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ABSTRACT 
Optimizing the use of a small display while presenting graphic data 
such as line charts is challenging. To tackle this, we propose G-
Sparks, a compact visual representation of glanceable line graphs 
for smartwatches. Our exploration primarily considered the suitable 
compression axes for time-series charts. In a first study we examine 
the optimal line-graph compression approach without 
compromising perceptual metrics, such as slope or height 
detections. We evaluated compressions of line segments, the 
elementary unit of a line graph, along the x-axis, y-axis, and xy-
axes. Contrary to intuition, we find that condensing graphs yield 
more accurate reading of height estimations than non-compressed 
graphs, but only when these are compressed along the x-axis. 
Building from this result, we study the effect of an x-axis 
compression on users' ability to perform "glanceable" analytic tasks 
with actual data. Glanceable tasks include quick perceptual 
judgements of graph properties.  Using bio-metric data (heart rate), 
we find that shrinking a line graph to the point of representing one 
data sample per pixel does not compromise legibility. As expected, 
such type of compression also has the effect of minimizing the 
needed amount of flicking to interact with such graphs. From our 
results, we offer guidelines to application designers needing to 
integrate line charts into smartwatch apps. 

Keywords: Smartwatch visualization, small screen, line graph, 
compression methods, spark lines. 
Index Terms:  H.5.0 [Information Interface and Presentation] 

1 INTRODUCTION 
Smartwatches and digital armbands are popular due to their small 
form-factor offering users constant access to information. Their 
varied sensors can monitor sleep and heart rate [2,32,42] and assist 
with fitness tracking [38] or recognizing stress [9]. These sensors 
generate massive amounts of time-series data, commonly 
visualized using line graphs (Figure 1). However, such 
visualizations can be difficult to view and browse in-situ, on the 
device itself, a common need reported by users [3]. While 
researchers have investigated line graph visualizations methods 
[16,19], their presentation and interaction on small smartwatch 
screens is still an open challenge [3,17]. In this work we ask how 
best to shrink line graphs to minimize interaction effort without 
sacrificing glanceability.  

 
Figure 1: Line graphs are one of the most common data 
visualization techniques on smartwatches to represent large time-
series data collected by sensors. 

Inspired by Sparklines [48], a technique to integrate line graphs 
like words in texts, images, and tables, we investigate various ways 
of condensing high-density continuous time-series data on 
smartwatches. Although Sparklines can be used directly 
smartwatches, this technique compresses the line graph mainly on  
on the y-axis, to integrate it within words. However, on 
smartwatches, we postulate that condensing line graphs on 
smartwatches, such that they are legible, can enable a host of new 
scenarios. For instance, showing the user's continuous heart rate 
history beside other information such as sleep quality and breathing 
patterns, can better inform the user of their stress level and make 
them aware of their biometric states.  

Glanceability, in information visualization has often referred to 
being able to quickly extract the necessary information from a 
display by a quick glance. The InfoCanvas [35] is a classic example 
of a glanceable display, as it allows a quick perceptual extraction 
of the information encoded in the visuals. We argue that visuals on 
smartwatches should also facilitate quick glances [22] meaning that 
visualization techniques should be designed in a way to “convey a 
large amount of information during brief glances” [5]. A key design 
challenge we address is a method to see as large an amount of the 
dataset on the smartwatch, by condensing the graphs, without 
compromising the glanceability aspects necessary for in-situ tasks.  

Through two experiments we explored the dimensions (x-, y-, or 
both) best suited at shrinking a line graph while still being able to 
respond to basic perceptual and judgement tasks. In the first study, 
we test users’ perceptual ability to differentiate heights of line 
segments, a graph’s atomic unit. We find that, overall, graph 
segments are best interpreted when compressed along the x-axis. In 
Study 2, we examine global tasks, such as quickly detecting a peak, 
for their “glanceability” when the graph is condensed along the x-
axis. Our results reveal that line graphs can be compressed to the 
point of presenting one data sample per pixel along the x-axis, 
without loss of perceptual performance. This result is 
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counterintuitive and demonstrates that using a highly aggression 
compression approach, will not necessarily degrade graph legibility 
performance, for the key tasks selected in our study. 
Our contributions include (1) an exploration into suitably 
condensing line graphs to represent temporal data, on 
smartwatches; and (2) an examination into whether an aggressive 
compression level can still lead to (a) “glanceable” line graphs, with 
(b) minimal interactivity. 

2 RELATED WORK 
We provide an overview of relevant work on small screen 
visualization techniques and graphical perception. 

2.1 Information Visualization on Small Screens 
Consumer interest in monitoring continuous human activities, 
which can be achieved by an unobtrusive device such as a 
smartwatch, is increasing rapidly [36]. When the data is interpreted 
properly, it can enrich our lives, particularly when it concerns 
health-related and personal activities (e.g., How many calories did 
you use today?) [43]. Li et al. [31] identified six major questions 
that consumers regularly ask when looking at their personal data. 
These center around Status, History, Goals, Discrepancies, 
Context, and Factors. Effective data visualizations are essential to 
find answers to these six major questions on smartwatches 
throughout the day [27]. 

