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ABSTRACT

In this work we propose a simple optimization based technique to
compute camera poses for drone assisted automated image acqui-
sition. We use this technique to create highly detailed 3D models
of buildings using multi-view reconstruction. Our reconstructed
models are great for use in virtual reality (VR) environments since
they exhibit good amount of detail that is useful for creating realistic
virtual walkthroughs. Creating a good 3D reconstruction with a set
of nadir images is difficult since the vertical surfaces of buildings are
not captured very well and are therefore not reconstructed accurately.
Acquisition of non-nadir images require avoiding obstacles around
the structure. Our technique is based on mathematical optimiza-
tion, and is capable of calculating camera positions and orientations
to maximally cover horizontal as well as vertical surface patches
while avoiding obstacles around the building. We present a complete
pipeline for a mostly automated and robust approach via a camera
mounted quadcopter drone. We also validate our approach via a
graphics-based simulation.

Keywords: Architectural reconstruction, UAV path planning, 3D
multi-view reconstruction

Index Terms: Theory of computation—Discrete optimiza-
tion; Human-centered computing—Virtual reality; Computing
methodologies—Mesh geometry models

1 INTRODUCTION

Spatial data is central to any virtual reality (VR) system, and with
the increasing popularity of VR based experiences, fast creation of
high-fidelity geometric content has become a challenge. Such con-
tent is readily usable in 3D games, walkthroughs, and simulations.
While it is usually created by 3D modelling artists, there is an in-
creasing interest in semi-automatically synthesizing geometry. Such
approaches can potentially create large 3D models in less time and
with minimal human intervention. Modern ways to such modelling
and creation primarily include terrestrial laser scanning (TLS), multi-
view stereo (MVS) reconstruction, rule-based synthesis (procedural),
and their variants [27]. Among these approaches, laser scanning
provides highly detailed and accurate surface points, but is an expen-
sive technology. Stereo reconstruction based methods are promising
and recent scalable algorithms [13, 35] are capable of reconstructing
large spaces. Procedural modelling algorithms are unique since
they provide a way to accurately synthesize structures with inter-
nal details. Man-made structures like urban landscapes have been
successfully created using rule-based grammer [11, 23, 26].

In stereo reconstruction, capturing correct geometry and appear-
ance of an object requires that the images have good overlap and
should have near orthogonal visibility of the object [19]. Large ar-
chitectural structures are not very accessible for ground based image
acquisition suited for a multi-view reconstruction. Such a manual
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acquisition process is not only time consuming, but may also not
guarantee sufficient overlap for a correct reconstruction, and result
in captured images with high perspective distortion. A convenient
and popular choice has been aerial photogrammetric surveys that
perform a horizontal flight to capture a set of nadir looking images.
Such images capture detailed view of the region from top, but fail to
cover the structures from sides. The resulting 3D reconstructions are
not detailed enough for applications like a virtual walkthrough where
the person moves near the ground surface. With the advent of cam-
era mounted miniature UAV drones, it is now possible to manoeuvre
into difficult spaces remotely and get novel views of structures that
are otherwise very difficult to capture. This has opened-up a new
area of exploration for optimal capturing of photographs to create
3D models that are detailed from all sides.

In this work we investigate a fast and practical approach for drone-
based image capture planning. Such camera mounted drones usually
have a tight budget for flight duration and number of waypoints. We
propose computation of camera poses at various heights to ensure
overlap and visibility for a highly detailed reconstruction. Our
approach is well suited to capture near orthogonal images for 3D
modelling based on discrete optimization of camera positions and
orientations in presence of real-world obstacles.

