
G-Sparks: Glanceable Sparklines on Smartwatches

 Ali Neshati* Yumiko Sakamoto† Launa C Leboe-McGowan‡ Jason Leboe-McGowan§
 University of Manitoba University of Manitoba University of Manitoba University of Manitoba
 Winnipeg, Canada Winnipeg, Canada Winnipeg, Canada Winnipeg, Canada

 Marcos Serrano¶ Pourang Irani**
 University of Toulouse, IRIT - Elipse University of Manitoba
 Toulouse, France Winnipeg, Canada

ABSTRACT
Optimizing the use of a small display while presenting graphic data
such as line charts is challenging. To tackle this, we propose G-
Sparks, a compact visual representation of glanceable line graphs
for smartwatches. Our exploration primarily considered the suitable
compression axes for time-series charts. In a first study we examine
the optimal line-graph compression approach without
compromising perceptual metrics, such as slope or height
detections. We evaluated compressions of line segments, the
elementary unit of a line graph, along the x-axis, y-axis, and xy-
axes. Contrary to intuition, we find that condensing graphs yield
more accurate reading of height estimations than non-compressed
graphs, but only when these are compressed along the x-axis.
Building from this result, we study the effect of an x-axis
compression on users' ability to perform "glanceable" analytic tasks
with actual data. Glanceable tasks include quick perceptual
judgements of graph properties. Using bio-metric data (heart rate),
we find that shrinking a line graph to the point of representing one
data sample per pixel does not compromise legibility. As expected,
such type of compression also has the effect of minimizing the
needed amount of flicking to interact with such graphs. From our
results, we offer guidelines to application designers needing to
integrate line charts into smartwatch apps.

Keywords: Smartwatch visualization, small screen, line graph,
compression methods, spark lines.
Index Terms: H.5.0 [Information Interface and Presentation]

1 INTRODUCTION
Smartwatches and digital armbands are popular due to their small
form-factor offering users constant access to information. Their
varied sensors can monitor sleep and heart rate [2,32,42] and assist
with fitness tracking [38] or recognizing stress [9]. These sensors
generate massive amounts of time-series data, commonly
visualized using line graphs (Figure 1). However, such
visualizations can be difficult to view and browse in-situ, on the
device itself, a common need reported by users [3]. While
researchers have investigated line graph visualizations methods
[16,19], their presentation and interaction on small smartwatch
screens is still an open challenge [3,17]. In this work we ask how
best to shrink line graphs to minimize interaction effort without
sacrificing glanceability.

Figure 1: Line graphs are one of the most common data
visualization techniques on smartwatches to represent large time-
series data collected by sensors.

Inspired by Sparklines [48], a technique to integrate line graphs
like words in texts, images, and tables, we investigate various ways
of condensing high-density continuous time-series data on
smartwatches. Although Sparklines can be used directly
smartwatches, this technique compresses the line graph mainly on
on the y-axis, to integrate it within words. However, on
smartwatches, we postulate that condensing line graphs on
smartwatches, such that they are legible, can enable a host of new
scenarios. For instance, showing the user's continuous heart rate
history beside other information such as sleep quality and breathing
patterns, can better inform the user of their stress level and make
them aware of their biometric states.

Glanceability, in information visualization has often referred to
being able to quickly extract the necessary information from a
display by a quick glance. The InfoCanvas [35] is a classic example
of a glanceable display, as it allows a quick perceptual extraction
of the information encoded in the visuals. We argue that visuals on
smartwatches should also facilitate quick glances [22] meaning that
visualization techniques should be designed in a way to “convey a
large amount of information during brief glances” [5]. A key design
challenge we address is a method to see as large an amount of the
dataset on the smartwatch, by condensing the graphs, without
compromising the glanceability aspects necessary for in-situ tasks.

Through two experiments we explored the dimensions (x-, y-, or
both) best suited at shrinking a line graph while still being able to
respond to basic perceptual and judgement tasks. In the first study,
we test users’ perceptual ability to differentiate heights of line
segments, a graph’s atomic unit. We find that, overall, graph
segments are best interpreted when compressed along the x-axis. In
Study 2, we examine global tasks, such as quickly detecting a peak,
for their “glanceability” when the graph is condensed along the x-
axis. Our results reveal that line graphs can be compressed to the
point of presenting one data sample per pixel along the x-axis,
without loss of perceptual performance. This result is

* e-mail : neshatia@cs.umanitoba.ca
† e-mail: yumiko.sakamoto@umanitoba.ca
‡ e-mail: Launa.Leboe-McGowan@umanitoba.ca
§ e-mail: Jason.Leboe-McGowan@umanitoba.ca
¶ e-mail: marcos.serrano@irit.fr
** e-mail: pourang.irani@cs.umanitoba.ca

counterintuitive and demonstrates that using a highly aggression
compression approach, will not necessarily degrade graph legibility
performance, for the key tasks selected in our study.
Our contributions include (1) an exploration into suitably
condensing line graphs to represent temporal data, on
smartwatches; and (2) an examination into whether an aggressive
compression level can still lead to (a) “glanceable” line graphs, with
(b) minimal interactivity.

2 RELATED WORK
We provide an overview of relevant work on small screen
visualization techniques and graphical perception.

2.1 Information Visualization on Small Screens
Consumer interest in monitoring continuous human activities,
which can be achieved by an unobtrusive device such as a
smartwatch, is increasing rapidly [36]. When the data is interpreted
properly, it can enrich our lives, particularly when it concerns
health-related and personal activities (e.g., How many calories did
you use today?) [43]. Li et al. [31] identified six major questions
that consumers regularly ask when looking at their personal data.
These center around Status, History, Goals, Discrepancies,
Context, and Factors. Effective data visualizations are essential to
find answers to these six major questions on smartwatches
throughout the day [27].

There exist a number of works concerning the representation of
health data, such as for introducing novel analytic and visualization
tools for Electronic Health Records (EHR) [51]. For example,
Wang et al. [49] introduced an interactive visual tool that helps
professionals to detect hidden patterns in patients’ data, which
otherwise can be hard to detect. Health data is usually complex
massive time-series data. For instance, heart rate and
Electrocardiogram or ECG, respiratory data, and body temperature
are time-series data. Many health data types are crucial and it is
crucial for physicians to have real-time access to such data and
visualizations [26]. Dimension reduction techniques, such as the
Perceptually Important Point (PIP) algorithm, have been used to
make complex massive health data simpler and easy to understand.
For instance, Fu et al. [20] showed how PIP can be applied on line
graphs, as the most common way to represent large ECG data.