There exist a number of works concerning the representation of 
health data, such as for introducing novel analytic and visualization 
tools for Electronic Health Records (EHR) [51]. For example, 
Wang et al. [49] introduced an interactive visual tool that helps 
professionals to detect hidden patterns in patients’ data, which 
otherwise can be hard to detect. Health data is usually complex 
massive time-series data. For instance, heart rate and 
Electrocardiogram or ECG, respiratory data, and body temperature 
are time-series data. Many health data types are crucial and it is 
crucial for physicians to have real-time access to such data and 
visualizations [26]. Dimension reduction techniques, such as the 
Perceptually Important Point (PIP) algorithm, have been used to 
make complex massive health data simpler and easy to understand. 
For instance, Fu et al. [20] showed how PIP can be applied on line 
graphs, as the most common way to represent large ECG data.  

Line graphs are highly common as they convey many aspects of 
temporal data. Novel line graph designs have long been 
investigated by many researchers [29,40]. Sparklines, proposed by 
Tufte [48], compresses line graphs, usually without axes or 
coordinates, to represent high resolution and continuous time-series 
data. Sparklines is designed to be embedded in texts, images, and 
tables, with small fonts, and to provide a high-level overview of the 
data. Sparklines compress line graphs usually on the y-axis such 
that it fits within the font size selected for its associated text. 
However, designers of line graphs on smartwatches are not 
necessarily constrained by font size, and can compress line graphs 
on the x-, y- or xy-axes. Furthermore, when compressed, line 
graphs on smartwatches can be strategically positioned to convey 
the necessary information.  

A few studies explore visualizations on small screens. For 
instance, Blascheck et al. [5] investigated how quickly users 
compare two data points, using three different visualization 
methods (e.g., bar chart, donut chart, and radial bar chart) and three 
different sizes of data sets (e.g., 7, 12, and 24 data values), on small 
smartwatch screens. In two similar studies, they showed 
participants different charts with two indicated data points in each 
chart, and participants were asked to determine which one of these 
two data points has higher value. They collected response times of 

participants to determine which one of three chart types is the most 
glanceable chart for data comparison task.   

 Fulk [21] shows that we should take specific approaches to 
represent web content on small displays. Split View and Fisheye 
techniques can help users focus only on a specific part of a 
webpage. Minimap also allows presenting selected information on 
a small display [44]. The RSVP Browser provides users with brief 
information of all links of web pages as images, to accommodate 
mobile device screens [7]. Wedge is another technique that shows 
off-screen content in an accurate manner, but on the smartphone 
display [24]. Similarly, EdgeRadar allows the compressed 
visualization of off-screen moving items on the smartphone display 
[25]. 

Researchers have further explored techniques to resolve the 
limited display issue at application specific levels. For instance, 
with filtering techniques, representing a reasonable amount of 
details specifically by regulating the number of relevant elements 
in the map, we can have a better understanding of geo-referenced 
information on small screens [8]. Similarly, in [39], researchers 
noticed that designing an interface for small screens to visualize 
electronic health records can be a challenging task, primarily 
because of the large volume of records.  

An alternative to the above involves modifying the small display 
itself  [34] with additional hardware. For instance, in [45], 
researchers combined the output of a head-worn display and 
smartwatch screen to provide additional information. Likewise, 
Facet is a multi-display wrist-worn smartwatch, containing an array 
of multiple touch-sensitive segments [33]. Further, using a similar 
approach, Wenig et al. [50] deployed an additional transparent 
display beside the original screen to represent more information on 
it.  

Smart approaches can also optimize the available space. 
Techniques such as SpiraList and SnaiList help display long lists 
on small screens using a spiral layout [28]. Similarly, techniques 
such as Smartfonts and SmartRSVP can facilitate reading small 
texts on small wearable devices [6,23]. In [6] researchers 
introduced a new series of fonts that are appropriate to read on 
small screens, and in [23] they investigated the application of 
“Rapid Serial Visualization Presentation” which represents words 
of text separately with adjustable speed.  

It is worth pointing out that our literature search yielded only a 
handful studies addressing the issue of information visualization on 
smartwatches. Further, we did not find any clear guidelines or 
research focusing on the size nor the compression methods of line 
graphs on smartwatches. 

2.2 Graphical Perception 
Graphical perception is defined as “the visual decoding of 
categorical and quantitative information from a graph” [11]. 
Graphical perception hinges on the graph size, area, color, angle, 
position, length, and other various factors. It is important to explore 
how individuals interpret different types of graphic representation 
techniques. For instance, authors in [30] introduced a perceptual 
guideline for treemap charts. 

Numerous studies investigated graphical perception differences 
based on different graph types [13–15,29,41]. Further, Cleveland et 
al. [10] examined ten elementary perceptual tasks people go 
through (e.g., shading, angle, length, direction, area, and position) 
when extracting quantitative information from certain types of 
graphs. Similarly, Cleveland et al. [11] investigated and discovered 
the effect of six factors such as length, angle, slope, and area, on 
extracting information from graphs. We incorporated some of these 
factors in our study. 