2 RELATED WORK

2.1 Multi-view 3D Reconstruction

Multi-view reconstruction [17] is a widely used 3D reconstruction
approach using photographs that capture an object from multiple
viewpoints. Reconstruction from multiple views has two stages:
sparse reconstruction, and dense reconstruction. In the sparse re-
construction stage, the algorithm takes a set of images covering
an object from multiple viewpoints and performs an image match-
ing operation to calculate common feature points between pairs of
images. This process simultaneously optimizes external camera
parameters and 3D positions of a sparse set of feature points. In
dense reconstruction stage, the algorithm computes a dense set of
3D points as seen in multiple pairs of images. The dense point
cloud is then triangulated into a 3D surface mesh and textured using
the available image views. Recent advancements in precise texture
mapping attempt to select best views for any mesh triangle to tex-
ture map with minimal illumination change and hide seams [12, 40].
Many open-source implementations like OpenMVG [24, 25], Open-
MVS [2], COLMAP [35, 36], MVE [13], and CMPMVS [21] are
able to perform large scale multi-view stereo reconstructions. Soft-
ware like Open Drone Map [1], Pix4D Mapper [31], and Agisoft
Photoscan [4] provide 3D reconstruction pipelines for drone based
aerial surveys. Wolberg et al. [41] present a lightweight sketching
based 3D modelling approach which utilizes structure from motion
(SfM) along with precise geometry creation to generate textured
3D building models. For inaccurate 3D models, Aganj et al. [3]
warp the images to fit the model. Camera poses computed during
the sparse reconstruction stage of multi-view reconstruction can be
used to texture map such models. Dellepiane et al. [9] propose an
optical flow based approach to rectify local misalignments in texture
mapping of 3D models during stereo reconstruction.
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Figure 1: Building reconstruction workflow. We begin with a set of building boundaries for various levels, and a reconnaissance mesh created with
multi-view stereo reconstruction from nadir images that serves as the set of static obstacles. Our optimization scheme solves for camera positions
and orientations by maximizing coverage of surface patches while maintaining near orthogonal view to the nearby surface patches. These camera
poses are used to capture images by a drone which are then processed by a standard multi-view reconstruction solver to give a textured mesh.

2.2 Image Capturing for Reconstruction

Multi-view stereo algorithms work for images with any orientations
as long as the criteria for sufficient overlap, object coverage, and
illumination are satisfied. Since it is usually difficult to estimate
the coverage while photographing an urban landscape, a convenient
choice is to acquire nadir images with the required overlap. This has
the effect of covering the top of the landscape very well, but usually
lacks coverage of vertical walls and overhangs. The resulting 3D
reconstruction is thus an incomplete and inaccurate representation
of the building. Ground based photography, on the other hand, is
also not a viable solution since not all parts of an intricate building
structure can be reached out to leading to photographs that only
partially cover the entire building. This leads to the problem of
next best view selection, which is extensively explored in the path
planning and reconstruction literature [7, 30, 32]. The problem can
be viewed in the context of types of sensors used and the planning
required. In this work, we do not address the use of depth sensors,
and restrict to a simple camera based sensing.

In a motorized positioning system for a structured light sensor
arrangement, Fan et al. [28] provide an optimization based view se-
lection and path planning algorithm for 3D object scanning. Recently
camera mounted drones have been used for planning surveys that
can take frontal photographs of buildings. Hoppe et al. [18] estimate
optimal camera network by solving the Constraint Satisfaction Prob-
lem. Roberts et al. [34] present a submodular trajectory optimization
for camera poses that avoids obstacles. The authors calculate op-
timal camera trajectory and orientations by maximizing coverage.
A more recent approach by Smith et al. [37] proposes a continuous
optimization approach of 5D camera poses. The authors suggest
reconstructability heuristics and minimize an objective function for
exploration of unseen regions in a scene while maximizing recon-
structability heuristics. In our work, we take a different approach
to optimizing camera positions and orientations. We select best
camera views at any altitude while staying a certain fixed distance

from the building walls to maximize coverage of the target surface.
Our simplified approach is directly applicable to off-the-shelf drones
with tight constraints (such as short flights and fixed number of
waypoints), offers fast running times, and results in high-quality 3D
reconstructions.

2.3 Obstacle Avoidance in Path Planning
In a real-life scenario, a building is usually surrounded by various ob-
stacles including trees, poles and adjoining buildings. Path planning
literature in robotics covers obstacle avoidance in great detail [8,22].
The A* search algorithm [16] is one of the early algorithms suc-
cessfully used for path planning on a raster grid. Voronoi diagram
of empty space of obstacles results in a medial axis graph where
a shortest path between any two points on the skeleton provides a
clearance path [39]. Combined with the Delaunay Triangulations,
these have been used to compute shortest paths in a polyhedral set-
ting [10, 38]. Geraerts [14] introduces an Explicit Corridor Map
constructed from the generalized Voronoi diagram to compute cler-
ance paths for collision free motion in virtual environments. Álvarez
et al. [5] apply the Fast Marching Method based for path finding
in presence of obstacles. The authors employ a leader-followers
scheme wherein the Eikonal equation governs time of arrival. The
resulting path provides maximal clearance in narrow passages and
in-between obstacles. We utilize this approach to conservatively
replace potentially unsafe paths with clear routes for the drone.

3 OVERVIEW OF APPROACH

Our reconstruction pipeline consists of computation of camera poses
for height-wise optimal building surface coverage, drone assisted
photography and 3D reconstruction. A drone with a gimbal mounted
camera is used to photograph difficult parts of a building, which are
otherwise unreachable from a ground camera. An initial flight path
is computed from building boundaries which may be obtained either
from building blueprints or cross-sections of reconnaissance mesh.