Line graphs are highly common as they convey many aspects of
temporal data. Novel line graph designs have long been
investigated by many researchers [29,40]. Sparklines, proposed by
Tufte [48], compresses line graphs, usually without axes or
coordinates, to represent high resolution and continuous time-series
data. Sparklines is designed to be embedded in texts, images, and
tables, with small fonts, and to provide a high-level overview of the
data. Sparklines compress line graphs usually on the y-axis such
that it fits within the font size selected for its associated text.
However, designers of line graphs on smartwatches are not
necessarily constrained by font size, and can compress line graphs
on the x-, y- or xy-axes. Furthermore, when compressed, line
graphs on smartwatches can be strategically positioned to convey
the necessary information.

A few studies explore visualizations on small screens. For
instance, Blascheck et al. [5] investigated how quickly users
compare two data points, using three different visualization
methods (e.g., bar chart, donut chart, and radial bar chart) and three
different sizes of data sets (e.g., 7, 12, and 24 data values), on small
smartwatch screens. In two similar studies, they showed
participants different charts with two indicated data points in each
chart, and participants were asked to determine which one of these
two data points has higher value. They collected response times of

participants to determine which one of three chart types is the most
glanceable chart for data comparison task.

 Fulk [21] shows that we should take specific approaches to
represent web content on small displays. Split View and Fisheye
techniques can help users focus only on a specific part of a
webpage. Minimap also allows presenting selected information on
a small display [44]. The RSVP Browser provides users with brief
information of all links of web pages as images, to accommodate
mobile device screens [7]. Wedge is another technique that shows
off-screen content in an accurate manner, but on the smartphone
display [24]. Similarly, EdgeRadar allows the compressed
visualization of off-screen moving items on the smartphone display
[25].

Researchers have further explored techniques to resolve the
limited display issue at application specific levels. For instance,
with filtering techniques, representing a reasonable amount of
details specifically by regulating the number of relevant elements
in the map, we can have a better understanding of geo-referenced
information on small screens [8]. Similarly, in [39], researchers
noticed that designing an interface for small screens to visualize
electronic health records can be a challenging task, primarily
because of the large volume of records.

An alternative to the above involves modifying the small display
itself [34] with additional hardware. For instance, in [45],
researchers combined the output of a head-worn display and
smartwatch screen to provide additional information. Likewise,
Facet is a multi-display wrist-worn smartwatch, containing an array
of multiple touch-sensitive segments [33]. Further, using a similar
approach, Wenig et al. [50] deployed an additional transparent
display beside the original screen to represent more information on
it.

Smart approaches can also optimize the available space.
Techniques such as SpiraList and SnaiList help display long lists
on small screens using a spiral layout [28]. Similarly, techniques
such as Smartfonts and SmartRSVP can facilitate reading small
texts on small wearable devices [6,23]. In [6] researchers
introduced a new series of fonts that are appropriate to read on
small screens, and in [23] they investigated the application of
“Rapid Serial Visualization Presentation” which represents words
of text separately with adjustable speed.

It is worth pointing out that our literature search yielded only a
handful studies addressing the issue of information visualization on
smartwatches. Further, we did not find any clear guidelines or
research focusing on the size nor the compression methods of line
graphs on smartwatches.

2.2 Graphical Perception
Graphical perception is defined as “the visual decoding of
categorical and quantitative information from a graph” [11].
Graphical perception hinges on the graph size, area, color, angle,
position, length, and other various factors. It is important to explore
how individuals interpret different types of graphic representation
techniques. For instance, authors in [30] introduced a perceptual
guideline for treemap charts.

Numerous studies investigated graphical perception differences
based on different graph types [13–15,29,41]. Further, Cleveland et
al. [10] examined ten elementary perceptual tasks people go
through (e.g., shading, angle, length, direction, area, and position)
when extracting quantitative information from certain types of
graphs. Similarly, Cleveland et al. [11] investigated and discovered
the effect of six factors such as length, angle, slope, and area, on
extracting information from graphs. We incorporated some of these
factors in our study.

Table 1: xy-axis compression method relative to the baseline pixel
density of a line segment with height difference of 4.

 X-Axis-Length Y-Axis-Length XY-Axis-Length
Baseline 184 pixels,2.13 cms 68 pixels, 0.8 cms 196 pixels, 2.27 cms

xy-axis, 25% 46 pixels, 0.53 cms 17 pixels, 0.2 cms 48 pixels, 0.56 cms
xy-axis, 50% 92 pixels, 1.06 cms 34 pixels, 0.4 cms 98 pixels, 1.14 cms
xy-axis, 75% 138 pixels, 1.6 cms 51 pixels, 0.6 cms 147 pixels, 1.7 cms

There are three particular tasks that researchers have regularly

explored to measure graphical perception with line graphs. These
tasks are (i) max/min detection [2,18,29,40] which concerns
finding the maximum or the minimum point in a graph; (ii) slope
detection and slope comparison [4,29,40]; and, (iii) determining the
difference between the values of two or more multiple data points
in the graph [1,18,29,46]. We use these tasks to understand how
differently compressed line graphs yield different outcomes.

3 COMPRESSING LINE GRAPHS
Line graph compression involves shrinking one or two dimensions
of the graph, on the x-, y- or xy-axes. While various compression
techniques are possible, we explored three specific approaches.

X-Axis Compression: in this approach we compress the baseline
graph only along on the x-axis (e.g., 25% compression; X:Y =
0.25:1). This can be captured by the following relationships:

Xlc = Xlb × (CL) and Ylc = Ylb

where Xlc and Ylc represented the length of x-axis and y-axis of
the compressed line graph, Xlb and Ylb represent the length of the x-
axis and y-axis of the baseline line graph and CL represents the
Compression Level (e.g. 25%, 50%, or 75%)

Y-Axis Compression: in this method we compress the baseline
graph only on the y-axis (e.g., 25% compression; X:Y =1:0.25),
with the following relationship:

Xlc = Xlb and Ylc = Ylb × CL
XY-Axis Compression: we combine the above two to compress on
both x and y axes simultaneously (e.g., 25% xy-axis compression;
X:Y = 0.25:0.25) (Figure 2). This is represented as:

Xlc = Xlb × CL and Ylc = Ylb × CL

4 STUDY 1: COMPRESSION TYPES
The goal of Study 1 is to identify which Compression Type provides
the best perceptual legibility. We additionally explore the
approximate compression threshold suitable in terms of pixel
density for a smartwatch display.

4.1 Graphical Perceptual Tasks
Participants engaged in simple graphical perceptual tasks where
they viewed a series of simplified line segments on a smartwatch
(Figure 2). We asked them to identify height differences as well as
the slope type (i.e., increasing or decreasing) of this most basic unit,
a line segment.