Table 1: xy-axis compression method relative to the baseline pixel 
density of a line segment with height difference of 4. 

 X-Axis-Length Y-Axis-Length XY-Axis-Length 
Baseline 184 pixels,2.13 cms 68 pixels, 0.8 cms 196 pixels, 2.27 cms 

xy-axis, 25% 46 pixels, 0.53 cms 17 pixels, 0.2 cms 48 pixels, 0.56 cms 
xy-axis, 50% 92 pixels, 1.06 cms 34 pixels, 0.4 cms 98 pixels, 1.14 cms 
xy-axis, 75% 138 pixels, 1.6 cms 51 pixels, 0.6 cms 147 pixels, 1.7 cms 

 
There are three particular tasks that researchers have regularly 

explored to measure graphical perception with line graphs. These  
tasks are (i) max/min detection [2,18,29,40] which concerns 
finding the maximum or the minimum point in a graph; (ii) slope 
detection and slope comparison [4,29,40]; and, (iii) determining the 
difference between the values of two or more multiple data points 
in the graph [1,18,29,46]. We use these tasks to understand how 
differently compressed line graphs yield different outcomes. 

3 COMPRESSING LINE GRAPHS 
Line graph compression involves shrinking one or two dimensions 
of the graph, on the x-, y- or xy-axes. While various compression 
techniques are possible, we explored three specific approaches. 
 
X-Axis Compression: in this approach we compress the baseline 
graph only along on the x-axis (e.g., 25% compression; X:Y = 
0.25:1). This can be captured by the following relationships: 

Xlc = Xlb × (CL) and Ylc = Ylb 

where Xlc and Ylc represented the length of x-axis and y-axis of 
the compressed line graph, Xlb and Ylb represent the length of the x-
axis and y-axis of the baseline line graph and CL represents the 
Compression Level (e.g. 25%, 50%, or 75%)   
 
Y-Axis Compression: in this method we compress the baseline 
graph only on the y-axis (e.g., 25% compression; X:Y =1:0.25), 
with the following relationship: 

Xlc = Xlb and Ylc = Ylb × CL 
XY-Axis Compression: we combine the above two to compress on 
both x and y axes simultaneously (e.g., 25% xy-axis compression; 
X:Y = 0.25:0.25) (Figure 2). This is represented as:  

Xlc = Xlb × CL and Ylc = Ylb × CL 

4 STUDY 1: COMPRESSION TYPES 
The goal of Study 1 is to identify which Compression Type provides 
the best perceptual legibility. We additionally explore the 
approximate compression threshold suitable in terms of pixel 
density for a smartwatch display. 

4.1 Graphical Perceptual Tasks 
Participants engaged in simple graphical perceptual tasks where 
they viewed a series of simplified line segments on a smartwatch 
(Figure 2). We asked them to identify height differences as well as 
the slope type (i.e., increasing or decreasing) of this most basic unit, 
a line segment.  

Height difference:  
Participants identified the absolute height difference between the 
start and end of a line segment. The difference could be either 0, 1, 
2, 3, 4. The length of one unit on the y-axis was 20pxs for the 
baseline graph and all x-axis compressed graph, 10pxs for 50% of  
compression for xy-axis and y-axis Compression Types; and 5pxs 
for 25% of compression for xy-axis and y-axis Compression Types. 
Please note that we focused on smaller height differences (i.e., 
between 1 and 4) as these differences were more challenging than 
larger height differences (i.e., 5 to 10). Further, including all the 
possible height differences (i.e., 0 to 10) would necessarily increase  

      
Figure 2: Screenshot of graphs used in Study 1 representing, a) 
baseline graphs, b) xy-axis compression, c) y-axis compression and 
d) x-axis compression technique. 
 
the number of the segments drastically, which would induce 
cognitive fatigue. Given the relationships above, Table 1 describes 
the various compression amounts for the pixel density of a line 
segment for height 4 on our device (see Apparatus section). 
 
Slope:  
We explored the potential effect of slope type as well. When the 
left end of a line was lower than the right end, we categorized the 
slope as an increase, and decrease otherwise. 

4.2 Apparatus and Materials 
We utilized a smartwatch IMACWEAR M7, with 1.54” and 
240×240 resolution display. The entire screen was used, so the 
participants were not distracted by the title and the notification bar. 
A Targus AKP03CA Bluetooth keypad was utilized to capture user 
input (Figure 3). Participants were instructed not to touch the 
display. The Bluetooth keyboard was used to enter responses to 
mitigate clutter on the watch. 

4.3 Compression Values 
The baseline graph is a graph with zero compression. Furthermore, 
to explore the lower approximate compression threshold, we 
investigated the Compression Level effect at 75%, 50%, and 25% 
for each Compression Type on error rates and response times. 