We address the challenge of manoeuvring the drone in difficult loca-
tions while carefully avoiding obstacles along its path. An overview
of our approach is shown in Figure 1. The camera positions and
orientations are computed via a discrete optimization process that
maximizes total surface coverage while maintaining near orthogonal
view of close by surfaces. The camera positions are generated on an
obstacle-free path and we ensure that the drone remains on the same
path even during flight legs in-between consecutive positions. The
obstacles themselves are computed with multi-view stereo recon-
struction from a reconnaissance survey of the region. Initially, the
reconnaissance mesh is reconstructed from a set of nadir images and
at the end a final mesh is reconstructed from a set images captured
using the computed camera poses.

4 DRONE PATH PLANNING

Our automated image capturing approach employs a camera
mounted quadcopter drone to take photographs of a building. We cre-
ate floor-wise paths for the drone to traverse for photographing the
building walls. The photographs are captured along an obstacle-free
path looking at a wall. We deduce camera positions and orientations
via an optimization that maximizes the total coverage such that any
patch on a wall surface is seen by at least K cameras.

4.1 Building Boundaries
Building boundaries at various altitudes serve as an input for our
algorithm to guide the drone. A flight mission for an altitude be-
gins with a fixed starting point that determines the relative drone
orientation for the first camera position. We carry out multiple such
missions for different heights that cover the entire building vertically.
The heights are calculated so as to keep a sufficient vertical overlap
between photographs for a good reconstruction. Typically a mini-
mum side-lap of 60% is recommended for multi-view stereo aerial
surveys [29]. We compute the mission altitudes based on the desired
vertical overlap between photographs (70% in our experiments) and
the vertical coverage of the camera.

The building boundaries may be derived either from digital
blueprints of the building or from horizontal cross-sections of the
reconnaissance mesh. Here we use georeferenced digital blueprint
boundaries as input. We create an offset flight path Po by expanding
a boundary by a distance d. This flight path ensures that the drone
during its flight is at a distance d from the building walls. However,
there might be obstacles on this path which we resolve in the next
stage.

4.2 Obstacle-free Path
Path Po can be sampled to generate camera positions if there are
no obstacles around a building; however, in a real-life scenario
buildings are surrounded by a multitude of obstacles including trees,
poles, buildings, and other structures. While the current off-the-shelf
drones are capable of obstacle avoidance, this is still in research and
requires ideal operating conditions. In this work, we classify obsta-
cles as static and kinematic and propose to handle static obstacles as
part of the path planning stage. Since most of the objects fall under
the static category, majority of the obstacle avoidance burden shifts
to path planning. Therefore, we rely on a drone’s built-in obstacle
avoidance for kinematic objects and as a safety feature. We deduce
an obstacle-free path P from the initial path Po and a set of static
obstacles detected at the flight altitude under consideration. These
static obstacles are taken from a reconnaissance mesh. After this,
an obstacle-free path is computed in 2D using the Fast marching
Method [5].

A reconnaissance mesh of the surrounding area is computed from
nadir aerial photographs using state-of-the-art multi-view stereo
method. We capture these nadir photographs at a height of 70 m
from the ground level at 4K resolution to get a high quality 3D
reconstruction. Such a mesh captures all the buildings and static
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Figure 2: Avoidance path for drone flight. An offset curve P0 (shown in
blue) maintains a safe horizontal distance d from the building boundary.
Intersection with the obstacles detects unsafe segments (dashed blue)
that are replaced with the safe ones. An obstacle-free path P consists
of subpaths from P0 (shown in solid blue), and the computed obstacle-
free subpaths (shown in solid red).

obstacles like trees and poles as blobs. This mesh is georeferenced
using the geotagged photographs during reconstruction. It serves as
a base mesh for all obstacle computations and registration of high
quality reconstructions in later stages.

In order to construct a 2D obstacle map O at a given altitude h,
we intersect the mesh with two planes at heights (h� 1) meter and
(h+ 1) meter. This is performed to take care of changes in height
of upto ±1 meters while the drone is airborne. An intersection
in this case is a set of disconnected polygons (possibly concave).
An obstacle map is created by taking a union of these two sets of
polygons.