Height difference:
Participants identified the absolute height difference between the
start and end of a line segment. The difference could be either 0, 1,
2, 3, 4. The length of one unit on the y-axis was 20pxs for the
baseline graph and all x-axis compressed graph, 10pxs for 50% of
compression for xy-axis and y-axis Compression Types; and 5pxs
for 25% of compression for xy-axis and y-axis Compression Types.
Please note that we focused on smaller height differences (i.e.,
between 1 and 4) as these differences were more challenging than
larger height differences (i.e., 5 to 10). Further, including all the
possible height differences (i.e., 0 to 10) would necessarily increase

Figure 2: Screenshot of graphs used in Study 1 representing, a)
baseline graphs, b) xy-axis compression, c) y-axis compression and
d) x-axis compression technique.

the number of the segments drastically, which would induce
cognitive fatigue. Given the relationships above, Table 1 describes
the various compression amounts for the pixel density of a line
segment for height 4 on our device (see Apparatus section).

Slope:
We explored the potential effect of slope type as well. When the
left end of a line was lower than the right end, we categorized the
slope as an increase, and decrease otherwise.

4.2 Apparatus and Materials
We utilized a smartwatch IMACWEAR M7, with 1.54” and
240×240 resolution display. The entire screen was used, so the
participants were not distracted by the title and the notification bar.
A Targus AKP03CA Bluetooth keypad was utilized to capture user
input (Figure 3). Participants were instructed not to touch the
display. The Bluetooth keyboard was used to enter responses to
mitigate clutter on the watch.

4.3 Compression Values
The baseline graph is a graph with zero compression. Furthermore,
to explore the lower approximate compression threshold, we
investigated the Compression Level effect at 75%, 50%, and 25%
for each Compression Type on error rates and response times.

Note, when the graph is compressed on the x-axis to CL%, it
indicates that the baseline graph was x-axis compressed by an
amount of CL% on the indicated axis. This means, for instance, the
bottom of the 25% x-axis compressed graph is shorter than the
bottom of the 75% x-axis compressed graph. In Figure 2, each
column (left to right) displays the baseline, xy-axis, y-axis, and x-
axis compression. Each row displays (top to bottom) 75%, 50%,
and 25% compressed sizes, with height difference of 4.

4.4 Study Design and Procedure
We investigated three factors: Compression Type (xy-axis vs. y-axis
vs. x-axis), Compression Level (75% vs. 50% vs. 25%) and Slope
type (increase vs. decrease). The Compression Type was a between-
subjects factor while the Compression Level and the Slope were
within-subjects factors. Upon their arrival, participants were
randomly assigned to one of three compression conditions (x-axis,
y-axis, or xy-axis). After the instructions and signing the consent
form, participants engaged in line graph reading tasks. Upon
completion, participants received a $15 gift card. The entire session
took approximately 60 minutes on average.

Figure 3: The smartwatch and Bluetooth keypad used in both
studies. The arm with the watch was placed on the table.

For each height difference (1, 2, 3, and 4) of each Compression
Level (25%, 50%, and 75%) there were 15 graphs with positive
slope and 15 graphs with negative slopes. For Height difference of
0, there were 30 graphs. Thus, each participant processed 150
graphs. There were four blocks for each session (100% or baseline,
75%, 50%, & 25%). The height difference (e.g., 2) and the slope
direction (e.g., negative) were randomized within each session. A
Latin square design was applied to counterbalance the order of 4
blocks.

4.4.1 Participants
We recruited 36 participants (Female = 12) mostly from a local
university (Mage= 26.11). Since the session was designed to take
approximately 60 mins, we chose a between-subject design to avoid
potential cognitive fatigue.

4.4.2 Collected Data
Participants’ response time (RT) and error rates (ER) were
collected. Response was entered on the USB keyboard as quickly
as possible. The RT was measured in millisecond once the graph
was displayed on a smartwatch until they pressed the enter button
on a keyboard. For the ER, the ratio of participants’ inaccurate to
accurate response was used.

4.5 Results
A series of mixed model ANOVAs were conducted throughout,
unless otherwise specified. The between factor was the
Compression Type (xy-axis vs. x-axis vs. y-axis), and within factors
were Compression Level of the graph (75% vs. 50% vs. 25%), the
Height difference between point A and B (1 vs. 2 vs. 3 vs. 4), and
the Slope (increase vs. decrease). Whenever sphericity assumption
was violated, Greenhouse-Geisser correction was applied. For the
interpretation of effect size ŋp2, Cohen’s guideline was followed
(0.01 = small, 0.06 = medium, 0.13 = large [12]. Small sample size
can cause significant issues such as low statistical power, low
producibility, and non-normal data. Although our data was not
normally distributed, which means we can use data analysis
methods designed for non-normally distributed data, we had a large
enough sample size and thus, we did not expect any major issues
[37].

Response time (RT)
No significant main effect was found for Compression Type, Slope
type, nor Compression Level (p > .05). As expected, a significant
effect for Height difference was found however; F1.8, 49.4 = 102.03,
p < .001.

Figure 4: (Left): Study 1, Response time: Interaction between
compression type and Compression Level. (Right): Study 1,
Interaction effect on error rate; Between compression type and
compression size.

Further, a Compression Type × Compression Level interaction
effect was found; F4, 54 = 2.73, p < .05, ŋp2= .17). Post hoc pairwise
comparisons yielded that at 50%, on average, participants in the x-
axis condition responded faster than those in the y-axis condition,
with a mean difference of 500ms (p < .05). The same pattern was
found at 25% level, with a mean difference of 1063ms, (p < .05).
(See Figure 4, Left).

Figure 5: (Left): Study 1. Error rate by compression type. (Right):
Study 1. Interaction effect on error rate; Between height difference
and compression type.

Error Rate (ER)
We found significant effects for Compression Type; F2, 31 = 42.67,
p <.001, ŋp2 = .73, as well as for within factors, Compression Level,
F1.76, 54.40 = 57.58, p <.001, ŋp2 = .65), Slope type, F 1, 31 = 14.21, p
= .001, ŋp2 = .75, and Height difference F1.75, 54.18 = 11.60, p < .001,
ŋp2 = .27.

 For the Compression Type effect, further pairwise comparisons
were conducted. The x-axis compression yielded the lowest ER,
followed by xy-axis and then the y-axis compression (Figure 5,
Left). For the compression level effect, further post hoc analysis
yielded that the ER did not differ between 75% and 50% (p > .05),
while the ER at 25% was higher than that at 50% (p < .001), and at
75% (p < .001). Finally, for the height difference effect, the largest
difference (i.e., 4) was different from the rest (p < .001) while the
rest did not differ (p >.05).