Note, when the graph is compressed on the x-axis to CL%, it 
indicates that the baseline graph was x-axis compressed by an 
amount of CL% on the indicated axis. This means, for instance, the 
bottom of the 25% x-axis compressed graph is shorter than the 
bottom of the 75% x-axis compressed graph. In Figure 2, each 
column (left to right) displays the baseline, xy-axis, y-axis, and x-
axis compression. Each row displays (top to bottom) 75%, 50%, 
and 25% compressed sizes, with height difference of 4. 

4.4 Study Design and Procedure 
We investigated three factors: Compression Type (xy-axis vs. y-axis 
vs. x-axis), Compression Level (75% vs. 50% vs. 25%) and Slope 
type (increase vs. decrease). The Compression Type was a between-
subjects factor while the Compression Level and the Slope were 
within-subjects factors. Upon their arrival, participants were 
randomly assigned to one of three compression conditions (x-axis, 
y-axis, or xy-axis). After the instructions and signing the consent 
form, participants engaged in line graph reading tasks. Upon 
completion, participants received a $15 gift card. The entire session 
took approximately 60 minutes on average.     



 
Figure 3: The smartwatch and Bluetooth keypad used in both 
studies. The arm with the watch was placed on the table. 
 

For each height difference (1, 2, 3, and 4) of each Compression 
Level (25%, 50%, and 75%) there were 15 graphs with positive  
slope and 15 graphs with negative slopes. For Height difference of  
0, there were 30 graphs. Thus, each participant processed 150 
graphs. There were four blocks for each session (100% or baseline,  
75%, 50%, & 25%). The height difference (e.g., 2) and the slope 
direction (e.g., negative) were randomized within each session. A 
Latin square design was applied to counterbalance the order of 4 
blocks. 

4.4.1 Participants 
We recruited 36 participants (Female = 12) mostly from a local 
university (Mage= 26.11). Since the session was designed to take 
approximately 60 mins, we chose a between-subject design to avoid 
potential cognitive fatigue. 

4.4.2 Collected Data 
Participants’ response time (RT) and error rates (ER) were 
collected. Response was entered on the USB keyboard as quickly 
as possible. The RT was measured in millisecond once the graph 
was displayed on a smartwatch until they pressed the enter button 
on a keyboard. For the ER, the ratio of participants’ inaccurate to 
accurate response was used. 

4.5 Results 
A series of mixed model ANOVAs were conducted throughout, 
unless otherwise specified. The between factor was the 
Compression Type (xy-axis vs. x-axis vs. y-axis), and within factors 
were Compression Level of the graph (75% vs. 50% vs. 25%), the 
Height difference between point A and B (1 vs. 2 vs. 3 vs. 4), and 
the Slope (increase vs. decrease). Whenever sphericity assumption 
was violated, Greenhouse-Geisser correction was applied. For the 
interpretation of effect size ŋp2, Cohen’s guideline was followed 
(0.01 = small, 0.06 = medium, 0.13 = large [12]. Small sample size 
can cause significant issues such as low statistical power, low 
producibility, and non-normal data. Although our data was not 
normally distributed, which means we can use data analysis 
methods designed for non-normally distributed data, we had a large 
enough sample size and thus, we did not expect any major issues 
[37].    
 
Response time (RT) 
No significant main effect was found for Compression Type, Slope 
type, nor Compression Level (p > .05). As expected, a significant 
effect for Height difference was found however; F1.8, 49.4 = 102.03, 
p < .001. 

 
Figure 4: (Left): Study 1, Response time: Interaction between 
compression type and Compression Level. (Right): Study 1, 
Interaction effect on error rate; Between compression type and 
compression size. 
 

Further, a Compression Type × Compression Level interaction 
effect was found; F4, 54 = 2.73, p < .05, ŋp2= .17). Post hoc pairwise 
comparisons yielded that at 50%, on average, participants in the x-
axis condition responded faster than those in the y-axis condition, 
with a mean difference of 500ms (p < .05). The same pattern was 
found at 25% level, with a mean difference of 1063ms, (p < .05). 
(See Figure 4, Left). 

 
Figure 5: (Left): Study 1. Error rate by compression type. (Right): 
Study 1. Interaction effect on error rate; Between height difference 
and compression type. 
 
Error Rate (ER) 
We found significant effects for Compression Type; F2, 31 = 42.67, 
p <.001, ŋp2 = .73, as well as for within factors, Compression Level,  
F1.76, 54.40 = 57.58, p <.001, ŋp2 = .65), Slope type, F 1, 31 = 14.21, p 
= .001, ŋp2 = .75, and Height difference F1.75, 54.18 = 11.60, p < .001, 
ŋp2 = .27. 

 For the Compression Type effect, further pairwise comparisons 
were conducted. The x-axis compression yielded the lowest ER, 
followed by xy-axis and then the y-axis compression (Figure 5, 
Left). For the compression level effect, further post hoc analysis 
yielded that the ER did not differ between 75% and 50% (p > .05), 
while the ER at 25% was higher than that at 50% (p < .001), and at 
75% (p < .001). Finally, for the height difference effect, the largest 
difference (i.e., 4) was different from the rest (p < .001) while the 
rest did not differ (p >.05).  