We now calculate subpaths in Po that intersect with obstacles
in O. These subpaths are the minimum set of regions of Po that
must be replaced with obstacle-free pathways (shown as dashed
blue subpaths in Figure 2). For the purpose of computing these
subpaths, we dilate the obstacle map by a certain distance to take
care of GPS positioning error in the drone. Usually this is about 2
meters in our experiments, thus we dilate the obstacle polygons by
twice that distance. The starting and ending point of these subpaths
are then used to calculate new subpaths using the Fast Marching
method proposed by Álvarez et al. [5]. This approach uses a variant
of the Fast Marching Method to search for a path amidst obstacles
in a binary obstacle grid map. The search is performed by first
creating a distance map and then computing the shortest distance
via the gradient descent method. We split P0 into subpaths that are
free from obstacles and the ones that are not. An overall safe path
is reconstructed by replacing the unsafe subpaths by obstacle-free
curve segments (shown as red subpaths in Figure 2). This path serves
as an obstacle-free path P , which by construction is maximally away
from obstacles on both sides.

4.3 Computation of Camera Positions and Orientations
We use path P to sample optimal camera positions and compute
orientations. These camera poses will be used to capture photographs
for 3D reconstruction. Therefore, we would like to ensure that
the entire surface at a particular height is covered well from these
generated views. In addition, the drone hardware usually imposes



a limit on the number of waypoints that it can handle in a flight
mission. In order to limit the number of points and also cover the
area such that each patch on the surface is seen by N cameras, we
solve an optimization problem whose solution gives us the desired
positions and camera orientations.

Given a closed boundary B(t) at height h parameterized by curve
length t 2 [0, ⌧ ], we consider a set of N candidate camera posi-
tions {p1, · · · ,pN} lying on the obstacle-free path P around the
boundary. Let us also denote by V(pi,B(t)) the visibility function
that returns a subset ti = [j2J [t

(j)
i , t(j)i ] of the parameter t for

points on B(t) that are visible from camera position pi. Depending
on the boundary shape and the camera pose, ti may contain more
than one disconnected ranges of t. In order to calculate optimal
camera positions and orientations, we minimize the length of un-
covered boundary as seen by the N cameras such that any point on
the boundary is seen at least by K cameras. We choose the number
of cameras N to be the average number of views needed for the
boundary to be seen by K cameras as

N = min

✓
K

⇠
⌧

2d tan(✓/2)

⇡
, Nmax

◆
,

where d is the offset distance between path P and boundary B, ✓ is
the vertical field of view of the camera (see Figure 2), and Nmax

is the maximum waypoint limit imposed by the drone hardware
for a flight mission. In practice, since d does not remain constant
and variably decreases at places of obstacles, we decide N based
on K + 1 cameras rather than K to introduce some redundancy
in the optimization. At the moment N is not a parameter of our
optimization.

We consider the optimization problem of minimizing the uncov-
ered length by calculating the total length deficit U . Let us define
the length of boundary which is seen by at least k cameras as

Lk =

Z ⌧

0

�k(t) dt, (1)

where, the characteristic function �k(t) : [0, ⌧ ] 7! {0, 1} indicates
if t appears in the intersection of any k distinct intervals out of the
N intervals generated by the visibility function V . Thus, for k > 1
we define

�k(t) =

8
<

:
1 if t 2

\

i2e

ti for at least an e 2 Sk,

0 otherwise,
(2)

where Sk is a set of all k-combinations of elements from the set
S = {1, · · · , N}, and

�1(t) =

(
1 if t 2 ti, i 2 S,

0 otherwise.
(3)

In essence, �1(t) indicates if boundary point B(t) is seen at least by
1 camera, �2(t) indicates if boundary point B(t) is seen at least by
2 cameras, and so on.

We define length deficit for k-cameras as the length of boundary
not seen at least by k cameras. The total length deficit U is then
computed as the sum of length deficits for different number of
camera visibilities, which can be written as

U =
KX

k=1

✓
⌧ �

Z ⌧

0

�k(t) dt

◆
. (4)

The visibility function V depends on the shape of the bound-
ary B and has no analytical form. Therefore, we minimize U in

a discrete setting. From a computational perspective, we subdi-
vide the boundary B into nb small patches of size �t with patch
centres at {t1, · · · , tnb}, and sample the path P into np positions
{p1, · · · ,pnp}. Since V is computationally expensive, we precom-
pute the visibility between a point pi and a boundary point B(tj)
in a matrix V 2 Rnp⇥nb where Vij is the cosine of angle between
the vector (pi � B(tj)) and the normal vector nj at the boundary
point.

We first considered a different form of equation (4) without sum-
mation that considered length deficit for only single k value. In
our experiments, optimising for a single k value led to skewness in
the distribution of camera positions (these were not well distributed
around the boundary and resulted in more oblique views). We no-
ticed that optimising over all k values (i.e, with a summation) leads
to a more uniform distribution of camera positions (thus giving us
more frontal views). In both cases, the optimization objective was
met, however the reconstruction results would vary due to nature of
captured images (oblique vs. frontal).