 Regarding the interaction effects, a significant Compression
Type × Size Interaction effect was found on ER, F3.67, 56.84 = 16.42,
p <.001). A post-hoc analysis yielded no significant results for x-
axis compressed lines (p > .05) while Compression Level effect on
xy-axis and y-axis compression conditions were found (p < .01).
This indicates that an x-axis compression is the most robust one
against errors when time-series graphs are compressed. Their ER
did not vary even when the line was compressed to 25% (See Figure
4, Right).
 Next, Compression Type × Height difference interaction effect
was also found (F6, 93 = 7.04, p < .001, ŋp2 = .31; Figure 5, Right).
A simple effect analysis revealed significant Height difference
effects (p < .001), but only for the y-axis compression. For x-axis
and xy-axis compression style, height difference did not have
significant effects (p > .05). Combined with the last finding (i.e.,

Figure 6: Representing the x-interval of data points in baseline line
graph and G-Spark

robustness of x-axis compression), this finding confirms the
stability of x-axis compression, in particular.

4.5.1 Baseline vs. X-axis Compression
Since x-axis Compression Type yielded the most favourable results
for both RT and ER, we now compare the baseline (i.e., no
compression) against an x-axis compression.

Response Time
When the Compression Level on the x-axis was 75% or 50%,
ANOVAs found no difference in Error Rate (ps > .05). When the
Compression Level was at 25%, however, a significant difference
emerged with a large effect (F1, 21 = 4.23, p = .05, ŋ2 = .17).
Participants responded significantly faster in X-axis Compression
(M = 2027.21; SD = 405.50) than in baseline condition (M =
2815.00; SD = 1259.99). This indicates a potential benefit of X-axis
Compression again. Generally, participants can respond faster
towards x-axis compressed graphs than the baseline graphs when it
is small.

Error Rate
We also found significant effects for different height judgements
for all Compression Levels (ps < 0.05) on Reaction Time. Again,
all the significant results indicated the potential benefits of x-axis
Compression Type (rs >.75).

4.6 Study 1 Summary
For the RT, x-axis compression was better than other methods when
the graph was compressed to a smaller size. Further, the results
from the ER analyses pointed to more robust judgments with x-axis
compression even at 25%. Surprisingly, even when we compared
against the baseline, the x-axis compression resulted in better
performance across reaction time and error rate. This outcome
contrasts with proposed practice of Sparklines which compress
along the y- dimension to fit in word size chunks. We use this
largest density (25%) compressed along the x-axis for G-Sparks.

5 STUDY 2: G-SPARK
Since the x-axis compression consistently yielded the most
favourable outcome in Study 1, we propose G-Sparks, a condensed
line graph to represent the densest compression. At 25%, each pixel
in G-Sparks represented one sample point from the heart rate data
set we used (Figure 8). The goal of this study was to assess this
aggressive Compression Type. This is the most aggressive level of
compression possible, for representing every data sample. As
indicated earlier, three of the most common perceptual tasks with
line graphs are: (1) max/min detection; (2) slope value detection;
and, (3) the value differences between two or more data points
(Figure 7). We can place these tasks along a ‘glanceability’
continuum according to the degree of task difficulty, with peak
estimations being highly glanceable, and size and slope judgments
less glanceable. We use these tasks to assess G-Sparks.

Figure 7: Tasks falling on a ‘glanceability’ continuum, with tasks such
as min/max detection being highly possible by glancing, while slope
degree and size estimations being less ‘glanceable’, i.e. needing
cycles to compute the difference. We use these tasks to assess
whether the x-axis compression style can still enable proper
judgement.

5.1 Apparatus and Materials
We used the same device as in Study 1 (Figure 3). We used actual
heart rate data where each sample point represented one second,
and all graphs contained at least 2000 data points. With our
apparatus, and with the Baseline and G-Sparks density described
earlier, we could fit 50 and 200 data points, respectively, on the
smartwatch in any instance. To see the remaining points users could
flick left or right.
 Heart rate data has different patterns related to various activities,
such as resting and sleeping, with more stable heart rate, compared
to other activities such as workout with more changes in the data.
Users usually are looking for parts of the graph with fluctuations
and changes in the data. Therefore, for this study, we were more
interested in heart rate data with more fluctuations (e.g., doing
workout). Also, our standard tasks in this study are designed in a
way that there should be fluctuations in the data.

Figure 8: (A). Baseline line graph, and (B). G-Sparks.

5.2 Procedure
Upon their arrival, participants were randomly assigned to G-
Sparks or to the Baseline condition. After reading instructions and
signing a consent form, participants engaged in the assigned graph
reading tasks. Upon completion, participants received a $15 gift
card. On average the session lasted 60 minutes.

5.2.1 Glanceable Analytic Tasks
Max/Min Detection
All participants saw 20 line graphs, and they flicked to navigate the
entire graph. Participants were asked to tap the highest peak value
on the smartwatch display. Once they identified the peak, they
pressed enter on the keyboard to move to the next line graph. They
were allowed to flick right and/or left as many times as they needed
and were able to change their answers until they moved to the next
graph. The same method was used for minimum trough detection
(i.e., to identify the lowest data point). All the graphs were unique.

Slope Estimation
Participants saw two marked slopes in a line graph, and they were
asked to select the steeper one. These slope stimuli were selected
based on the following rules; (i) the two slopes were not in the same
frame, i.e., users had to flick the viewport at least once, (ii) one

Baseline G-Spark

slope was always steeper than the other Participants repeated this
task 10 times.

Height Difference Detection
Participants saw 2 red dots on a graph, and they assessed the value
difference on the y-axis. Analogous to Study 1, we implemented
this task in a way that the value difference between two data points
was between 0 and 4 units. For each value difference, there were
10 tasks resulting in 50 trials for the height difference task. These
paired points were selected based on the 2 conditions: (i) the height
difference of these points should not exceed 4 units, and (ii) the two
points were not seen on the same frame.

Flicking Frequency
With at least 2000 data points in our samples, the chart was large
enough to require that all the participants flick through to process
the entire graph. We also recorded participants’ flicking frequency.

5.3 Study Design
Participants in the experimental condition were exposed to a series
of G-Sparks, while participants in the control group were exposed
to a series of baseline graphs (i.e., no compression, Figure 8).