 Regarding the interaction effects, a significant Compression 
Type × Size Interaction effect was found on ER, F3.67, 56.84 = 16.42, 
p <.001). A post-hoc analysis yielded no significant results for x-
axis compressed lines (p > .05) while Compression Level effect on 
xy-axis and y-axis compression conditions were found (p < .01). 
This indicates that an x-axis compression is the most robust one 
against errors when time-series graphs are compressed. Their ER 
did not vary even when the line was compressed to 25% (See Figure 
4, Right).  
    Next, Compression Type × Height difference interaction effect 
was also found (F6, 93 = 7.04, p < .001, ŋp2 = .31; Figure 5, Right). 
A simple effect analysis revealed significant Height difference 
effects (p < .001), but only for the y-axis compression. For x-axis 
and xy-axis compression style, height difference did not have 
significant effects (p > .05). Combined  with the last finding  (i.e.,  



 
Figure 6: Representing the x-interval of data points in baseline line 
graph and G-Spark  
 
robustness of x-axis compression), this finding confirms the 
stability of x-axis compression, in particular. 

4.5.1 Baseline vs. X-axis Compression  
Since x-axis Compression Type yielded the most favourable results 
for both RT and ER, we now compare the baseline (i.e., no 
compression) against an x-axis compression. 
 
Response Time 
When the Compression Level on the x-axis was 75% or 50%, 
ANOVAs found no difference in Error Rate (ps > .05). When the 
Compression Level was at 25%, however, a significant difference 
emerged with a large effect (F1, 21 = 4.23, p = .05, ŋ2 = .17). 
Participants responded significantly faster in X-axis Compression 
(M = 2027.21; SD = 405.50) than in baseline condition (M = 
2815.00; SD = 1259.99). This indicates a potential benefit of X-axis 
Compression again. Generally, participants can respond faster 
towards x-axis compressed graphs than the baseline graphs when it 
is small.  
 
Error Rate 
We also found significant effects for different height judgements 
for all Compression Levels (ps < 0.05) on Reaction Time. Again, 
all the significant results indicated the potential benefits of x-axis 
Compression Type (rs >.75). 

4.6 Study 1 Summary 
For the RT, x-axis compression was better than other methods when 
the graph was compressed to a smaller size. Further, the results 
from the ER analyses pointed to more robust judgments with x-axis 
compression even at 25%. Surprisingly, even when we compared 
against the baseline, the x-axis compression resulted in better 
performance across reaction time and error rate. This outcome 
contrasts with proposed practice of Sparklines which compress 
along the y- dimension to fit in word size chunks. We use this 
largest density (25%) compressed along the x-axis for G-Sparks. 

5 STUDY 2: G-SPARK 
Since the x-axis compression consistently yielded the most 
favourable outcome in Study 1, we propose G-Sparks, a condensed 
line graph to represent the densest compression. At 25%, each pixel 
in G-Sparks represented one sample point from the heart rate data 
set we used (Figure 8). The goal of this study was to assess this 
aggressive Compression Type. This is the most aggressive level of 
compression possible, for representing every data sample. As 
indicated earlier, three of the most common perceptual tasks with 
line graphs are: (1) max/min detection; (2) slope value detection; 
and, (3) the value differences between two or more data points 
(Figure 7). We can place these tasks along a ‘glanceability’ 
continuum according to the degree of task difficulty, with peak 
estimations being highly glanceable, and size and slope judgments 
less glanceable. We use these tasks to assess G-Sparks. 
 

      
Figure 7: Tasks falling on a ‘glanceability’ continuum, with tasks such 
as min/max detection being highly possible by glancing, while slope 
degree and size estimations being less ‘glanceable’, i.e. needing 
cycles to compute the difference. We use these tasks to assess 
whether the x-axis compression style can still enable proper 
judgement. 

5.1 Apparatus and Materials 
We used the same device as in Study 1 (Figure 3). We used actual 
heart rate data where each sample point represented one second, 
and all graphs contained at least 2000 data points. With our 
apparatus, and with the Baseline and G-Sparks density described 
earlier, we could fit 50 and 200 data points, respectively, on the 
smartwatch in any instance. To see the remaining points users could 
flick left or right. 
     Heart rate data has different patterns related to various activities, 
such as resting and sleeping, with more stable heart rate, compared 
to other activities such as workout with more changes in the data. 
Users usually are looking for parts of the graph with fluctuations 
and changes in the data. Therefore, for this study, we were more 
interested in heart rate data with more fluctuations (e.g., doing 
workout). Also, our standard tasks in this study are designed in a 
way that there should be fluctuations in the data. 
 

   
Figure 8: (A). Baseline line graph, and (B). G-Sparks. 

5.2 Procedure 
Upon their arrival, participants were randomly assigned to G-
Sparks or to the Baseline condition. After reading instructions and 
signing a consent form, participants engaged in the assigned graph 
reading tasks. Upon completion, participants received a $15 gift 
card. On average the session lasted 60 minutes.  