We use genetic algorithm [15] to solve for camera positions and
orientations that minimize coverage deficit U (or maximize cover-
age) where any boundary patch is to be seen by at least K cameras.
The N positions are taken from the set of np sampled positions from
P . We impose lower and upper bound constraints on the camera
orientations. Any camera orientation vector vi will at most make an
angle � with the normal vector ⌘i to the boundary at camera position
pi. That is to say, for � = cos�1 (vi · ⌘i),

�� <= � <= �.

A frequency count of visibility (true if Vij > 0) along columns of
V can be used to calculate �k and U during the optimization process.
Our variable set for genetic optimization consists of parameters t
and � with their respective lower and upper bounds. We use a
mutation strategy to randomly generate directions that are adaptive
with respect to the last successful or unsuccessful generation. For
the next generation, children are generated from two parents using a
scattered crossover.

Figure 3 shows a set of camera positions and directions generated
by our optimization procedure. We observed that about 200 genera-
tions were sufficient to reach the optima. Our termination criterion
consisted of about 100 generations of insignificant change in the
fitness function U . It can be observed that our algorithm ensures
visibility by K cameras for most of the boundary patches (~90% in
the shown example), while the remaining patches are mostly interior
and oblique. For these remaining patches, minimizing U amounts to
optimizing visibility by K�1 cameras, and so on. The same cannot
be ensured if, for example, we sample the camera poses regularly
along the obstacle-free path since the boundary may have intricate
turns and folds that cannot be handled by a simple strategy.

4.3.1 Obstacle Avoidance between Waypoints
The above optimization results in camera positions sampled along
an obstacle-free path. However, the drone moves in a straight line
path in-between any two consecutive positions. The closed path P is
usually concave in nature and therefore, a straight line path between
any two points can intersect with nearby obstacles. Therefore, we
check if the line segment connecting any two consecutive waypoints
intersect with the obstacles in O. We replace each such segment
with an approximation of L between the segment endpoints. Such
an approximation can be computed using a simplification algorithm
[33] upto a given threshold distance from the original curve.

4.4 Roof Coverage
The roof of a building can be easily covered by a set of nadir images
captured at a certain height. We follow a conservative strategy
and compute camera positions only for points lying inside the roof
polygon, which helps us keep the total number of waypoints well
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Figure 3: Camera pose optimization with a total of N cameras. Here,
camera positions are shown as black dot and orientations as arrows.
Our optimization distributes N cameras along the obstacle-free path
P so as to maximise coverage while simultaneously keeping the
viewing angle within limit.

within the hardware limitation of the drone. To reduce flight time, we
alternate between the scan directions (ie., left to right, followed by
right to left and so on). The camera heading is maintained to capture
images aligned to the direction of motion of the drone (which we fix
to be the larger principal axis of the roof polygon shape). Figure 4
shows computed waypoints for the roof polygon. In a building with
varying height of the roof, we do not maintain a constant capturing
height from the roof, however this can be easily incorporated in our
pipeline. In the current setting, we consider the roof polygon to be
the union of all floor boundary polygons. This gives us the largest
roof area that needs to be covered from top.

Figure 4: Waypoints for covering building roof (starting point is shown
as an encircled dot). Principal axis of roof polygon is chosen as flight
direction.

5 IMAGE CAPTURE AND 3D MODEL RECONSTRUCTION

Once camera positions and orientations are computed, images are
captured at multiple altitudes by flying the drone autonomously. We
used the DJI Phantom 4 quadcopter drone for image acquisition
which is equipped with a forward looking vision-based sensing
system. We use the built-in obstacle avoidance as a secondary
safeguard while the drone is airborne. We therefore keep the drone
look forward (i.e, along the heading) during the entire flight in a
mission. At any waypoint, we rotate the drone to align the camera
with the computed view direction.

The camera captures geotagged images (i.e., they have GPS po-
sition in the EXIF metadata), however the positions are not very

accurate (errors of about 2 to 5 meters are common in consumer
grade GPS receiver). Furthermore, the altitude cannot be relied
upon and has been observed to have much higher error (of about
10 to 20 meters). The sparse reconstruction stage of multi-view
reconstruction followed by bundle adjustment procedure resolves
correct positions and orientations of the cameras. A dense recon-
struction followed by meshing and texturing results in a high quality
3D reconstructed model of the building.