In the baseline condition, the number of data points presented
within a frame was 50. All the data points are presented
equidistantly and the distance between each two consecutive data
points is 4 pixels on the x-axis. For the G-Spark, due to the 25%
compression of the baseline, the interval between the data points
was 1 pixel on the x-axis. Thus, we had 50 data points for the
baseline in each screen (Figure 6). A Latin square design was used
to prevent possible order effect. After the instructions were given,
participants had a trial session. The tasks were the same across both
conditions.

5.3.1 Participants
To avoid bias we recruited 24 new participants (Female = 10)
mostly from a local university (Mage= 25.75).

5.3.2 Collected Data
Same as in Study 1, we collected participants’ response time (RT),
as well as the error rate (ER). For the flicking frequency,
participants’ flicking response was recorded on the smartwatch.
Participants could go back and forth as frequently as they needed.

5.4 Results

5.4.1 Analysis
After normality was ensured, independent sample t-tests were
conducted throughout, except for the Height Difference
Identification. For the Height Difference Identification, a mixed
between-within subjects ANOVAs were conducted, with condition
(baseline vs. G-Spark) as between factor and the height difference
as a within factor (0 vs. 1 vs. 2 vs. 3 vs.4).

5.4.2 Minimum Point Detection
Response time (RT)
Consistent with the results of Study 1, the mean RT for the
participants in the G-Sparks condition was significantly shorter (M
= 18,407ms, SD = 6197) than the mean RT for the baseline
counterpart (M = 27,432 ms, SD = 13343; t22 = -2.13, p < .05). The
effect size was large (ŋ2 = .17), indicating the magnitude of the
differences in the means (9025ms) was large [12].

Flicking
Participants in the G-Sparks condition flicked fewer times (M = 19
flicks, SD = 6) compared to the participants in the baseline
condition (M = 44 flicks, SD = 18; t13.38 = -4.55, p < .01). The effect
size was large (ŋ2 =.49) indicating the very large magnitude of the
differences in the means (mean difference = -25.08, 95% CI [-
36.96, -13.20]).

Error rate (ER)
Independent sample t-tests indicated significantly higher error rate
in the baseline condition (M = .25, SD = .16) than with G-Sparks
(M = .06, SD = .08; t22 = -3.74, p < .01 - two-tailed). The magnitude
of the differences in the means (.20) was again, very large ŋ2 =.40.
For minimum point detection, therefore, participants in the G-Spark
condition flicked fewer times and completed the tasks faster with
fewer errors than the participants in the baseline condition.

5.4.3 Maximum Point Detection
Response time (RT)
Similar to minimum detection, the mean RT for participants with
G-Sparks for maximum detection, was shorter (M = 18533ms, SD
= 6005.91) than the baseline (M = 28636ms, SD = 8960; t22 = -3.16,
p < .01; two-tailed). The magnitude of the differences in the means
(9829ms) was large, ŋ2 =.31.

Flicking
Again, analogous to the minimum detection, participants in the G-
Sparks condition flicked fewer times (M = 20 flicks, SD = 7.24)
compared to participants in the baseline (M = 46 flicks, SD = 14.24;
t16.33 = -5.66, p < .001; two-tailed). The magnitude of the
differences in the means (26) was very also large ŋ2 =.59.

Error rate (ER)
We observed a higher error rate in the baseline condition (M = .28,
SD = .10) than with G-Sparks condition (M =.06, SD = .06; t22 = -
.6.3, p < .001; two-tailed). Further, the magnitude of the differences
in the means (.21) was very large ŋ2 = .65. Once again, participants
in the G-Sparks condition flicked fewer times and completed the
tasks faster with fewer errors than the participants in the baseline.

5.4.4 Slope Estimation
Response time (RT)
Consistent with the results of minimum and maximum points
detection, the mean RT for the participants in the G-Sparks
condition was shorter (M = 17212ms, SD = 6049) than the mean
RT for the baseline counterparts (M = 26998ms, SD = 6582; t22 = -
3.79, p < .01; two-tailed). The observed mean difference was large
(ŋ2 =.40) (9786ms).

Table 2: Means for min/max detection and steeper slope detection
for G-Spark and baseline conditions on response time, flicking, and
error rates. Condition effects were significant with large effect sizes
across all the tasks (ps < .05; ŋ2≥ .17).

 RT (ms) Flicks Error Rate
 G B G B G B
Min 18,407 27,432 19.22 44.30 0.06 0.25
Max 18,533 28,636 20.02 46.12 0.06 0.28
Slope 17,212 26,998 13.03 32.95 0.07 0.32

Flicking
Participants in the G-Sparks condition flicked fewer times (M = 13
flicks, SD = 4) compared to the participants in the baseline
condition (M = 32 flicks, SD = 5; t22 = -9.19, p < .001; two-tailed).
The magnitude of the differences in the means (19 flicks) was very
large ŋ2 =.79.

Error rate (ER)
For the steeper slope detection as well, the ER was higher for the
baseline condition (M = .32, SD = .14) than for G-Sparks (M = .07,
SD = .05; t22 = -5.82, p < .001 - two-tailed). Further, the magnitude
of the differences in the means (.25) was large ŋ2 = .61.

5.4.5 Height difference Identification
Response time (RT)
There was a significant interaction effect between height difference
and condition, F4,19 = 9.17, p < .001, with a large effect; ŋ2 = .66.
We thus investigated the simple effects of height difference for
each condition. For G-Sparks, participants’ RT was the longest
when there was no height difference (M = 22381ms, SD = 4857) or
when there was four (i.e., maximum) unit differences (M =
19556ms, SD = 5793, ps < .05). Participants’ RT were equally
shorter when the unit differences were one, two, or three. For the
baseline condition as well, participants’ RTs were the longest when
there was no difference (M = 35101ms, SD = 5704), followed by
the 4 unit, maximum difference (M = 29243ms, SD = 6243). Again,
participants’ RT was shorter when the unit differences were 1, 2, or
3. Further and importantly, participants’ mean RT was consistently
shorter in the G-Spark condition (ps < .005).

Flicking
A mixed between-within subjects analysis of variance was
conducted to assess the impact of different types of graphs (baseline
vs. G-Spark) on participants’ flicking frequency, across five
different height difference levels (0,1,2,3,4). First, we found an
interaction effect between the presentation condition and the height
difference, F4,19 = 3.10, p < .05, with a large effect, ŋ2 = 40. Next,
we investigated the simple effects of height difference level for
each condition. There was no height difference effect in the G-
Sparks condition, indicating the flicking frequency did not vary
based on the height differences with the G-Sparks condition (ps >
.05). For the baseline condition, however, participants’ mean
flicking frequencies was the highest when there was no height
difference (M = 39 flicks, SD = 6.90) or when there was 4
unit/maximum difference (M = 36.20, SD = 6.89). Participants’
flicking frequencies were the lowest when the unit differences were
1, 2, or 3. Further and understandably, for each height difference,
G-Sparks constantly exhibited a smaller flicking frequency (M = 13
flicks, SD = 4.46) than the baseline (M = 33 flicks, SD = 5.44; F1,

22 = 164.87, p < .001), with a very large effect ŋ2 = .88.