5.2.1 Glanceable Analytic Tasks 
Max/Min Detection 
All participants saw 20 line graphs, and they flicked to navigate the 
entire graph. Participants were asked to tap the highest peak value 
on the smartwatch display. Once they identified the peak, they 
pressed enter on the keyboard to move to the next line graph. They 
were allowed to flick right and/or left as many times as they needed 
and were able to change their answers until they moved to the next 
graph. The same method was used for minimum trough detection 
(i.e., to identify the lowest data point). All the graphs were unique. 
 
Slope Estimation 
Participants saw two marked slopes in a line graph, and they were 
asked to select the steeper one. These slope stimuli were selected 
based on the following rules; (i) the two slopes were not in the same 
frame, i.e., users had to flick the viewport at least once, (ii) one 

Baseline G-Spark 



slope was always steeper than the other Participants repeated this 
task 10 times. 
 
Height Difference Detection 
Participants saw 2 red dots on a graph, and they assessed the value 
difference on the y-axis. Analogous to Study 1, we implemented 
this task in a way that the value difference between two data points 
was between 0 and 4 units. For each value difference, there were 
10 tasks resulting in 50 trials for the height difference task. These 
paired points were selected based on the 2 conditions: (i) the height  
difference of these points should not exceed 4 units, and (ii) the two 
points were not seen on the same frame. 
 
Flicking Frequency 
With at least 2000 data points in our samples, the chart was large 
enough to require that all the participants flick through to process 
the entire graph. We also recorded participants’ flicking frequency. 

5.3 Study Design 
Participants in the experimental condition were exposed to a series 
of G-Sparks, while participants in the control group were exposed 
to a series of baseline graphs (i.e., no compression, Figure 8).  

In the baseline condition, the number of data points presented 
within a frame was 50. All the data points are presented 
equidistantly and the distance between each two consecutive data 
points is 4 pixels on the x-axis. For the G-Spark, due to the 25% 
compression of the baseline, the interval between the data points 
was 1 pixel on the x-axis. Thus, we had 50 data points for the 
baseline in each screen (Figure 6). A Latin square design was used 
to prevent possible order effect. After the instructions were given, 
participants had a trial session. The tasks were the same across both 
conditions. 

5.3.1 Participants 
To avoid bias we recruited 24 new participants (Female = 10) 
mostly from a local university (Mage= 25.75).  

5.3.2 Collected Data 
Same as in Study 1, we collected participants’ response time (RT), 
as well as the error rate (ER). For the flicking frequency, 
participants’ flicking response was recorded on the smartwatch. 
Participants could go back and forth as frequently as they needed. 

5.4 Results 

5.4.1 Analysis 
After normality was ensured, independent sample t-tests were 
conducted throughout, except for the Height Difference 
Identification. For the Height Difference Identification, a mixed 
between-within subjects ANOVAs were conducted, with condition 
(baseline vs. G-Spark) as between factor and the height difference 
as a within factor (0 vs. 1 vs. 2 vs. 3 vs.4). 

5.4.2 Minimum Point Detection 
Response time (RT) 
Consistent with the results of Study 1, the mean RT for the 
participants in the G-Sparks condition was significantly shorter (M 
= 18,407ms, SD = 6197) than the mean RT for the baseline 
counterpart (M = 27,432 ms, SD = 13343; t22 = -2.13, p < .05). The 
effect size was large (ŋ2 = .17), indicating the magnitude of the 
differences in the means (9025ms) was large [12]. 
 
 
 

Flicking 
Participants in the G-Sparks condition flicked fewer times (M = 19 
flicks, SD = 6) compared to the participants in the baseline 
condition (M = 44 flicks, SD = 18; t13.38 = -4.55, p < .01). The effect 
size was large (ŋ2 =.49) indicating the very large magnitude of the 
differences in the means (mean difference = -25.08, 95% CI [-
36.96, -13.20]). 
 
Error rate (ER) 
Independent sample t-tests indicated significantly higher error rate 
in the baseline condition (M = .25, SD = .16) than with G-Sparks 
(M = .06, SD = .08; t22 = -3.74, p < .01 - two-tailed). The magnitude 
of the differences in the means (.20) was again, very large ŋ2 =.40. 
For minimum point detection, therefore, participants in the G-Spark 
condition flicked fewer times and completed the tasks faster with 
fewer errors than the participants in the baseline condition. 

5.4.3 Maximum Point Detection 
Response time (RT) 
Similar to minimum detection, the mean RT for participants with 
G-Sparks for maximum detection, was shorter (M = 18533ms, SD 
= 6005.91) than the baseline (M = 28636ms, SD = 8960; t22 = -3.16, 
p < .01; two-tailed). The magnitude of the differences in the means 
(9829ms) was large, ŋ2 =.31. 
 
Flicking 
Again, analogous to the minimum detection, participants in the G-
Sparks condition flicked fewer times (M = 20 flicks, SD = 7.24) 
compared to participants in the baseline (M = 46 flicks, SD = 14.24; 
t16.33 = -5.66, p < .001; two-tailed). The magnitude of the 
differences in the means (26) was very also large ŋ2 =.59. 
 
