts mentioned above but also the other parts. It comes
from various reasons, but the main reason is the low mesh resolution.
Mesh subdivision at those area or remeshing will be helpful for
resolving these artifacts. Combining those mesh operations with user
interface will be necessary for generating more natural animation.

In this paper, we only evaluated our system with a small number
of participants. We need a more intensive study to evaluate our
annotation system. Prior to that, we need to improve our prototype
system to provide a smoother user experience. The main problem of
our current prototype is the lack of the rapid user feedback. For the
functionalities mentioned in our pilot study, such as the quick voxel
visualization and mesh animation, we need a fast computation of the
distance field. To achieve this, computing distance field transform
in linear time [22] instead of geodesics-based measurement [5, 28]
might be helpful. Because we dispose computed distances due to
the wrong propagation for parts separation, such a heavy compu-
tation for this will not be necessary. After removing fused parts
in a raw-scanned 3D volume by distance transforms, recomputing
voxel-based geodesics for mesh rigging can provide more acceptable
experience to user.

We also need to support variable skeleton structures. The two
representative skeleton structures we possessed (Fig. 5) were not
enough to handle the 3D shapes in a real-world. For example, we



cannot handle a fish-like shape in our implementation. To solve this
issue, we allow users to create novel skeleton structures. An intuitive
and easy-to-use tool is needed to achieve this goal.

8 CONCLUSION

We proposed a system allowing users to generate a rigged 3D mesh
from a raw-scanned 3D volume with simple annotations. It asks the
user to annotate the skeleton structure on calibrated images captured
at the scanning step. Our system then segments the raw-scanned
volume and generates a skinned 3D mesh based on the user-specified
3D skeleton. We tested our system with 10 raw-scanned 3D plush
toy models, and succeeded generating clean, skinned 3D meshes
and animating them. However, we still need improvements on the
final shape, especially on the separated limbs where were originally
fused parts.

A CONVEX HULL OF TWO SPHERES
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Figure 12: Our bone shape as a convex hull of two spheres.

Here we describe how to compute the convex hull of our bone
shape (Fig. 12). Since we have two spheres with different radii in
our convex hull, the main issue is basically computing the center
position and radius at the cut surface (trapezoid in Fig. 12). We
compute the angle a by:

sina =

✓
r2 � r1
|c2 � c1|

◆
(1)

Note that a numerator becomes a negative value when r1 > r2,
but it still works. By using this value, we can compute the center of
a cut surface c̃i and its radius r̃i, respectively:

c̃i = ci � v̂ · ri sina (2)

r̃i = ri cosa (3)

Algorithm 1 Determine a point in a bone
if |p� ci|< ri where i = 1,2 then . 1) point to spheres

return inside
else

ṽ = c̃2 � c̃1, w = p� c̃1
t1 = |ṽ ·w|, t2 = |ṽ · ṽ|
if t1 < 0.0 or t2 < t1 then . 2) check ortho projection

return outside
else

t = t1/t2, p̃ = c̃1 + t · ṽ
dist = |p� p̃|
size = (1.0� t) · r̃1 + t · r̃2
if dist  size then . 3) distance to line segment

return inside
return outside

where v̂ denotes the normalized directional vector c2�c1
|c2�c1| . Based

on the relationship above, we compute Algorithm 1 to determine
whether the voxel point is inside of this convex hull.
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