6 RESULTS

Our technique yields a set of camera poses at a set of altitudes.
The computed poses ensure visibility of any building patch by at
least 3 cameras at a given altitude. Our optimization framework
allows for choosing the number K of cameras that directly see a
patch (we set K to 3 in our experiments). In our computations,
we subdivide boundary polygon into patches of 1 meter in length.
The value of d is the distance of camera from the building surface,
which is an important parameter in determining overall quality of
reconstruction. A lower value of d will result in detailed close-up
images that will enhance the quality of reconstruction, however it
may not be feasible or otherwise safe to fly the drone arbitrarily close
to the building due to low GPS accuracy and hardware limitations. In
our experiments we considered flying at 8 meters from the boundary
wall of a building to be safe, except along the regions where obstacles
had to be resolved (where the distance could be less, but not closer
than 2 meters from either the wall or the obstacles). The safe path
P is also discretized into points every 1 meter for computation of
the visibility matrix. The DJI Phantom 4 drone has a waypoint limit
of 99 points for a mission and a maximum flight time of 20 minutes
in a single battery charge. These two limitations led to the design
choice of subdividing the entire building mission into floor-wise
missions, where each mission does not exceed the limit in its number
of camera waypoints. Number of camera waypoints is a parameter
in our optimization which can be explicitly controlled. In the set
of camera poses, we also insert a few dummy waypoints to avoid
obstacles along the flight path between a pair of consecutive camera
positions (as discussed in Sect. 4.3.1). In our experiments, we chose
a vertical overlap of 70% between photographs and compute mission
altitudes accordingly. An additional horizontal mission covers the
roof as discussed in Sect. 4.4. Figure 5 shows a set of camera poses
for all the missions of a survey.

Figure 5: Computed camera poses for roof and 4 horizontal missions.

We conducted a reconnaissance survey of the entire campus area
in a horizontal flight at an altitude of 70 meter from the ground
and captured photographs with 70% overlap in a grid layout. The
reconstructed georeferenced mesh serves as a base mesh for us and
we use this to compute obstacles and to perform comparison with
our 3D reconstructions. We show results of our reconstruction for
two buildings: academic and residence. The academic building has
an irregular boundary and is surrounded by a number of obstacles
(trees, buildings, and construction structures). The total height of



Table 1: Running times (in sec.) for mission planning.

Mission # Obstacle Obstacle- Pose Overall
(waypoints) map free path optimization

Ac
ad

em
ic 1 (47) 48.8 8.1 48.9 105.8

2 (82) 35.2 6.7 164.8 206.7
3 (53) 30.9 4.3 40.2 75.4
4 (53) 30.1 3.7 37.3 71.1

Re
si

de
nc

e

1 (31) 20.8 6.3 39.0 66.1
2 (29) 17.7 5.3 33.0 56.0
3 (45) 22.3 2.2 27.8 52.3
4 (45) 16.7 2.1 27.5 46.3
5 (45) 12.5 2.1 27.3 41.9
6 (45) 21.0 1.7 28.9 51.6
7 (41) 12.2 1.2 23.0 36.4

Table 2: Running times (in hours) for 3D reconstructions.

Building Sparse Densify Mesh Texture Overall

Academic 1.29 1.25 0.33 3.96 6.83
Residence 0.22 0.73 0.22 0.82 1.99

this building is about 32 meters from ground level. A total of four
horizontal missions covered the building from sides, while one roof
mission covered the top. This is a complicated building to survey
given a number of large obstacles very close to the rear half of the
building. Many of such obstacles were from ongoing construction
activity (e.g. barricades, and construction frames). Under low GPS
precision, the drone relies heavily on its vision based avoidance for
manoeuvring in between tight spaces. Figure 6 shows a comparison
of the base mesh with our reconstruction. The geometrical and
textural enhancements resulting from using our camera poses is
clearly visible in the close-up views. Residence is a 45 meter high
building with 12 storeys and has multiple apartments on every floor.
We used a total of seven horizontal missions and one for the roof
to cover the entire building. This building was fairly accessible
except for an ongoing construction of an adjacent tall building with
a minimum clearance of about 7 meters in-between. We observed
that the 3D reconstruction from nadir images is particularly bad near
the top. With optimal coverage, our reconstruction does not suffer
from this problem and provides a much detailed textured mesh as
shown in Figure 7. These reconstructed 3D models are very well
suited for creating high quality virtual reality walkthroughs.