Error rate (ER) 
We observed a higher error rate in the baseline condition (M = .28, 
SD = .10) than with G-Sparks condition (M =.06, SD = .06; t22 = -
.6.3, p < .001; two-tailed). Further, the magnitude of the differences 
in the means (.21) was very large ŋ2 = .65. Once again, participants 
in the G-Sparks condition flicked fewer times and completed the 
tasks faster with fewer errors than the participants in the baseline. 

5.4.4 Slope Estimation 
Response time (RT) 
Consistent with the results of minimum and maximum points 
detection, the mean RT for the participants in the G-Sparks 
condition was shorter (M = 17212ms, SD = 6049) than the mean 
RT for the baseline counterparts (M = 26998ms, SD = 6582; t22 = -
3.79, p < .01; two-tailed). The observed mean difference was large 
(ŋ2 =.40) (9786ms). 

Table 2: Means for min/max detection and steeper slope detection 
for G-Spark and baseline conditions on response time, flicking, and 
error rates. Condition effects were significant with large effect sizes 
across all the tasks (ps < .05; ŋ2≥ .17). 

 RT (ms) Flicks Error Rate 
 G B G B G B 
Min  18,407 27,432 19.22 44.30 0.06 0.25 
Max 18,533 28,636 20.02 46.12 0.06 0.28 
Slope 17,212 26,998 13.03 32.95 0.07 0.32 

 
Flicking 
Participants in the G-Sparks condition flicked fewer times (M = 13 
flicks, SD = 4) compared to the participants in the baseline 
condition (M = 32 flicks, SD = 5; t22 = -9.19, p < .001; two-tailed). 
The magnitude of the differences in the means (19 flicks) was very 
large ŋ2 =.79. 
 



Error rate (ER) 
For the steeper slope detection as well, the ER was higher for the 
baseline condition (M = .32, SD = .14) than for G-Sparks (M = .07, 
SD = .05; t22 = -5.82, p < .001 - two-tailed). Further, the magnitude 
of the differences in the means (.25) was large ŋ2 = .61. 

5.4.5 Height difference Identification 
Response time (RT) 
There was a significant interaction effect between height difference 
and condition, F4,19 = 9.17, p < .001, with a large effect; ŋ2 = .66. 
We thus investigated the simple effects of height difference for 
each condition. For G-Sparks, participants’ RT was the longest 
when there was no height difference (M = 22381ms, SD = 4857) or 
when there was four (i.e., maximum) unit differences (M = 
19556ms, SD = 5793, ps < .05). Participants’ RT were equally 
shorter when the unit differences were one, two, or three. For the 
baseline condition as well, participants’ RTs were the longest when 
there was no difference (M = 35101ms, SD = 5704), followed by 
the 4 unit, maximum difference (M = 29243ms, SD = 6243). Again, 
participants’ RT was shorter when the unit differences were 1, 2, or 
3. Further and importantly, participants’ mean RT was consistently 
shorter in the G-Spark condition (ps < .005).   
 
Flicking 
A mixed between-within subjects analysis of variance was 
conducted to assess the impact of different types of graphs (baseline 
vs. G-Spark) on participants’ flicking frequency, across five 
different height difference levels (0,1,2,3,4). First, we found an 
interaction effect between the presentation condition and the height 
difference, F4,19 = 3.10, p < .05, with a large effect, ŋ2 = 40. Next, 
we investigated the simple effects of height difference level for 
each condition. There was no height difference effect in the G-
Sparks condition, indicating the flicking frequency did not vary 
based on the height differences with the G-Sparks condition (ps > 
.05). For the baseline condition, however, participants’ mean 
flicking frequencies was the highest when there was no height 
difference (M = 39 flicks, SD = 6.90) or when there was 4 
unit/maximum difference (M = 36.20, SD = 6.89). Participants’ 
flicking frequencies were the lowest when the unit differences were 
1, 2, or 3. Further and understandably, for each height difference, 
G-Sparks constantly exhibited a smaller flicking frequency (M = 13 
flicks, SD = 4.46) than the baseline (M = 33 flicks, SD = 5.44; F1, 

22 = 164.87, p < .001), with a very large effect ŋ2 = .88. 
 
Error rate (ER) 
We investigated the main effect of condition. Participants’ mean 
ER was higher in the baseline condition (M = .52, SD = 20) 
compared to the G-Sparks condition (M = .52, SD = .17; F1, 22 = 
19.35, p < .001), with a very large effect ŋ2 = .47. For both 
conditions, when the height difference did not exist (i.e., 0) or one, 
ER was smaller (ps < .05), but as the height difference increased, 
the ER also increased. There was no significant interaction effect 
(p > .05). 

6 DISCUSSION 
As expected, relative to zero-compressed graphs, G-Sparks led to 
better overall outcomes. Compared to the baseline graphs, G-
Sparks yielded shorter response times, with fewer flick operations. 
Further, overall error rate was lower with G-Sparks compared to 
the baseline. Altogether, these results indicate that G-Spark, a line 
graph to present each sample point in one pixel, has potential for 
displaying line graphs on small displays. 