Error rate (ER)
We investigated the main effect of condition. Participants’ mean
ER was higher in the baseline condition (M = .52, SD = 20)
compared to the G-Sparks condition (M = .52, SD = .17; F1, 22 =
19.35, p < .001), with a very large effect ŋ2 = .47. For both
conditions, when the height difference did not exist (i.e., 0) or one,
ER was smaller (ps < .05), but as the height difference increased,
the ER also increased. There was no significant interaction effect
(p > .05).

6 DISCUSSION
As expected, relative to zero-compressed graphs, G-Sparks led to
better overall outcomes. Compared to the baseline graphs, G-
Sparks yielded shorter response times, with fewer flick operations.
Further, overall error rate was lower with G-Sparks compared to
the baseline. Altogether, these results indicate that G-Spark, a line
graph to present each sample point in one pixel, has potential for
displaying line graphs on small displays.

Figure 9: G-Spark applications. a) Adding more details and
information, b) using G-Sparks for more complex line graphs in round
faced smartwatches, and c) can be embedded in different
applications, helping users with decision-making tasks.

We used the most fundamental tasks related to reading and
understanding line graphs, representing heart rate data, as one of
the common time-series data collected by smartwatches sensors.
Since all time-series data are similar to each other and can be
represented by line graphs, the result of this study can be
generalized to other time-series data. For instance, a similar
approach can be used for representing burned calorie, walking
speed, galvanic skin response, and body temperature of the user,
for a specific period.

6.1 Result Summary
We used a highly aggressive compression style, where each pixel
represents one sample point in the data. We referred to this line
graph as G-Sparks. Our results point at condensing line graphs
along the x-axis as these lead to fewer errors and minimal
interactivity. Altogether, our results indicate that x-axis compressed
line graphs offer robust graphical judgements on smartwatch
displays. It is worth mentioning that fewer flicks can be key for
smartwatch experiences [47].

6.2 Relation to Sparklines
We drew inspiration from Sparklines [48] a method for compacting
a line graph within words in a document. Interestingly, Sparklines
compresses graphs on the y-axis to make the graph fit as a word in
a text passage. This may indeed not severely affect global trend
understanding. However, for specific size judgments, we find that
x-axis and even xy-axis compressions are best suited for glanceable
tasks. Such a compression creates space to include additional
details on the watch display. Although Sparklines are useful in
various applications, we demonstrated that an x-axis compression,
or G-Sparks, is better suited for fundamental glancable tasks related
to reading and understanding line graphs on smartwatches.

6.3 Design Recommendations
We offer the following design recommendations:

• Compressing line graphs along the x-axis will facilitate
glanceable operations and reduce flicking on smartwatches;

• G-Sparks, a line graph compressed to the point of including
one sample point per pixel allows a strong degree of
glanceability;

• G-Sparks is well applicable to data collected from fixed
sample rates for efficient graph interaction.

6.4 Applications
Various applications can benefit from designs such as G-Sparks.
For example, G-Sparks can be combined with other data
visualizations to convey additional insights to the users. This can
provide very dense and compact representations for data such as
heart rate, sleep quality, and breathing patterns all together on the
small smartwatch display (Figure 9, a). In more complex scenarios,

G-Sparks can also represent the elevation of a selected route in a
map, from the beginning point to the ending point (Figure 9, c). As
such, a jogger may make decisions about their speed according to
the visible elevation. Furthermore, temperature and precipitation
patterns can also be added to help users make suitable decisions.
It’s also possible to use G-Sparks in round watch faces (figure 9, b)
with more complex line graphs such as horizon graphs and stack
graphs.

While we evaluated our approach on a rectangular display, we
believe they also apply to circular screens (see above). In such
cases, the line graphs can be confined to ‘tight’ positions, such as
at the bottom or top of the screen. Furthermore, our results can be
combined with other approaches, such as Horizon graphs to further
condense our representations along the y-axis in case of including
additional data.

6.5 Limitations
One limitation concerns our focus on values read from the y-axis
but not the x-axis, which represents the temporal aspect in line
graphs. To explore the generalizability of our results, future work
is needed. Future work is also necessary to look at other perceptual
tasks. Correspondingly, the generalizability of the results on
different smartwatch displays, such as those that are circular, is
unknown. Furthermore, when condensing a line graph,
interactivity, such as selecting a specific point is challenging.
Future work will also investigate suitable interactions for G-Sparks.

7 CONCLUSION
We investigated methods to condense line graphs on smartwatches,
while maintaining the visibility during relatively swift graph
reading activity. Inspired by Sparklines [48], our first study focused
on comparing the benefits of three different Compression Types
(i.e., x-axis, y-axis, and xy-axes compression) with simple line
segments. We repeatedly found that compressing a line graph on
the x-axis yields more accurate and faster response, compared to
the y-axis and xy-axis compression. Moreover, even when the x-
axis compression was compared against the baseline, x-axis
compression generated more favourable outcomes. That is,
somewhat unexpectedly, compressed graphs triggered more
accurate and faster responses than uncompressed graphs. We
finally introduce G-Sparks, a dense compression of line graphs of
up to one pixel per sample point along the x-axis. In a second study
we find that compressing line graphs on the x-axis yields better
performances (i.e., fewer errors and faster response time) when
users performed glanceable estimation tasks, when compared to a
non-compressed line graph. We offer design recommendations to
smartwatch application designers and propose ways to integrate
such compressed graphs in smartwatch applications.

ACKNOWLEDGMENTS
We acknowledge funding from NSERC and the CRC program
awarded to the last author. This work is also supported by the
French National Research Asency (PERFIN project, ANR-18-
CE33-0009) and by the CNRS (PICS n°07635).