Our entire pipeline is written in Matlab and uses the open-source
gptoolbox [20] library for geometry processing, and path planning
toolkit from Álvarez et al. [5]. The drone controller is written in
Java as an Android application using the DJI mobile SDK. We use
open-source libraries OpenMVG [24, 25] and OpenMVS [2] for
multi-view reconstruction. Our optimization code is composed of
three stages: computation of obstacle maps from mesh, creating
obstacle-free path for drone, and optimizing camera poses along
the path. Running times for these stages are shown in Table 1
along with mission details for both buildings. Our computation
of camera poses and waypoint missions takes a few minutes on
a computer with 2.4 GHz Intel Xeon processor, 64 GB memory,
and Nvidia Tesla K40 GPU. Multi-view reconstructions for these
buildings took a few hours as shown in Table 2. The source code
for our implementation is publicly available for research purpose at
https://github.com/ojaswa/DroneAutoCapture.

6.1 Evaluation
In order to evaluate improvement in quality with our approach, we
reconstruct a 3D digital building model and compare the accuracy
of reconstruction. A digital 3D model MGT serves as ground truth

for comparison (which otherwise is difficult to obtain for a real
building). Our approach to evaluation is to first use a 3D digital
building model to create waypoints for both nadir camera poses and
optimized camera poses. We then create a scene in the Unity game
engine and capture images from a virtual camera within the game
level using scripting capabilities of the game engine. The captured
images are then used to reconstruct both the nadir model MNadir

and the optimal model MOptimal.
Building boundaries are generated by slicing the digital model

with a set of planes at certain heights to cover the building vertically.
The heights are calculated to consider 70% vertical overlap between
successive levels. We match the field of view of actual camera and
the hardware limits of the quadcopter drone. Figure 8 shows the
digital model, and the two reconstructions (nadir and optimal). The
bottom row shows zoomed-in parts of the meshes which indicates
the quality of resulting surface in both reconstructions.

For a qualitative measure to compare the reconstructed meshes,
we use the Hausdorff distance [6] that indicates how closely the
points on boundaries of two shapes match. The Housdorff distance
between two shapes S and S0 is given by

dH(S, S0) = sup
x2S

inf
x02S0

d(x, x0),

where d(·, ·) is a distance metric. In our comparisons, we use the
mean and RMS Hausdorff distance dH (with Euclidean distance
metric) computed w.r.t to the reference mesh MGT . A lower value
of dH (close to zero) indicates a better reconstructed surface (see
Table 3). To understand the magnitude of error in reconstruction,
the table also includes length of bounding box (BBox) diagonal
of the concerned meshes. Further, we also show per-vertex error
of the reconstructed surface mesh as distance measured from the
corresponding point (projected) on the original surface mesh in
Figure 9. The accompanying histograms show distribution of these
errors, where the Y-axis represents error values (in absolute mesh
distance units) while the X-axis has the frequency. A wider error
distribution of MNadir indicates that the mesh deviates more from
the digital model compared to MOptimal. This is further supported
by a higher Hausdorff distance value for the nadir mesh.

Table 3: Reconstruction error between surfaces measured using mesh
Hausdorff distance.

Reconstruction BBox diagonal Mean dH RMS dH

Nadir mesh 647.229919 0.719164 1.053784
Optimal mesh 649.962341 0.358802 0.724885

Given that more details are visible in images taken from closer
distances, some spurious blobs appear in MOptimal (these are col-
ored as high error regions in Figure 9). We observed that these
blobs appear in areas where a sharp or thin feature is photographed
against sky or a flat surface. Such features are more prominent in
close-up views rather than in long-distance or nadir views and are
picked up by the stereo reconstruction pipeline. In our experiments,
such geometry is generated when there are multiple small objects
clustered in the scene. A correct reconstruction in such regions may
require an even closer photography. Camera distance from building
surface is a parameter in our algorithm and may be changed based
on the application domain requirements.

6.2 Differences with Related Approaches
The two closely related approaches with ours are recent works by
Roberts et al. [34] and Smith et al. [37]. These approaches use path
planning and view selection for autonomous aerial image capture
using a drone. Both methods (like ours) rely on an approximate
mesh of the scene to compute a set of optimized views. Likewise,
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Figure 6: Reconstruction results on academic building that has an irregular shape with a number of obstacles around. (a) Reconnaissance mesh
reconstructed from a set of nadir images, (c) Our mesh reconstructed from optimized camera positions and orientations, (b) and (d) Close-up
views of different areas show geometric and radiometric quality of the two meshes.

(a) (b) (c) (d)

Figure 7: Reconstruction results on residence building that has 12 storeys, (a) Reconnaissance mesh reconstructed from a set of nadir images
show loss of geometric details at the top, (c) Our mesh reconstructed from optimized camera positions and orientations, (b) and (d) Close-up
views of different areas show geometric and radiometric quality of the two meshes.

all of these methods take into consideration hardware constraints
like flight time and battery life.