  
Figure 9: G-Spark applications. a) Adding more details and 
information, b) using G-Sparks for more complex line graphs in round 
faced smartwatches, and c) can be embedded in different 
applications, helping users with decision-making tasks.  
 

We used the most fundamental tasks related to reading and 
understanding line graphs, representing heart rate data, as one of 
the common time-series data collected by smartwatches sensors. 
Since all time-series data are similar to each other and can be 
represented by line graphs, the result of this study can be 
generalized to other time-series data. For instance, a similar 
approach can be used for representing burned calorie, walking 
speed, galvanic skin response, and body temperature of the user, 
for a specific period.  

6.1 Result Summary 
We used a highly aggressive compression style, where each pixel 
represents one sample point in the data. We referred to this line 
graph as G-Sparks. Our results point at condensing line graphs 
along the x-axis as these lead to fewer errors and minimal 
interactivity. Altogether, our results indicate that x-axis compressed 
line graphs offer robust graphical judgements on smartwatch 
displays. It is worth mentioning that fewer flicks can be key for 
smartwatch experiences  [47]. 

6.2 Relation to Sparklines 
We drew inspiration from Sparklines [48] a method for compacting 
a line graph within words in a document. Interestingly, Sparklines 
compresses graphs on the y-axis to make the graph fit as a word in 
a text passage. This may indeed not severely affect global trend 
understanding. However, for specific size judgments, we find that 
x-axis and even xy-axis compressions are best suited for glanceable 
tasks.  Such a compression creates space to include additional 
details on the watch display. Although Sparklines are useful in 
various applications, we demonstrated that an x-axis compression, 
or G-Sparks, is better suited for fundamental glancable tasks related 
to reading and understanding line graphs on smartwatches. 

6.3 Design Recommendations 
We offer the following design recommendations: 

• Compressing line graphs along the x-axis will facilitate 
glanceable operations and reduce flicking on smartwatches; 

• G-Sparks, a line graph compressed to the point of including 
one sample point per pixel allows a strong degree of 
glanceability; 

• G-Sparks is well applicable to data collected from fixed 
sample rates for efficient graph interaction.  

6.4 Applications 
Various applications can benefit from designs such as G-Sparks. 
For example, G-Sparks can be combined with other data 
visualizations to convey additional insights to the users. This can 
provide very dense and compact representations for data such as 
heart rate, sleep quality, and breathing patterns all together on the 
small smartwatch display (Figure 9, a). In more complex scenarios, 



G-Sparks can also represent the elevation of a selected route in a 
map, from the beginning point to the ending point (Figure 9, c). As 
such, a jogger may make decisions about their speed according to 
the visible elevation. Furthermore, temperature and precipitation 
patterns can also be added to help users make suitable decisions. 
It’s also possible to use G-Sparks in round watch faces (figure 9, b) 
with more complex line graphs such as horizon graphs and stack 
graphs. 

While we evaluated our approach on a rectangular display, we 
believe they also apply to circular screens (see above). In such 
cases, the line graphs can be confined to ‘tight’ positions, such as 
at the bottom or top of the screen. Furthermore, our results can be 
combined with other approaches, such as Horizon graphs to further 
condense our representations along the y-axis in case of including 
additional data. 

6.5 Limitations 
One limitation concerns our focus on values read from the y-axis 
but not the x-axis, which represents the temporal aspect in line 
graphs. To explore the generalizability of our results, future work 
is needed. Future work is also necessary to look at other perceptual 
tasks. Correspondingly, the generalizability of the results on 
different smartwatch displays, such as those that are circular, is 
unknown. Furthermore, when condensing a line graph, 
interactivity, such as selecting a specific point is challenging. 
Future work will also investigate suitable interactions for G-Sparks. 

7 CONCLUSION 
We investigated methods to condense line graphs on smartwatches, 
while maintaining the visibility during relatively swift graph 
reading activity. Inspired by Sparklines [48], our first study focused 
on comparing the benefits of three different Compression Types 
(i.e., x-axis, y-axis, and xy-axes compression) with simple line 
segments. We repeatedly found that compressing a line graph on 
the x-axis yields more accurate and faster response, compared to 
the y-axis and xy-axis compression. Moreover, even when the x-
axis compression was compared against the baseline, x-axis 
compression generated more favourable outcomes. That is, 
somewhat unexpectedly, compressed graphs triggered more 
accurate and faster responses than uncompressed graphs. We 
finally introduce G-Sparks, a dense compression of line graphs of 
up to one pixel per sample point along the x-axis. In a second study 
we find that compressing line graphs on the x-axis yields better 
performances (i.e., fewer errors and faster response time) when 
users performed glanceable estimation tasks, when compared to a 
non-compressed line graph. We offer design recommendations to 
smartwatch application designers and propose ways to integrate 
such compressed graphs in smartwatch applications. 
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