REFERENCES
[1] Muhammad Adnan, Mike Just, and Lynne Baillie. 2016. Investigating

Time Series Visualisations to Improve the User Experience.
Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems - CHI ’16: 5444–5455.
https://doi.org/10.1145/2858036.2858300

[2] Reem Albaghli and Kenneth M Anderson. 2016. A Vision for Heart
Rate Health Through Wearables. Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous

Computing: Adjunct: 1101–1105.
https://doi.org/10.1145/2968219.2972715

[3] Fereshteh Amini, Khalad Hasan, Andrea Bunt, and Pourang Irani.
2017. Data Representations for In-situ Exploration of Health and
Fitness Data. In Proceedings of the 11th EAI International Conference
on Pervasive Computing Technologies for Healthcare
(PervasiveHealth ’17), 163–172.
https://doi.org/10.1145/3154862.3154879

[4] Vivien Beattie, Michael John Jones, and Michael John Beattie, Vivien
and Jones. 2002. The Impact of Graph Slope on Rate of Change
Judgments in Corporate Reports. Abacus 38, 2: 177–199.
https://doi.org/10.1111/1467-6281.00104

[5] Tanja Blascheck, Lonni Besançon, Anastasia Bezerianos, Bongshin
Lee, and Petra Isenberg. 2018. Glanceable Visualization: Studies of
Data Comparison Performance on Smartwatches. IEEE transactions
on visualization and computer graphics.

[6] Danielle Bragg, Shiri Azenkot, and Adam Tauman Kalai. 2016.
Reading and Learning Smartfonts. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology (UIST ’16),
391–402. https://doi.org/10.1145/2984511.2984554

[7] O de Bruijn, R Spence, and M Y Chong. 2002. RSVP Browser: Web
Browsing on Small Screen Devices. Personal and Ubiquitous
Computing 6, 4: 245–252. https://doi.org/10.1007/s007790200024

[8] Maria Beatriz Carmo, Ana Paula Afonso, and Paulo Pombinho Matos.
2007. Visualization of Geographic Query Results for Small Screen
Devices. In Proceedings of the 4th ACM Workshop on Geographical
Information Retrieval (GIR ’07), 63–64.
https://doi.org/10.1145/1316948.1316965

[9] L Ciabattoni, F Ferracuti, S Longhi, L Pepa, L Romeo, and F Verdini.
2017. Real-time mental stress detection based on smartwatch. In 2017
IEEE International Conference on Consumer Electronics (ICCE),
110–111. https://doi.org/10.1109/ICCE.2017.7889247

[10] William S. Cleveland and Robert McGill. 1984. Graphical Perception:
Theory, Experimentation, and Application to the Development of
Graphical Methods. Journal of the American Statistical Association
79, 387: 531. https://doi.org/10.2307/2288400

[11] William S Cleveland, Robert McGill, T Bell Laboratories, and Murray
Hill. 1986. An experiment in graphical perception. International
Journal of Man-Machine Studies 25, 5: 491–500.
https://doi.org/https://doi.org/10.1016/S0020-7373(86)80019-0

[12] Jacob Cohen. 1988. Statistical power analysis for the behavioral
sciences.

[13] Walter Crosby and Walter Crosby Eells. 2017. The Relative Merits of
Circles and Bars for Representing Component Parts JOURNAL OF
THE AMERICAN. Journal of the American Statistical Association
21, 154: 119–132. https://doi.org/10.1080/01621459.1926.10502165

[14] Frederick E . Croxton and Harold Stein. 2017. Graphic Comparisons
by Bars , Squares , Circles , and Cubes. Journal of the American
Statistical Association , Vol . 27 , No . 177 (Mar ., 1932), pp .
Published by : Taylor & Francis , Ltd . on behalf of the American
Statistical As 27, 177: 54–60.
https://doi.org/10.1080/01621459.1932.10503227

[15] Frederick E Croxton and Roy E Stryker. 1927. Bar Charts versus
Circle Diagrams. Journal of the American Statistical Association 22,
160: 473–482. https://doi.org/10.1080/01621459.1927.10502976

[16] Niklas Elmqvist, Thanh-Nghi Do, Howard Goodell, Nathalie Henry,
and Jean-Daniel Fekete. 2008. ZAME : Interactive Large-Scale Graph
Visualization. Visualization Symposium, 2008. PacificVIS’08. IEEE
Pacific: 215–222.

[17] Niklas Elmqvist and Pourang Irani. 2013. Ubiquitous analytics:
Interacting with big data anywhere, anytime. Computer 46, 4: 86–89.

[18] Paolo Federico, Stephan Hoffmann, Alexander Rind, Wolfgang
Aigner, and Silvia Miksch. 2014. Qualizon Graphs: Space-efficient
Time-series Visualization with Qualitative Abstractions. Proceedings
of the 2014 International Working Conference on Advanced Visual
Interfaces: 273–280. https://doi.org/10.1145/2598153.2598172

[19] Jean-Daniel J-D Fekete and Catherine Plaisant. 2002. Interactive
information visualization of a million items. In Information
Visualization, 2002. INFOVIS 2002. IEEE Symposium on (Interactive
Technologies), 279–286.
https://doi.org/https://doi.org/10.1016/B978-155860915-0/50034-2

[20] Tak-chung Fu, Fu-lai Chung, Ka-yan Kwok, and Chak-man Ng. 2008.

Stock time series visualization based on data point importance.
Engineering Applications of Artificial Intelligence 21, 8: 1217–1232.

[21] Michael Fulk. 2001. Improving Web Browsing on Handheld Devices.
In CHI ’01 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’01), 395–396.
https://doi.org/10.1145/634067.634300

[22] Rúben Gouveia, Evangelos Karapanos, and Marc Hassenzahl. 2018.
Activity Tracking in vivo. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 362.

[23] Wei Guo and Jingtao Wang. 2017. SmartRSVP: Facilitating Attentive
Speed Reading on Small Screen Wearable Devices. In Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’17), 1640–1647.
https://doi.org/10.1145/3027063.3053176

[24] Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang Irani.
2008. Wedge: clutter-free visualization of off-screen locations. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 787–796.

[25] Sean G Gustafson and Pourang P Irani. 2007. Comparing
visualizations for tracking off-screen moving targets. In CHI’07
Extended Abstracts on Human Factors in Computing Systems, 2399–
2404.

[26] Alfredo I Hernandez, Fernando Mora, M Villegas, Gianfranco
Passariello, and Guy Carrault. 2001. Real-time ECG transmission via
Internet for nonclinical applications. IEEE Transactions on
information technology in biomedicine 5, 3: 253–257.

[27] Dandan Huang, Melanie Tory, Bon Adriel Aseniero, Lyn Bartram,
Scott Bateman, Sheelagh Carpendale, Anthony Tang, and Robert
Woodbury. 2015. Personal visualization and personal visual analytics.
IEEE Transactions on Visualization and Computer Graphics 21, 3:
420–433. https://doi.org/10.1109/TVCG.2014.2359887

[28] Stéphane Huot and Eric Lecolinet. 2007. TFocus+Context
Visualization Techniques for Displaying Large Lists with Multiple
Points of Interest on Small Tactile Screens. In Human-Computer
Interaction -- INTERACT 2007, 219–233.