The method of Roberts et al. [34] proposes a coverage model
to pick most useful camera trajectories to yield a high-quality 3D
reconstruction. The algorithm first discretizes a set of camera posi-
tions and then calculates an optimal orientation for every position
that maximizes coverage. The trajectory selection problem is then
solved as an integer linear optimization utilizing the submodularity
of the coverage function. The candidate camera positions in this
method are restricted to lie on uniformly sampled points from the
scene bounding box within the permissible free space above the
scene. This helps the authors in limiting the possible choices for
camera positions for optimization. For the examples shown, the grid
size is chosen between 3.5 m - 4.5 m. Given that the target shape
could be concave, at such large distances it becomes important to
handle obstacles that may come in between two successive camera
positions on an optimal trajectory, however the method does not
discuss this explicitly. In contrast, our method allows for a smaller
change in camera positions (around 1m or less) which enables finer
position computation albeit only at the concerned altitude. Also, we

appropriately handle the case of obstacles falling in-between succes-
sive camera positions as discussed in section 4.3.1 since we always
move the drone (similar to [34]) in a straight line path in-between
waypoints.

The approach of Smith et al. [37] incorporates both novelty of a
camera view and matchability in their reconstructability heuristic.
The authors present a comprehensive comparison and benchmarking
on both real and synthetic datasets. In their method, the camera pose
estimation and path planning is modeled as a continuous optimiza-
tion problem. A set of regularly spaced overhead camera poses are
used to reconstruct a height map for free space calculation. This is
motivated by the fact that nadir views will only partially reconstruct
unseen structures. However, a height map cannot represent over-
hanging structures which the authors have mentioned as a limitation
of their method. Further, a trajectory is modeled as a smooth path
by fitting B-spline curves between waypoints that could potentially
violate the safety margin for obstacles. Since our method utilizes
horizontal cross-sections (or floor plans), it is possible to handle
buildings with changing floor areas along the height.
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Figure 8: Reconstruction evaluation using 3D model MGT . (a) This model serves as ground truth for evaluating reconstruction quality. (b) A
classical reconstruction approach using nadir photographs resulting in mesh MNadir . (c) Our approach uses pose optimization resulting in mesh
MOptimal. The closeups show improvement in quality in terms of structure and appearance.

MNadir MOptimal

Figure 9: Per-vertex errors expressed as distance from the reference
3D digital model MGT . The errors are shown for nadir and optimal
reconstructions to indicate deviation from the reference surface. The
histogram on left shows a colormap as well as area-weighted distribu-
tion of these errors that indicate spread and extent of the deviations.

6.3 Discussion and Challenges
Our approach to image capture considers several constraints im-
posed by the quadcopter hardware. The design choice to split the
entire survey into multiple horizontal contours takes into account
the limited battery life (maximum of 20 minutes per flight) and the
upper limit of 99 waypoints per mission. Further, the choice of using
blueprints is motivated by the fact that these are usually available
for most modern buildings. In a case when blueprints are unavail-
able, our approach will work just fine by using cross sections from
a reconnaissance mesh, however that will require identification of
target building surface. The definitive advantage with architectural
blueprints is that they provide with precise building boundaries to
create an offset path for the drone.

We compute precise GPS positions and orientations of the cam-
era during the optimization process, however the actual camera
parameters at the time of image acquisition differ. Various factors
like horizontal GPS error (which is usually 2-5 meters under good
conditions) and wind introduce deviations in both the position and
orientations. We find that the strategy of optimizing poses such that
3 or more cameras cover any surface patch introduces redundancy
which is helpful in hiding errors arising from sources beyond control.

Certain high-end drones do support RTK GPS that can give a better
positional accuracy (of up to 5 cm). Factors like wind also contribute
to fast battery discharge during the flight. We also observed that
in practice, it is much easier to fly if clearance between obstacles
and the building is more than double the horizontal GPS error. The
built-in vision system of drones is still experimental and cannot be
always relied upon.

7 CONCLUSION

In this work, we have explored how detailed 3D building models can
be captured using an optimization framework that ensures maximal
coverage of the building surface at any altitude while maintaining
near orthogonal viewing angles. Our approach works in presence of
multiple obstacles and calculates precise drone flight path. Since we
consider real obstacles in our technique, our drone flight paths are
safe and reliable. Our approach is faster than existing methods and
is applicable to resource constrained drones, which is more practical
in the field.
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