[29] Waqas Javed, Bryan McDonnel, and Niklas Elmqvist. 2010.
Graphical perception of multiple time series. IEEE Transactions on
Visualization and Computer Graphics 16, 6: 927–934.
https://doi.org/10.1109/TVCG.2010.162

[30] Nicholas Kong, Jeffrey Heer, and Maneesh Agrawala. 2010.
Perceptual guidelines for creating rectangular treemaps. IEEE
Transactions on Visualization and Computer Graphics 16, 6: 990–
998. https://doi.org/10.1109/TVCG.2010.186

[31] Ian Li, Anind K Dey, and Jodi Forlizzi. 2011. Understanding My Data,
Myself: Supporting Self-reflection with Ubicomp Technologies. In
Proceedings of the 13th International Conference on Ubiquitous
Computing (UbiComp ’11), 405–414.
https://doi.org/10.1145/2030112.2030166

[32] Zilu Liang, Bernd Ploderer, Wanyu Liu, Yukiko Nagata, James
Bailey, Lars Kulik, and Yuxuan Li. 2016. SleepExplorer: a
visualization tool to make sense of correlations between personal
sleep data and contextual factors. Personal and Ubiquitous
Computing 20, 6: 985–1000. https://doi.org/10.1007/s00779-016-
0960-6

[33] Kent Lyons, David Nguyen, Daniel Ashbrook, and Sean White. 2012.
Facet: A Multi-segment Wrist Worn System. In Proceedings of the
25th Annual ACM Symposium on User Interface Software and
Technology (UIST ’12), 123–130.
https://doi.org/10.1145/2380116.2380134

[34] Jochen Meyer, Anastasia Kazakova, Merlin Büsing, and Susanne
Boll. 2016. Visualization of Complex Health Data on Mobile Devices.
MMHealth’16: Multimedia for personal health and health care
Proceedings: 31–34. https://doi.org/10.1145/2985766.2985774

[35] Todd Miller and John Stasko. 2002. Artistically conveying peripheral
information with the InfoCanvas. In Proceedings of the Working
Conference on Advanced Visual Interfaces, 43–50.

[36] Subhas Chandra Mukhopadhyay. 2015. Wearable sensors for human
activity monitoring: A review. IEEE sensors journal 15, 3: 1321–
1330.

[37] Julie Pallant. 2010. SPSS survival manual: A step by step guide to
data analysis using SPSS . Maidenhead.

[38] Jaehyun Park. 2016. Classifying Weight Training Workouts with

Deep Convolutional Neural Networks : A Precedent Study.
Proceedings of the 18th International Conference on Human-
Computer Interaction with Mobile Devices and Services Adjunct:
854–858. https://doi.org/10.1145/2957265.2961861

[39] Soubhik Paul, Jayanta Mukhopadhyay, A K Majumdar, Bandana
Majumdar, and S Das Bhattacharya. 2012. Methodology to Visualize
Electronic Health Record for Chronic Diseases on Small Display
Screens. In Proceedings of the International Conference on Advances
in Computing, Communications and Informatics (ICACCI ’12), 505–
510. https://doi.org/10.1145/2345396.2345480

[40] Charles Perin, Frédéric Vernier, and Jean-Daniel Fekete. 2013.
Interactive Horizon Graphs: Improving the Compact Visualization of
Multiple Time Series. CHI ’13 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: 3217–3226.
https://doi.org/10.1145/2470654.2466441

[41] Lewis V Peterson and Wilbur Schramm. 1954. How accurately are
different kinds of graphs read? Audiovisual communication review 2,
3: 178–189.

[42] Ho-Kyeong Ra, Jungmo Ahn, Hee Jung Yoon, Dukyong Yoon, Sang
Hyuk Son, and JeongGil Ko. 2017. I Am a “Smart” Watch, Smart
Enough to Know the Accuracy of My Own Heart Rate Sensor. In
Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications (HotMobile ’17), 49–54.
https://doi.org/10.1145/3032970.3032977

[43] Blaine Reeder and Alexandria David. 2016. Health at hand: A
systematic review of smart watch uses for health and wellness.
Journal of Biomedical Informatics 63: 269–276.
https://doi.org/https://doi.org/10.1016/j.jbi.2016.09.001

[44] Virpi Roto, Andrei Popescu, Antti Koivisto, and Elina Vartiainen.
2006. Minimap: A Web Page Visualization Method for Mobile
Phones. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’06), 35–44.
https://doi.org/10.1145/1124772.1124779

[45] Marcos Serrano, Khalad Hasan, Barrett Ens, Xing-Dong Yang, and
Pourang Irani. 2015. Smartwatches + Head-Worn Displays: the
“New” Smartphone. In ACM Workshop on Mobile Collocated
Interaction (W28 - CHI 2015) in 33rd Annual ACM Conference on
Human Factors in Computing Systems, 1--5. Retrieved from
http://oatao.univ-toulouse.fr/15288/

[46] David Simkin, Reid Hastie, David Simkin, and Reid Hastie. 2017. An
Information-Processing Analysis of Graph Perception. 82, 398: 454–
465.

[47] Gaganpreet Singh, William Delamare, and Pourang Irani. 2018. D-
SWIME: A Design Space for Smartwatch Interaction Techniques
Supporting Mobility and Encumbrance. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI ’18),
634:1--634:13. https://doi.org/10.1145/3173574.3174208

[48] Edward R Tufte. 2006. Beautiful evidence. Graphics Press Cheshire,
CT.

[49] Taowei David Wang, Catherine Plaisant, Alexander J Quinn, Roman
Stanchak, Shawn Murphy, and Ben Shneiderman. 2008. Aligning
temporal data by sentinel events: discovering patterns in electronic
health records. In Proceedings of the SIGCHI conference on Human
factors in computing systems, 457–466.

[50] Dirk Wenig, Johannes Schöning, Alex Olwal, Mathias Oben, and
Rainer Malaka. 2017. WatchThru: Expanding Smartwatch Displays
with Mid-air Visuals and Wrist-worn Augmented Reality. In
Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17), 716–721.
https://doi.org/10.1145/3025453.3025852

[51] Vivian L West, David Borland, and W Ed Hammond. 2014.
Innovative Information Visualization of Electronic Health Record
Data: A Systematic Review. Journal of the American Medical
Informatics Association : JAMIA: 1–7.
https://doi.org/10.1136/amiajnl-2014-002955

